
OpenVG Specification
Version 1.0.1

Version 1.0 - August 1, 2005
Amended January 26, 2007

Editor: Daniel Rice, Google, Inc.
rice@ google.com

mailto:rice@google.com

“ ”

For Ilise – DSR

Copyright © 2005-2007 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material
proprietary to the Khronos Group, Inc. It or any components may not be
reproduced, republished, distributed, transmitted, displayed, broadcast or
otherwise exploited in any manner without the express prior written permission
of Khronos Group. You may use this specification for implementing the
functionality therein, without altering or removing any trademark, copyright or
other notice from the specification, but the receipt or possession of this
specification does not convey any rights to reproduce, disclose, or distribute its
contents, or to manufacture, use, or sell anything that it may describe, in whole or
in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version of
the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A
link to the current version of this specification on the Khronos Group web-site
should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or
warranties, express or implied, regarding this specification, including, without
limitation, any implied warranties of merchantability or fitness for a particular
purpose or non-infringement of any intellectual property.

Khronos Group makes no, and expressly disclaims any, warranties, express or
implied regarding the correctness, accuracy, completeness, timeliness, and
reliability of the specification. Under no circumstances will the Khronos Group,
or any of its Promoters, Contributors or Members or their respective partners,
officers, directors, employees, agents or representatives be liable for any
damages, whether direct, indirect, special or consequential damages for lost
revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Khronos and OpenVG are trademarks of The Khronos Group Inc. OpenGL is a
registered trademark, and OpenGL ES is a trademark, of Silicon Graphics, Inc.

Table of Contents
1 Introduction..1

1.1 Feature Set..1
1.2 Target Applications..1

SVG Viewers..1
Portable Mapping Applications..1
E-book Readers..2
Games...2
Scalable User Interfaces..2
Low-Level Graphics Device Interface..2

1.3 Target Devices..2
1.4 Design Philosophy...2
1.5 Naming and Typographical Conventions..3
1.6 Library Naming..3

2 The OpenVG Pipeline..4
2.1 Stage 1: Path, Transformation, Stroke, and Paint...5
2.2 Stage 2: Stroked Path Generation..5
2.3 Stage 3: Transformation..5
2.4 Stage 4: Rasterization...5
2.5 Stage 5: Clipping and Masking...6
2.6 Stage 6: Paint Generation...6
2.7 Stage 7: Image Interpolation...6
2.8 Stage 8: Blending and Antialiasing...6

3 Constants, Functions and Data Types..7
3.1 Versioning...7

OPENVG_VERSION_1_0..7
3.2 Primitive Data Types...7

VGbyte..7
VGubyte...7
VGshort..7
VGint...8
VGuint..8
VGbitfield...8
VGboolean...8
VGfloat...8

3.3 Floating-Point and Integer Representations..8
VG_MAXSHORT..9
VG_MAXINT...9
VG_MAX_FLOAT...9

3.4 Colors..9
3.4.1 Linear and Non-Linear Color Representations...9
3.4.2 Color Space Definitions...10
3.4.3 Premultiplied Alpha...12
3.4.4 Color Format Conversion..13

3.5 Enumerated Data Types...14
3.6 Handle-based Data Types...15

i

VGHandle..15
VG_INVALID_HANDLE..15

4 The Drawing Context...16
4.1 Errors...17

VGErrorCode...18
vgGetError...18

4.2 Manipulating the Context Using EGL..18
4.2.1 EGLConfig Attributes...18

EGL_OPENVG_BIT..19
EGL_ALPHA_MASK_SIZE...19

4.2.2 EGL Functions..19
eglBindAPI...19
eglCreateContext...19
eglCreateWindowSurface..19
eglCreatePbufferFromClientBuffer..20
eglMakeCurrent..20
eglGetCurrentContext..20
eglDestroyContext..20
eglSwapBuffers..21

4.3 Forcing Drawing to Complete..21
vgFlush...21
vgFinish..21

5 Setting API Parameters...22
5.1 Context Parameter Types..22

VGParamType...22
5.2 Setting and Querying Context Parameter Values..23

vgSet..24
vgGet and vgGetVectorSize..25

5.2.1 Default Context Parameter Values..25
5.3 Setting and Querying Object Parameter Values...27

vgSetParameter...27
vgGetParameter and vgGetParameterVectorSize..28

6 Rendering Quality and Antialiasing...30
6.1 Rendering Quality..31

VGRenderingQuality..31
6.2 Additional Quality Settings..31

VGPixelLayout..31
6.3 Coordinate Systems and Transformations..32
6.4 Coordinate Systems..33
6.5 Transformations...33

6.5.1 Homogeneous Coordinates..33
6.5.2 Affine Transformations..34
6.5.3 Projective (Perspective) Transformations...35

6.6 Matrix Manipulation...36
VGMatrixMode...36
vgLoadIdentity..37
vgLoadMatrix..37
vgGetMatrix...38
vgMultMatrix..38
vgTranslate...39

ii

vgScale..39
vgShear...39
vgRotate...40

7 Scissoring, Masking, and Clearing..41
7.1 Scissoring..41

VG_MAX_SCISSOR_RECTS...41
Specifying Scissoring Rectangles..41

7.2 Alpha Masking...42
VGMaskOperation..42
vgMask...44

7.3 Fast Clearing...45
vgClear...45

8 Paths..46
8.1 Moves..46
8.2 Straight Line Segments...46
8.3 Bézier Curves..46

8.3.1 Quadratic Bézier Curves...46
8.3.2 Cubic Bézier Curves...47
8.3.3 G1 Smooth Segments...47
8.3.4 C1 Smooth Segments...48
8.3.5 C2 Smooth Segments...49
8.3.6 Converting Segments From Quadratic to Cubic Form..49

8.4 Elliptical Arcs...49
8.5 The Standard Path Format..50

VG_PATH_FORMAT_STANDARD..50
8.5.1 Path Segment Command Side Effects..51
8.5.2 Segment Commands...52
8.5.3 Coordinate Data Formats..53

VGPathDatatype...54
8.5.4 Segment Type Marker Definitions...54

VGPathAbsRel...55
VGPathSegment..55
VGPathCommand...55

8.5.5 Client-Side Path Example...57
8.6 Path Operations...58

8.6.1 Storage of Paths..58
VGPath...59

8.6.2 Creating and Destroying Paths...59
VGPathCapabilities..59
vgCreatePath...60
vgClearPath...62
vgDestroyPath...62

8.6.3 Path Queries...62
VGPathParamType...62
Path Format...63
Path Datatype..63
Path Scale...63
Path Bias...63
Number of Segments..64
Number of Coordinates...64

iii

8.6.4 Querying and Modifying Path Capabilities..64
vgGetPathCapabilities..64
vgRemovePathCapabilities...64

8.6.5 Copying Data Between Paths...65
vgAppendPath..65

8.6.6 Appending Client-Side Data to a Path..65
vgAppendPathData..65

8.6.7 Modifying Path Data..66
vgModifyPathCoords...67

8.6.8 Transforming a Path..68
vgTransformPath..68

8.6.9 Interpolating Between Paths...69
vgInterpolatePath...69

8.6.10 Length of a Path..70
vgPathLength..70

8.6.11 Position and Tangent Along a Path...71
The Tangents of a Path Segment...71
vgPointAlongPath..72

8.6.12 Querying the Bounding Box of a Path...73
vgPathBounds...74
vgPathTransformedBounds..75

8.7 Interpretation of Paths...75
8.7.1 Filling Paths...75

Creating Holes in Paths..77
Implicit Closure of Filled Subpaths..78

8.7.2 Stroking Paths...79
8.7.3 Stroke Parameters..80

End Cap Styles...80
Line Join Styles..81
Miter Length..82
Dashing...82

8.7.4 Stroke Generation...83
8.7.5 Setting Stroke Parameters..84

VGCapStyle..84
VGJoinStyle..85
VG_MAX_DASH_COUNT...85
Setting the Dash Pattern...86

8.7.6 Non-Scaling Strokes...86
8.8 Filling or Stroking a Path...87

VGFillRule..87
VGPaintMode..88
vgDrawPath...88
Filling a Path..88
Stroking a Path..89
Filling and Stroking a Path..89

9 Paint...90
9.1 Paint Definitions...90

VGPaint..90
9.1.1 Creating and Destroying Paint Objects...91

vgCreatePaint..91

iv

vgDestroyPaint..91
9.1.2 Setting the Current Paint...91

vgSetPaint..91
vgGetPaint...92

9.1.3 Setting Paint Parameters..92
VGPaintParamType..92
VGPaintType...94

9.2 Color Paint...94
Setting Color Paint Parameters...94
vgSetColor..94
vgGetColor...95

9.3 Gradient Paint..96
9.3.1 Linear Gradients..96

Setting Linear Gradient Parameters...97
9.3.2 Radial Gradients...97

Setting Radial Gradient Parameters...98
9.3.3 Color Ramps...99

VG_MAX_COLOR_RAMP_STOPS...100
VGColorRampSpreadMode..100
Setting Color Ramp Parameters..101
Formal Definition of Spread Modes...102

9.3.4 Gradient Examples..103
9.4 Pattern Paint..104

vgPaintPattern...105
9.4.1 Pattern Tiling...105

VGTilingMode...105
Setting the Pattern Tiling Mode..107

10 Images...108
10.1 Image Coordinate Systems...108
10.2 Image Formats..108

VGImageFormat..108
10.3 Creating and Destroying Images...111

VGImage..111
VGImageQuality...111
VG_MAX_IMAGE_WIDTH..112
VG_MAX_IMAGE_HEIGHT..112
VG_MAX_IMAGE_PIXELS...112
VG_MAX_IMAGE_BYTES..112
vgCreateImage..113
vgDestroyImage..113

10.4 Querying Images...114
VGImageParamType..114
Image Format...114
Image Width..114
Image Height...115

10.5 Reading and Writing Image Pixels..115
vgClearImage..115
vgImageSubData...115
vgGetImageSubData..117

10.6 Child Images..118

v

vgChildImage..118
vgGetParent...119

10.7 Copying Pixels Between Images...119
vgCopyImage..119

10.8 Drawing Images to the Drawing Surface...120
VGImageMode..120
vgDrawImage..120
VG_DRAW_IMAGE_NORMAL..122
VG_DRAW_IMAGE_MULTIPLY..122
VG_DRAW_IMAGE_STENCIL..122

10.9 Reading and Writing Drawing Surface Pixels..123
10.9.1 Writing Drawing Surface Pixels...123

vgSetPixels...123
vgWritePixels...124

10.9.2 Reading Drawing Surface Pixels...125
vgGetPixels..125
vgReadPixels..126

10.10 Copying Portions of the Drawing Surface..128
vgCopyPixels...128

11 Image Filters..129
11.1 Format Normalization..129
11.2 Channel Masks..130

VGImageChannel..130
11.3 Color Combination...131

vgColorMatrix...131
11.4 Convolution..132

VG_MAX_KERNEL_SIZE...132
VG_MAX_SEPARABLE_KERNEL_SIZE..132
VG_MAX_GAUSSIAN_STD_DEVIATION..132
vgConvolve..133
vgSeparableConvolve...134
vgGaussianBlur...136

11.5 Lookup Tables...137
vgLookup...137
vgLookupSingle..138

12 Blending...140
12.1 Blending Equations..140
12.2 Porter-Duff Blending..140
12.3 Additional Blending Modes..141
12.4 Additive Blending...142
12.5 Setting the Blend Mode...142

VGBlendMode...142
13 Querying Hardware Capabilities..143

VGHardwareQueryType...143
VGHardwareQueryResult...143
vgHardwareQuery..143

14 Extending the API..145
14.1 Extension Naming Conventions..145
14.2 The Extension Registry...145
14.3 Using Extensions...146

vi

14.3.1 Accessing Extensions Statically..146
14.3.2 Accessing Extensions Dynamically...146

VGStringID..146
vgGetString..146
eglGetProcAddress...147

14.4 Creating Extensions..147
15 API Conformance..148

15.1 Conformance Test Principles..148
15.1.1 Window System Independence...148
15.1.2 Antialiasing Algorithm Independence..148
15.1.3 On-Device and Off-Device Testing...148

15.2 Types of Conformance Tests..148
15.2.1 Pipeline Tests..149
15.2.2 Self-Consistency Tests...149
15.2.3 Matrix Tests...149
15.2.4 Interior/Exterior Tests..149
15.2.5 Positional Invariance...149
15.2.6 Image Comparison Tests..149

16 The VGU Utility Library..150
VGU_VERSION_1_0..150
VGUErrorCode..150

16.1 Higher-level Geometric Primitives...150
16.1.1 Lines..151

vguLine...151
16.1.2 Polylines and Polygons...151

vguPolygon..151
16.1.3 Rectangles..152

vguRect...152
16.1.4 Round-Cornered Rectangles..153

vguRoundRect...153
16.1.5 Ellipses..154

vguEllipse...154
16.1.6 Arcs...155

VGUArcType...155
vguArc..155

16.2 Image Warping..157
vguComputeWarpQuadToSquare...158
vguComputeWarpSquareToQuad...158
vguComputeWarpQuadToQuad...159

17 Appendix A: Mathematics of Ellipses..160
17.1 The Center Parameterization..160
17.2 The Endpoint Parameterization...161
17.3 Converting from Center to Endpoint Parameterization..161
17.4 Converting from Endpoint to Center Parameterization..162
17.5 Implicit Representation of an Ellipse...165
17.6 Transformation of Ellipses...166

18 Appendix B: Header Files..168
openvg.h...168
vgu.h...179

19 Bibliography...181

vii

20 Document History..182
21 Acknowledgments..183
22 Indices...184

Index of Tables..184
Index of Figures...185
Alphabetical Index..185

viii

OpenVG 1.0 Specification 1 – Introduction

1 Introduction
OpenVG is a new application programming interface (API) for hardware-

accelerated two-dimensional vector and raster graphics developed under the
auspices of the Khronos Group (www.khronos.org). It provides a device-
independent and vendor-neutral interface for sophisticated 2D graphical
applications, while allowing device manufacturers to provide hardware
acceleration where appropriate.

This document defines the C language binding to OpenVG. Other language
bindings may be defined by Khronos in the future. We use the term
“implementation” to refer to the software and/or hardware that implements
OpenVG functionality, and the term “application” to refer to any software that
makes use of OpenVG.

1.1 Feature Set
OpenVG provides a drawing model similar to those of existing two-

dimensional drawing APIs and formats, such as Adobe PostScript [ADOB99],
PDF [ADOB06a], and (originally MacroMedia) Flash [ADOB06b]; Sun
Microsystems Java2D [SUN04]; and SVG [SVGF05][SVGT06]. It is specifically
intended to support all drawing features required by a SVG Tiny 1.2 renderer,
and additionally to support functions that may be of use for implementing an
SVG Basic renderer.

1.2 Target Applications
Several classes of target applications were used to define requirements for the

design of the OpenVG API.

SVG Viewers

OpenVG must provide the drawing functionality required for a high-
performance SVG document viewer that is conformant with version 1.2 of the
SVG Tiny profile. It does not need to provide a one-to-one mapping between
SVG syntactic features and API calls, but it must provide efficient ways of
implementing all SVG Tiny features.

Portable Mapping Applications

OpenVG can provide dynamic features for map display that would be difficult
or impossible to do with an SVG viewer alone, such as dynamic placement and
sizing of street names and markers, and efficient viewport culling.

1

OpenVG 1.0 Specification 1.2 – Target Applications

E-book Readers

The OpenVG API must provide fast rendering of readable text in Western,
Asian, and other scripts. It does not need to provide advanced text layout
features.

Games

The OpenVG API must be useful for defining sprites, backgrounds, and
textures for use in both 2D and 3D games. It must be able to provide two-
dimensional overlays (e.g., for maps or scores) on top of 3D content.

Scalable User Interfaces

OpenVG may be used to render scalable user interfaces, particularly for
applications that wish to present users with a unique look and feel that is
consistent across different screen resolutions.

Low-Level Graphics Device Interface

OpenVG may be used as a low-level graphics device interface. Other graphical
toolkits, such as windowing systems, may be implemented above OpenVG.

1.3 Target Devices
OpenVG is designed to run on devices ranging from wrist watches to full

microprocessor-based desktop and server machines. It should be possible to
implement OpenVG on any device that is capable enough to support OpenGL ES
1.1. Over time, it is expected that OpenGL ES hardware manufacturers will be
able to provide inexpensive incremental acceleration for OpenVG functionality.

Realistically, to obtain the full benefit of OpenVG, a device should provide a
display with at least 128 x 128 non-indexed RGB color pixels with 4 or more bits
per channel.

1.4 Design Philosophy
OpenVG is intended to provide a hardware abstraction layer that will allow

accelerated performance on a variety of application platforms. Functions that are
not expected to be amenable to hardware acceleration in the near future were
either not included, or included as part of the optional VGU utility library.

Where possible, the syntax of OpenVG is intended to be reminiscent of that of
OpenGL, in order to make learning OpenVG as easy as possible for OpenGL
developers. Most of the OpenVG state is encapsulated in a set of primitive-
valued variables that are manipulated using the vgSet and vgGet functions.
Extensions may add new state variables in order to add new features to the
pipeline without needing to add new functions.

2

OpenVG 1.0 Specification 1.4 – Design Philosophy

Paint, path, and image objects in OpenVG are referenced using opaque
handles. This allows implementations to store such objects using their own
preferred representation, in whatever form of memory they choose. This is
intended to simplify hardware design, and to minimize processing and bus
traffic for frequently-used objects.

1.5 Naming and Typographical Conventions
OpenVG uses a consistent set of conventions for API names and symbols. In

this document, additional typographic conventions are used to help indicate the
type of each symbol, as shown in Table 1 below.

Symbol Type Name/Case Type Style Example

API Function vgXxxYyy Boldface vgLoadMatrix

API Function
with Varying
Parameter Types

vgXxx{f,i,fv,iv} Boldface vgSetfv

Utility Function vguXxxYyy Boldface vguRoundRect

Primitive
Datatype VGxxx Typewriter VGfloat

Enumerated
Datatype VGXxxYyy Typewriter VGCapStyle

Enumerated
Value VG_XXX_YYY Typewriter VG_BLEND_MODE

Utility
Enumerated
Value

VGU_XXX_YYY Typewriter VGU_ARC_CHORD

Function
Argument xxxYyy Typewriter paintMode

Table 1: Naming and Typographical Conventions

1.6 Library Naming
The library name is defined as libOpenVG.z where z is a platform-specific

library suffix (i.e., .a, .so, .lib, .dll, etc.).

3

OpenVG 1.0 Specification 2 – The OpenVG Pipeline

2 The OpenVG Pipeline
This section defines the OpenVG pipeline mechanism by which primitives are

rendered. Implementations are not required to match the ideal pipeline stage-
for-stage; they may take any approach to rendering so long as the final results
match the results of the ideal pipeline within the tolerances defined by the
conformance testing process.

Figure 1 below provides an overview of the OpenVG pipeline, focusing on the
various steps involved in drawing a thick, dashed line into a scene using a radial
gradient paint.

Figure 1: The OpenVG Pipeline

4

*

Stage 1:
Path,
Transformation,
Stroke, and Paint

Stage 2:
Stroked Path
Generation

Stage 3:
Transformation

Stage 4:
Rasterization

Stage 6:
Paint Generation

Stage 5:
Clipping and
Masking

Stage 8:
Blending and
Antialiasing

Stage 7:
Image Interpolation

T
T

OpenVG 1.0 Specification 2.1 – Stage 1: Path, Transformation, Stroke, and Paint

2.1 Stage 1: Path, Transformation, Stroke, and Paint
The application defines the path to be drawn, and sets any transformation,

stroke, and paint parameters or leaves them at their default settings. When all
parameters have been set, the application initiates the rendering process by
calling vgDrawPath, indicating whether the path is to be filled, stroked, or both.
If the path is to be both filled and stroked, the remainder of the pipeline is
invoked twice in a serial fashion, first to fill and then to stroke the path.

If an image is being drawn (via the vgDrawImage function), the current path is
set to a rectangle bounding the image.

2.2 Stage 2: Stroked Path Generation
If the path is to be stroked, the stroke parameters are applied in the user

coordinate system to generate a new path that describes the stroked geometry.
This path is then substituted for the original path in the remainder of the
pipeline, and the fill rule is set to non-zero.

2.3 Stage 3: Transformation
The current path-user-to-surface transformation is applied to the geometry of

the current path, producing drawing surface coordinates. For an image, the
outline of the image is transformed using the image-user-to-surface
transformation. Non-uniform transformations may result in skewed stroke
outlines.

2.4 Stage 4: Rasterization
A coverage value is computed at pixels affected by the current path using a

filtering process, and saved for use in the antialiasing step.

Conceptually, a set of sample positions are evaluated for inclusion within the
path. At each pixel center that is no more than 1½ pixels away from some
portion of the path geometry, a reconstruction filter is applied to the binary
inclusion values at nearby sample points to obtain a filtered coverage value for
the pixel. If only a single sample per pixel is evaluated, the sample position must
be coincident with the pixel center.

Note that for a box filter (a filter that gives equal positive weight to all samples
within a rectangle centered on the pixel center, and zero weight elsewhere), this
filtering process amounts to estimating the area of the intersection of the path
geometry with the filter rectangle.

If antialiasing is disabled, only pixel centers are used as sample points and the
reconstruction filter has value 1 at the pixel center and 0 elsewhere.

In the case where a sample point lies exactly on the boundary of a path, the
implementation must enforce a consistent “tie-breaking” rule. For any two paths

5

OpenVG 1.0 Specification 2.4 – Stage 4: Rasterization

that share a common boundary segment, but whose interiors lie on opposite
sides of the segment, a sample point that lies exactly on the boundary must be
considered to be included in exactly one of the two paths. If the interiors of the
two paths lie on the same side of the common segment, the sample point must
belong to both paths, or neither path. Note that the common boundary segment
must be specified in exactly the same manner (i.e., with bit-for-bit identical
control point values, scale and bias, and transformation matrix settings) for both
paths in order for this guarantee to hold.

2.5 Stage 5: Clipping and Masking
Pixels not lying within the bounds of the drawing surface, and (if scissoring is

enabled) within the union of the current set of scissor rectangles are assigned a
coverage value of 0.

 An application-specified alpha mask image is used to modify the coverage
values generated by the previous stage. Each coverage value is multiplied by the
mask value for the corresponding pixel to obtain a masked coverage value. If the
resulting coverage value is zero, the remainder of the pipeline is skipped.

2.6 Stage 6: Paint Generation
At each pixel of the drawing surface, the relevant current paint (depending on

whether the original path was to be filled or stroked) is used to define a color
and an alpha value. For gradient and pattern paints, the paint-to-user
transformation is concatenated with the path-user-to-surface transformation to
define the paint transformation that will geometrically transform the paint. Paint
generation may be skipped for operations that do not utilize paint values.

2.7 Stage 7: Image Interpolation
If an image is being drawn, an image color and alpha value is computed at

each pixel by interpolating image values using the inverse of the current image-
user-to-surface transformation. The results are combined with the paint color
and alpha values according to the current image drawing mode. If image
drawing is not taking place, the results from the preceding stage are passed
through unchanged.

2.8 Stage 8: Blending and Antialiasing
At each pixel, the source color and alpha values from the preceding stage are

converted into the destination color space and blended with the corresponding
destination color and alpha values according to the current blending rule. A
special blending rule is used when drawing an image using the “stencil” image
drawing mode. The computed coverage value from stage 5 is used to interpolate
between the blended result and the previously assigned color at the pixel
(preferably in a linear color space) to produce an antialiased result.

6

OpenVG 1.0 Specification 3 – Constants, Functions and Data Types

3 Constants, Functions and Data Types
OpenVG type definitions and function prototypes are found in an openvg.h

header file, located in a vg subdirectory of a platform-specific header file
location. OpenVG makes use of 8-, 16-, and 32-bit data types. A 64-bit data type is
not required. If the khronos_types.h header file is provided, the primitive
data types will be compatible across all Khronos APIs on the same platform.

3.1 Versioning
The openvg.h header file defines constants indicating the version of the

specification. Future versions will continue to define the constants for all
previous versions with which they are backward compatible.

OPENVG_VERSION_1_0

 For the current specification, the constant OPENVG_VERSION_1_0 is defined.
The version may be queried at runtime using the vgGetString function (see
Section 14.3.2).
#define OPENVG_VERSION_1_0 1

3.2 Primitive Data Types

OpenVG defines a number of primitive data types by means of C typedefs. The
actual data types used are platform-specific.

VGbyte

VGbyte defines an 8-bit two’s complement signed integer, which may contain
values between -128 and 127, inclusive. If khronos_types.h is defined,
VGbyte will be defined as khronos_int8_t.

VGubyte

VGubyte defines an 8-bit unsigned integer, which may contain values between
0 and 255, inclusive. If khronos_types.h is defined, VGubyte will be defined
as khronos_uint8_t.

VGshort

VGshort defines a 16-bit two’s complement signed integer, which may
contain values between -32768 and 32767, inclusive. If khronos_types.h is
defined, VGshort will be defined as khronos_int16_t.

7

OpenVG 1.0 Specification 3.2 – Primitive Data Types

VGint

VGint defines a 32-bit two’s complement signed integer. If
khronos_types.h is defined, VGint will be defined as khronos_int32_t.

VGuint

VGuint defines a 32-bit unsigned integer. Overflow behavior is undefined. If
khronos_types.h is defined, VGuint will be defined as khronos_uint32_t.

VGbitfield

VGbitfield defines a 32-bit unsigned integer value, used for parameters that
may combine a number of independent single-bit values. A VGbitfield must
be able to hold at least 32 bits. If khronos_types.h is defined, VGbitfield
will be defined as khronos_uint32_t.

VGboolean

VGboolean is an enumeration that only takes on the values of VG_FALSE (0)
or VG_TRUE (1). Any non-zero value used as a VGboolean will be interpreted as
VG_TRUE.
typedef enum {
 VG_FALSE = 0,
 VG_TRUE = 1
} VGboolean;

VGfloat

VGfloat defines a 32-bit IEEE 754 floating-point value. If khronos_types.h
is defined, VGfloat will be defined as khronos_float_t.

3.3 Floating-Point and Integer Representations
All floating-point values are specified in standard IEEE 754 format. However,

implementations may clamp extremely large or small values to a restricted
range, and internal processing may be performed with lesser precision. At least
16 bits of mantissa, 6 bits of exponent, and a sign bit must be present, allowing
values from ± 2±31 to be represented with a fractional precision of at least 1 in 216.

Path data (i.e., vertex and control point coordinates and ellipse parameters)
may be specified in one of four formats: 8-, 16-, or 32-bit signed integers, or
floating-point. Floating-point scale and bias factors are used to map the incoming
integer and floating-point values into a desired range when path processing
occurs.

 Handling of special values is as follows. Positive and negative 0 values must
be treated identically. Values of +Infinity, -Infinity, or NaN (not a number) yield
unspecified results. Optionally, incoming floating-point values of NaN may be

8

OpenVG 1.0 Specification 3.3 – Floating-Point and Integer Representations

treated as 0, and values of +Infinity and -Infinity may be clamped to the largest
and smallest available values within the implementation, respectively.
Denormalized numbers may be truncated to 0. Passing any arbitrary value as
input to any floating-point argument must not lead to OpenVG interruption or
termination.

VG_MAXSHORT

The macro VG_MAXSHORT contains the largest positive value that may be
represented by a VGshort. VG_MAXSHORT is defined to be equal to 215 – 1, or
32,767. The smallest negative value that may be represented by a VGshort is
given by (–VG_MAXSHORT – 1), or -32,768.

VG_MAXINT

The macro VG_MAXINT contains the largest positive value that may be
represented by a VGint. VG_MAXINT is defined to be equal to 231 – 1, or
2,147,483,647. The smallest negative value that may be represented by a VGint is
given by (–VG_MAXINT – 1), or -2,147,483,648.

VG_MAX_FLOAT

The parameter VG_MAX_FLOAT contains the largest floating-point number that
will be accepted by an implementation. To query the parameter, use the vgGetf
function with a paramType argument of VG_MAX_FLOAT (see Section 5.2). All
implementations must define VG_MAX_FLOAT to be at least 1010.

3.4 Colors
Colors in OpenVG other than those stored in image pixels (e.g., colors for

clearing, painting, and edge extension for convolution) are represented as non-
premultiplied (see Section 3.4.3) sRGBA [sRGB99] color values. Image pixels may
be defined in a number of color spaces, including sRGB, linear RGB, linear
grayscale (or luminance) and non-linearly coded, perceptually-uniform grayscale,
in premultiplied or non-premultiplied form. Color and alpha values lie in the
range [0,1] unless otherwise noted. If an alpha channel is present but has a bit
depth of zero, the alpha value of each pixel is taken to be 1.

Non-linear quantities are denoted using primed (’) symbols below. [POYN03]
contains an excellent discussion of the use of non-linear coding to achieve
perceptual uniformity.

3.4.1 Linear and Non-Linear Color Representations
In a linear color representation, the numeric values associated with a color

channel value measure the rate at which light is emitted by an object, multiplied
by some constant scale factor. Informally, it can be thought of as counting the
number of photons emitted in a given amount of time. Linear representations are

9

OpenVG 1.0 Specification 3.4.1 – Linear and Non-Linear Color Representations

useful for computation, since light values may be added together in a physically
meaningful way.

However, the human visual system responds non-linearly to the light power
(“intensity”) of an image. Accordingly, many common image coding standards
(e.g., the EXIF JPEG format used by many digital still cameras and the MPEG
format used for video) utilize non-linear relationships between light power and
code values. This allows a larger number of distinguishable colors to be
represented in a given number of bits than is possible with a linear encoding.
Common display devices such as CRTs and LCDs also emit light whose power at
each pixel component is proportional to a non-linear power function (i.e., a
function of the form xa where a is constant) of the applied code value, whether
due to the properties of analog CRT electronics or to the deliberate application of
a non-linear transfer function elsewhere in the signal path. The exponent, or
gamma, of this power function is typically between 2.2 and 2.5. OpenVG makes
use of the non-linear sRGB color specification described below.

Because linear coding of intensity fails to optimize the number of
distinguishable values, 8-bit linear pixel formats suffer from poor contrast ratios
and banding artifacts; their use with photographic imagery is not recommended.
However, synthetic imagery generated by other APIs such as OpenGL ES that
make use of linear light may require the use of linear formats. 8-bit linear coding
is also appropriate for representing pseudo-images such as coverage masks that
are not based on perceptual light intensity.

Although computing directly with non-linear representations may lead to
significant errors compared with the results of first converting to a linear
representation, it is common industry practice in many imaging domains to do
so. Because the cost of performing linearization on pixel values to be
interpolated or blended is considered prohibitive for mobile devices in the near
future, OpenVG may perform these operations directly on non-linear code
values. A future version of this specification may introduce flags to force values
to be converted to a linear representation prior to interpolation and blending.

3.4.2 Color Space Definitions
The linear lRGB color space is defined in terms of the standard CIE XYZ color

space [WYSZ00], following ITU Rec. 709 [ITU90] using a D65 white point:

R = 3.240479 X – 1.537150 Y – 0.498535 Z

G = -0.969256 X + 1.875992 Y + 0.041556 Z

B = 0.055648 X – 0.204043 Y + 1.057311 Z

10

OpenVG 1.0 Specification 3.4.2 – Color Space Definitions

The sRGB color space defines values R’sRGB, G’sRGB, B’sRGB in terms of the linear
lRGB primaries by applying a gamma (γ) mapping consisting of a linear segment
and an offset power function:

If x ≤ 0.00304

γ(x) = 12.92 x

else

γ(x) = 1.0556 x1/2.4 – 0.0556

The inverse mapping γ -1 is defined as:

If x ≤ 0.03928

 γ -1(x) = x / 12.92

else

γ -1(x) = [(x + 0.0556) / 1.0556]2.4

To convert from lRGB to sRGB, the gamma mapping is used:

R’sRGB = γ(R)

G’sRGB = γ(G) (1)

B’sRGB = γ(B)

To convert from sRGB to lRGB, the inverse gamma mapping is used:

R = γ -1(R’sRGB)

G = γ -1(G’sRGB) (2)

B = γ -1(B’sRGB)

Because the gamma function involves offset and scaling factors, it behaves
similarly to a pure power function with an exponent of 1/2.2 (or approximately
0.45) rather than the “advertised” exponent of 1/2.4, (or approximately 0.42).

11

OpenVG 1.0 Specification 3.4.2 – Color Space Definitions

The linear grayscale (luminance) color space (which we denote as lL) is related
to the linear lRGB color space by the equations:

L = 0.2126 R + 0.7152 G + 0.0722 B (3)

R = G = B = L (4)

The perceptually-uniform grayscale color space (which we denote as sL) is
related to the linear grayscale (luminance) color space by the gamma mapping:

L’ = γ(L) (5)

L = γ -1(L’) (6)

Conversion from perceptually-uniform grayscale to sRGB is performed by
replication:

R’ = G’ = B’ = L’ (7)

The remaining conversions take place in multiple steps, as shown in Table 2
below. The source format is indicated by the left column, and the destination
format is indicated by the top row. The numbers indicate the equations from this
section that are to be applied, in left-to-right order.

Source/Dest lRGB sRGB lL sL

lRGB — 1 3 3,5
sRGB 2 — 2,3 2,3,5
lL 4 4,1 — 5
sL 7,2 7 6 —

Table 2: Pixel Format Conversions

3.4.3 Premultiplied Alpha
 In premultiplied alpha (or simply premultiplied) formats, a pixel (R, G, B, α) is

represented as (α*R, α*G, α*B, α). Alpha is always coded linearly, regardless of the
color space. The terms associated and premultiplied are synonymous.

In OpenVG, color interpolation takes place in premultiplied format in order to
obtain correct results for translucent pixels.

12

OpenVG 1.0 Specification 3.4.4 – Color Format Conversion

3.4.4 Color Format Conversion
Color values are converted between different formats and bit depths as

follows. First, premultiplied color values are clamped to their corresponding
alpha values and non-zero alpha values are divided out to obtain a non-
premultiplied representation for the color.

If the source and destination color formats are of differing color spaces (i.e.,
linear RGB, sRGB, linear grayscale, perceptually-uniform grayscale), each source
channel is divided by the maximum channel value to produce a number between
0 and 1. The color space conversion is performed as described above. The
resulting values are then scaled by the maximum value for each destination
channel.

If the source and destination formats have the same color format, but differ in
the number of bits per color channel, the source value is multiplied by the
quotient (2d – 1)/(2s – 1) (where d is the number of bits in the destination and s is
the number of bits in the source) and rounded to the nearest integer.

The following approximation may be used in place of exact multiplication: If
the source channel has a greater number of bits than the destination, the most
significant bits are preserved and the least significant bits are discarded. If the
source channel has a lesser number of bits than the destination, the value is
shifted left and the most significant bits are replicated in the less significant bit
positions. For example, a 5-bit source value b4b3b2b1b0 will be converted to an 8-
bit destination value b4b3b2b1b0b4b3b2. This rule approximates the correct result
since if d = k*s for some integer k > 1 the quotient (2d – 1)/(2s – 1) will be an integer
of the form 2(k-1)*s + 2(k-2)*s + ... + 2s + 1, and multiplication of an s-bit value by this
value will be exactly equivalent to bit replication. When the destination bit depth
is not an integer multiple of the source bit depth, this rule still provides greater
accuracy than other possible approximations such as padding the source with
zeros or with copies of the rightmost bit.

Note that converting from a lesser to a greater number of bits and back again
using either exact scaling or the approximation will result in an unchanged
value.

If the destination format has stored alpha, the previously saved alpha value is
stored into the destination. If the destination format has premultiplied alpha,
each color channel value is multiplied by the corresponding alpha value and the
resulting values are clamped between 0 and the corresponding alpha value.

13

OpenVG 1.0 Specification 3.5 – Enumerated Data Types

3.5 Enumerated Data Types
A number of data types are defined using the C enum keyword. In all cases,

this specification assigns each enumerated constant a particular integer value.
Extensions to the specification wishing to add new enumerated values must
register with the Khronos Group to receive a unique value (see Section 14).

Applications making use of extensions should cast the extension-defined
integer value to the proper enumerated type.

The enumerated types (apart from VGboolean) defined by OpenVG are:

• VGBlendMode
• VGCapStyle
• VGColorRampSpreadMode
• VGErrorCode
• VGFillRule
• VGHardwareQueryResult
• VGHardwareQueryType
• VGImageChannel
• VGImageFormat
• VGImageMode
• VGImageParamType
• VGImageQuality
• VGJoinStyle
• VGMaskOperation
• VGMatrixMode

• VGPaintMode
• VGPaintParamType
• VGPaintType
• VGParamType
• VGPathAbsRel
• VGPathCapabilities
• VGPathCommand
• VGPathDatatype
• VGPathParamType
• VGPathSegment
• VGPixelLayout
• VGRenderingQuality
• VGStringID
• VGTilingMode

The VGU utility library defines the enumerated types:

• VGUArcType • VGUErrorCode

14

OpenVG 1.0 Specification 3.6 – Handle-based Data Types

3.6 Handle-based Data Types
Images, paint objects, and paths are accessed using opaque handles. The use of

handles allows these potentially large and complex objects to be stored under
API control. For example, they may be stored in special memory and/or
formatted in a way that is suitable for use by a hardware implementation.
Handles are created relative to the current context, and may only be used as
OpenVG function parameters when that context or one of its shared contexts is
current.

VGHandle

Handles make use of the VGHandle data type. For reasons of binary
compatibility between different OpenVG implementations on a given platform, a
VGHandle is defined as a VGuint.
typedef VGuint VGHandle;

Handles to distinct objects must compare as unequal using the C == (double
equals) operator.

The VGHandle subtypes defined in the API are:

• VGImage – a reference to image data (see Section 10)
• VGPaint – a reference to a paint specification (see Section 9)
• VGPath – a reference to path data (see Section 8)

VG_INVALID_HANDLE

The symbol VG_INVALID_HANDLE represents an invalid VGHandle that is
used as an error return value from functions that return a VGHandle.
VG_INVALID_HANDLE is defined as (VGHandle)0.
#define VG_INVALID_HANDLE ((VGHandle)0)

15

OpenVG 1.0 Specification 4 – The Drawing Context

4 The Drawing Context
OpenVG functions that perform drawing, or that modify or query drawing

state make use of an implicit drawing context (or simply a context). A context is
created, attached to a drawing surface, and bound to a running application
thread outside the scope of the OpenVG API, for example by the Khronos EGL
API. OpenVG API calls are executed with respect to the context currently bound
to the thread in which they are executed. A call to any OpenVG API function
when no drawing context is bound to the current thread has no effect. The
drawing context currently bound to a running thread is referred to as the current
context.

When an image, paint, or path handle is defined, it is permanently attached to
the context that is current at that time. It is an error to use the handle as an
argument to any OpenVG function when a different context is active, unless that
context has been designated as a shared context of the original context by the API
responsible for context creation (usually EGL).

Images created by OpenVG may be used as the rendering target of a drawing
context. All drawing performed by any API that makes use of that context, such
as OpenVG or OpenGL ES, will use that image as the drawing surface.

Passing an image that is currently the rendering target of a drawing context to
any OpenVG function will result in a VG_IMAGE_IN_USE_ERROR. The image
may once again be used by OpenVG when it is no longer in use as a rendering
target.

An image that shares storage with any other image (via use of the
vgChildImage function), or that is set as a paint pattern image on a paint object,
may not be used as a rendering target. The image may once again be used as a
rendering target when all other images that share storage with it have been
destroyed and it is no longer set as a paint pattern image on any paint object.

It is possible to provide OpenVG on a platform without supporting EGL. In
this case, the host operating system must provide some alternative means of
creating a context and binding it to a drawing surface and a rendering thread.

The context is responsible for maintaining the API state, as shown in Table 3.

State Element Description

Drawing Surface Surface for drawing
Matrix Mode Transformation to be manipulated
Path user-to-surface

Transformation
Affine transformation for filled and
stroked geometry

Image user-to-surface

Transformation
Affine or projective transformation for
images

16

OpenVG 1.0 Specification 4 – The Drawing Context

State Element Description

Paint-to-user

Transformation
Affine transformation for paint applied
to geometry

Fill Rule Rule for filling paths

Quality Settings Image and rendering quality, pixel
layout

Blend Mode Pixel blend function
Image Mode Image/paint combination function

Scissoring Current scissoring rectangles and
enable/disable

Stroke Stroke parameters
Tile fill color Color for FILL tiling mode
Clear color Color for fast clear
Filter Parameters Image filtering parameters
Paint Paint definitions
Mask Alpha stencil mask and enable/disable
Error Oldest unreported error code

Table 3: State Elements of a Context

4.1 Errors
Some OpenVG functions may encounter errors. Unless otherwise specified,

any value returned from a function following an error is undefined.

All OpenVG functions may signal VG_OUT_OF_MEMORY_ERROR. This allows
implementations to defer memory allocation until it is needed, rather than
requiring them to proactively allocate memory only in certain functions that are
allowed to generate an error. Such an error may occur midway through the
execution of an OpenVG function, in which case the function may have caused
changes to the state of OpenVG or to drawing surface pixels prior to failure.

When an OpenVG function encounters an error other than a
VG_OUT_OF_MEMORY_ERROR, the context state is not modified and no drawing
takes place.

An error condition within an OpenVG function must never result in process
termination, with the exception of illegal memory accesses taking place within
functions that accept an application-provided pointer. Applications should take
care to check return values where provided. Functions that do not provide
return values may still flag errors that may be retrieved using the vgGetError

17

OpenVG 1.0 Specification 4.1 – Errors

function described below. Errors are stored in the context in which the function
was called.

All pointer arguments must be aligned according to their datatype, e.g., a
VGfloat * argument must be a multiple of 4 bytes.

VGErrorCode

The error codes and their numerical values are defined by the VGErrorCode
enumeration:
typedef enum {
 VG_NO_ERROR = 0,
 VG_BAD_HANDLE_ERROR = 0x1000,
 VG_ILLEGAL_ARGUMENT_ERROR = 0x1001,
 VG_OUT_OF_MEMORY_ERROR = 0x1002,
 VG_PATH_CAPABILITY_ERROR = 0x1003,
 VG_UNSUPPORTED_IMAGE_FORMAT_ERROR = 0x1004,
 VG_UNSUPPORTED_PATH_FORMAT_ERROR = 0x1005,
 VG_IMAGE_IN_USE_ERROR = 0x1006,
 VG_NO_CONTEXT_ERROR = 0x1007
} VGErrorCode;

vgGetError

vgGetError returns the oldest error code provided by an API call on the
current context since the previous call to vgGetError on that context (or since the
creation of the context). No error is indicated by a return value of 0
(VG_NO_ERROR). After the call, the error code is cleared to 0. The possible errors
that may be generated by each OpenVG function (apart from
VG_OUT_OF_MEMORY_ERROR) are shown below the definition of the function.

If no context is current at the time vgGetError is called, the error code
VG_NO_CONTEXT_ERROR is returned. Pending error codes on existing contexts
are not affected by the call.
VGErrorCode vgGetError(void)

4.2 Manipulating the Context Using EGL
Most OpenVG implementations are expected to make use of version 1.2 or

later of the EGL API to obtain drawing contexts. This section provides only a
partial, non-normative description of some aspects of the use of EGL that are
specific to OpenVG. Refer to the EGL 1.2 specification for more details.

4.2.1 EGLConfig Attributes
An EGLConfig describes the capabilities of a configuration. Each EGLConfig

encapsulates a set of attributes and their values.

18

OpenVG 1.0 Specification 4.2.1 – EGLConfig Attributes

EGL_OPENVG_BIT

EGLConfigs that may be used with OpenVG will have the bit
EGL_OPENVG_BIT set in their attribute EGL_RENDERABLE_TYPE attribute.

EGL_ALPHA_MASK_SIZE

The EGL_ALPHA_MASK_SIZE attribute contains the bit depth of the alpha
mask associated with a configuration. Alpha masking will take place in the
OpenVG pipeline only if the alpha mask bit depth for the drawing surface is
greater than zero.

4.2.2 EGL Functions

eglBindAPI

EGL has a notion of the current rendering API. This setting acts as an implied
parameter to some EGL functions. To set OpenVG as the current rendering API
in EGL, it is necessary to call eglBindAPI with an api argument of
EGL_OPENVG_API:
EGLBoolean eglBindAPI(EGLenum api)

eglCreateContext

Once eglBindAPI has been called to set OpenVG as the current rendering API,
an EGL context that is suitable for use with OpenVG may be obtained by calling
eglCreateContext. An existing OpenVG context may be passed in as the
share_context parameter; any VGPath and VGImage objects defined in
share_context will be accessible from the new context, and vice versa. If no
sharing is desired, the value EGL_NO_CONTEXT should be used.
EGLContext eglCreateContext(EGLDisplay dpy,
 EGLConfig config,
 EGLContext share_context,
 const EGLint * attrib_list)

eglCreateWindowSurface

Drawing takes place onto an EGLSurface. An EGLSurface may be created
from a platform native window using eglCreateWindowSurface. It is possible to
request single-buffered rendering, in which drawing takes place directly to the
visible window, using the attrib_list parameter to set the
EGL_RENDER_BUFFER attribute to a value of EGL_SINGLE_BUFFER.
Implementations that do not support single-buffered rendering may ignore this
setting. Applications should query the returned surface to determine if it is
single- or double-buffered.

19

OpenVG 1.0 Specification 4.2.2 – EGL Functions

EGLSurface eglCreateWindowSurface(EGLDisplay dpy,
 EGLConfig config,
 NativeWindowType win,
 const EGLint *attrib list);

eglCreatePbufferFromClientBuffer

An EGLSurface that allows rendering into a VGImage (see Section 10) may be
created by binding the VGImage to a Pbuffer (off-screen buffer). EGL defines the
function eglCreatePbufferFromClientBuffer, which may be used with a
buftype argument of EGL_OPENVG_IMAGE. The VGImage to be targeted is cast
to the EGLClientBuffer type and passed as the buffer parameter.

If EGL is used with OpenVG, the version of EGL used must support the
creation of a Pbuffer from a VGImage either as part of its core functionality or by
means of an extension.
EGLSurface eglCreatePbufferFromClientBuffer(EGLDisplay dpy,
 EGLenum buftype,
 EGLClientBuffer buffer,
 EGLConfig config,
 const EGLint *attrib_list)

eglMakeCurrent

The eglMakeCurrent function causes a given context to become current on the
running thread. Any context that is current on the thread prior to the call is
flushed and marked as no longer current.
EGLBoolean eglMakeCurrent(EGLDisplay dpy,
 EGLSurface draw,
 EGLSurface read,
 EGLContext ctx)

eglGetCurrentContext

The OpenVG context for the current rendering API that is bound to the current
thread may be retrieved by calling eglGetCurrentContext:
EGLContext eglGetCurrentContext()

eglDestroyContext

An EGL context is destroyed by calling eglDestroyContext.
EGLBoolean eglDestroyContext(EGLDisplay display, EGLContext context)

20

OpenVG 1.0 Specification 4.2.2 – EGL Functions

eglSwapBuffers

When drawing occurs in double-buffered mode, all drawing takes place into an
invisible back buffer, and it is necessary to call eglSwapBuffers to force the
buffer contents to be copied to the visible window. If the visible buffer has a
lesser color bit depth than the back buffer, dithering may be performed as part of
the buffer copy operation.
EGLBoolean eglSwapBuffers(EGLDisplay dpy,
 EGLSurface surface);

4.3 Forcing Drawing to Complete
OpenVG provides functions to force the completion of rendering, in order to

allow applications to synchronize between multiple rendering APIs.

vgFlush

The vgFlush function ensures that all outstanding requests on the current
context will complete in finite time. vgFlush may return prior to the actual
completion of all requests.
void vgFlush(void)

vgFinish

The vgFinish function forces all outstanding requests on the current context to
complete, returning only when the last request has completed.
void vgFinish(void)

21

OpenVG 1.0 Specification 5 – Setting API Parameters

5 Setting API Parameters
API parameters may be set and retrieved using generic get and set functions.

The use of generic functions allows for extensibility of the API without the
addition of additional functions. Extensions may receive unique identifier values
for new parameter types by registering with the Khronos group.

Parameters take two forms: some are set relative to a rendering context, and
others are set on a particular VGHandle-based object. The former make use of
the vgSet and vgGet functions and the latter make use of the vgSetParameter
and vgGetParameter functions.

5.1 Context Parameter Types
Parameter types that are set on a rendering context are defined in the

VGParamType enumeration. The datatype and default value associated with
each parameter is shown in Table 4.

VGParamType

The VGParamType enumeration defines the parameter type of the value to be
set or retrieved using vgSet and vgGet:

typedef enum {
 /* Mode settings */
 VG_MATRIX_MODE = 0x1100,
 VG_FILL_RULE = 0x1101,
 VG_IMAGE_QUALITY = 0x1102,
 VG_RENDERING_QUALITY = 0x1103,
 VG_BLEND_MODE = 0x1104,
 VG_IMAGE_MODE = 0x1105,

 /* Scissoring rectangles */
 VG_SCISSOR_RECTS = 0x1106,

 /* Stroke parameters */
 VG_STROKE_LINE_WIDTH = 0x1110,
 VG_STROKE_CAP_STYLE = 0x1111,
 VG_STROKE_JOIN_STYLE = 0x1112,
 VG_STROKE_MITER_LIMIT = 0x1113,
 VG_STROKE_DASH_PATTERN = 0x1114,
 VG_STROKE_DASH_PHASE = 0x1115,
 VG_STROKE_DASH_PHASE_RESET = 0x1116,

 /* Edge fill color for VG_TILE_FILL tiling mode */
 VG_TILE_FILL_COLOR = 0x1120,

 /* Color for vgClear */
 VG_CLEAR_COLOR = 0x1121,

22

OpenVG 1.0 Specification 5.1 – Context Parameter Types

 /* Enable/disable alpha masking and scissoring */
 VG_MASKING = 0x1130,
 VG_SCISSORING = 0x1131,

 /* Pixel layout information */
 VG_PIXEL_LAYOUT = 0x1140,
 VG_SCREEN_LAYOUT = 0x1141,

 /* Source format selection for image filters */
 VG_FILTER_FORMAT_LINEAR = 0x1150,
 VG_FILTER_FORMAT_PREMULTIPLIED = 0x1151,

 /* Destination write enable mask for image filters */
 VG_FILTER_CHANNEL_MASK = 0x1152,

 /* Implementation limits (read-only) */
 VG_MAX_SCISSOR_RECTS = 0x1160,
 VG_MAX_DASH_COUNT = 0x1161,
 VG_MAX_KERNEL_SIZE = 0x1162,
 VG_MAX_SEPARABLE_KERNEL_SIZE = 0x1163,
 VG_MAX_COLOR_RAMP_STOPS = 0x1164,
 VG_MAX_IMAGE_WIDTH = 0x1165,
 VG_MAX_IMAGE_HEIGHT = 0x1166,
 VG_MAX_IMAGE_PIXELS = 0x1167,
 VG_MAX_IMAGE_BYTES = 0x1168,
 VG_MAX_FLOAT = 0x1169
} VGParamType;

5.2 Setting and Querying Context Parameter Values
Each vgGet/vgGetParameter or vgSet/vgSetParameter function has four

variants, depending on the data type of the value being set, differentiated by a
suffix: i for scalar integral values, f for scalar floating-point values, and iv and fv
for vectors of integers and floating-point values, respectively. The vector variants
may also be used to set scalar values using a count of 1. When setting a value of
integral type using a floating-point vgSet variant (ending with f or fv), or
retrieving a floating-point value using an integer vgGet function (ending with i
or iv), the value is converted to an integer using a mathematical floor operation. If
the resulting value is outside the range of integer values, the closest valid integer
value is substituted.

The count parameter used by the array variants (ending with iv or fv) limits
the number of values that are read from the values array parameter. For
parameters that require a fixed number of values (e.g., color values of type
VGfloat[4]), count must have the appropriate value. For parameters that
place restrictions on the number of values that may be accepted (e.g., that it be a
multiple of a specific number, as for scissor rectangles which are specified as a
set of 4-tuples), count must obey the restriction. For parameters that accept an
arbitrary number of values up to some maximum number (e.g., dash patterns) ,

23

OpenVG 1.0 Specification 5.2 – Setting and Querying Context Parameter Values

all count specified values up to the maximum are used and values beyond the
maximum are ignored. If the count parameter is 0, the pointer argument is not
dereferenced. For example, the call vgSet(VG_STROKE_DASH_PATTERN, 0,
(void *) 0) sets the dash pattern to a zero-length array (which has the effect
of disabling dashing) without dereferencing the third parameter. If an error
occurs due to an inappropriate value of count, the call has no effect on the
parameter value.

Certain parameter values are read-only. Calling vgSet or vgSetParameter on
these values has no effect.

vgSet

The vgSet functions set the value of a parameter on the current context.
void vgSetf (VGParamType paramType, VGfloat value)
void vgSeti (VGParamType paramType, VGint value)
void vgSetfv(VGParamType paramType, VGint count,
 const VGfloat * values)
void vgSetiv(VGParamType paramType, VGint count,
 const VGint * values)

ERRORS

VG_ILLEGAL_ARGUMENT_ERROR

– if paramType is not a valid value from the VGParamType enumeration

– if paramType refers to a vector parameter in vgSetf or vgSeti

– if paramType refers to a scalar parameter in vgSetfv or vgSetiv and count
is not equal to 1

– if value is not a legal enumerated value for the given parameter in vgSetf
or vgSeti, or if values[i] is not a legal enumerated value for the given
parameter in vgSetfv or vgSetiv for 0 ≤ i < count

– if values is NULL in vgSetfv or vgSetiv and count is greater than 0

– if values is not properly aligned in vgSetfv or vgSetiv

– if count is less than 0 in vgSetfv or vgSetiv

– if count is not a valid value for the given parameter

For example, to set the blending mode to the integral value
VG_BLEND_SRC_OVER (see Section 12.5), the application would call:
vgSeti(VG_BLEND_MODE, VG_BLEND_SRC_OVER);

24

OpenVG 1.0 Specification 5.2 – Setting and Querying Context Parameter Values

vgGet and vgGetVectorSize

The vgGet functions return the value of a parameter on the current context.

The vgGetVectorSize function returns the maximum number of elements in
the vector that will be retrieved by the vgGetiv or vgGetfv functions if called
with the given paramType argument. For scalar values, 1 is returned. If vgGetiv
or vgGetfv is called with a smaller value for count than that returned by
vgGetVectorSize, only the first count elements of the vector are retrieved. Use
of a greater value for count will result in an error.

The original value passed to vgSet (except as specifically noted, and provided
the call to vgSet completed without error) is returned by vgGet, even if the
implementation makes use of a truncated or quantized value internally. This rule
ensures that OpenVG state may be saved and restored without degradation.

If an error occurs during a call to vgGetf, vgGeti, or vgGetVectorSize, the
return value is undefined. If an error occurs during a call to vgGetfv or vgGetiv,
nothing is written to values.
VGfloat vgGetf (VGParamType paramType)
VGint vgGeti (VGParamType paramType)

VGint vgGetVectorSize(VGParamType paramType)

void vgGetfv(VGParamType paramType, VGint count, VGfloat * values)
void vgGetiv(VGParamType paramType, VGint count, VGint * values)

ERRORS

VG_ILLEGAL_ARGUMENT_ERROR

– if paramType is not a valid value from the VGParamType enumeration

– if paramType refers to a vector parameter in vgGetf or vgGeti

– if values is NULL in vgGetfv or vgGetiv

– if values is not properly aligned in vgGetfv or vgGetiv

– if count is less than or equal to 0 in vgGetfv or vgGetiv

– if count is greater than the value returned by vgGetVectorSize for the given
parameter in vgGetfv or vgGetiv

5.2.1 Default Context Parameter Values
When a new OpenVG context is created, it contains default values as shown in

Table 4. Note that some tokens have been split across lines for reasons of space.

25

OpenVG 1.0 Specification 5.2.1 – Default Context Parameter Values

Parameter Datatype Default Value

VG_MATRIX_MODE VGMatrixMode
VG_MATRIX_PATH_USER_

TO_SURFACE

VG_FILL_RULE VGFillRule VG_EVEN_ODD

VG_IMAGE_QUALITY VGImageQuality VG_IMAGE_QUALITY_FASTER

VG_RENDERING_QUALITY
VGRendering
Quality

VG_RENDERING_QUALITY_BETTER

VG_BLEND_MODE VGBlendMode VG_BLEND_SRC_OVER

VG_IMAGE_MODE VGImageMode VG_DRAW_IMAGE_NORMAL

VG_SCISSOR_RECTS VGint * { } (array of length 0)

VG_STROKE_LINE_WIDTH VGfloat 1.0f

VG_STROKE_CAP_STYLE VGCapStyle VG_CAP_BUTT

VG_STROKE_JOIN_STYLE VGJoinStyle VG_JOIN_MITER

VG_STROKE_MITER_LIMIT VGfloat 4.0f

VG_STROKE_DASH_PATTERN VGfloat * { } (array of length 0) (disabled)

VG_STROKE_DASH_PHASE VGfloat 0.0f

VG_STROKE_DASH_PHASE_
RESET

VGboolean VG_FALSE (disabled)

VG_TILE_FILL_COLOR VGfloat[4] { 0.0f, 0.0f, 0.0f, 0.0f }

VG_CLEAR_COLOR VGfloat[4] { 0.0f, 0.0f, 0.0f, 0.0f }

VG_MASKING VGboolean VG_FALSE (disabled)

VG_SCISSORING VGboolean VG_FALSE (disabled)

VG_PIXEL_LAYOUT VGPixelLayout VG_PIXEL_LAYOUT_UNKNOWN

VG_SCREEN_LAYOUT VGPixelLayout Layout of the drawing surface

VG_FILTER_FORMAT_LINEAR VGboolean VG_FALSE (disabled)

VG_FILTER_FORMAT_
PREMULTIPLIED

VGboolean VG_FALSE (disabled)

VG_FILTER_CHANNEL_MASK VGbitfield
(VG_RED | VG_GREEN |
 VG_BLUE | VG_ALPHA)

Table 4: Default Parameter Values for a Context

26

OpenVG 1.0 Specification 5.2.1 – Default Context Parameter Values

The read-only parameter values VG_MAX_SCISSOR_RECTS,
VG_MAX_DASH_COUNT, VG_MAX_KERNEL_SIZE,
VG_MAX_SEPARABLE_KERNEL_SIZE, VG_MAX_GAUSSIAN_STD_DEVIATION,
VG_MAX_COLOR_RAMP_STOPS, VG_MAX_IMAGE_WIDTH,
VG_MAX_IMAGE_HEIGHT, VG_MAX_IMAGE_PIXELS, VG_MAX_IMAGE_BYTES,
and VG_MAX_FLOAT are initialized to implementation-defined values.

The VG_SCREEN_LAYOUT parameter is initialized to the current layout of the
display device containing the current drawing surface, if applicable.

The matrices for matrix modes VG_MATRIX_PATH_USER_TO_SURFACE,
VG_MATRIX_IMAGE_USER_TO_SURFACE,
VG_MATRIX_FILL_PAINT_TO_USER, and
VG_MATRIX_STROKE_PAINT_TO_USER are initialized to the identity matrix
(see Section 6.5):

Default paint parameter values are set for the filling and stroking paint modes.

5.3 Setting and Querying Object Parameter Values
Objects that are referenced using a VGHandle (i.e., VGImage, VGPaint, and

VGPath objects) may have their parameters set and queried using a number of
vgSetParameter and vgGetParameter functions. The semantics of these functions
(including the handling of invalid count values) are similar to those of the
vgGet and vgSet functions.

vgSetParameter

The vgSetParameter functions set the value of a parameter on a given
VGHandle-based object.
void vgSetParameterf (VGHandle object, VGint paramType,
 VGfloat value)
void vgSetParameteri (VGHandle object, VGint paramType,
 VGint value)
void vgSetParameterfv(VGHandle object, VGint paramType,
 VGint count, const VGfloat * values)
void vgSetParameteriv(VGHandle object, VGint paramType,
 VGint count, const VGint * values)

27

[sx shx tx
shy sy ty
w0 w1 w2

] =[1 0 0
0 1 0
0 0 1]

OpenVG 1.0 Specification 5.3 – Setting and Querying Object Parameter Values

ERRORS

VG_BAD_HANDLE_ERROR

– if object is not a valid handle, or is not shared with the current context

VG_ILLEGAL_ARGUMENT_ERROR

– if paramType is not a valid value from the appropriate enumeration

– if paramType refers to a vector parameter in vgSetParameterf or
vgSetParameteri

– if paramType refers to a scalar parameter in vgSetParameterfv or
vgSetParameteriv and count is not equal to 1

– if value is not a legal enumerated value for the given parameter in
vgSetParameterf or vgSetParameteri, or if values[i] is not a legal
enumerated value for the given parameter in vgSetParameterfv or
vgSetParameteriv for 0 ≤ i < count

– if values is NULL in vgSetParameterfv or vgSetParameteriv and count is
greater than 0

– if values is not properly aligned in vgSetParameterfv or vgSetParameteriv

– if count is less than 0 in vgSetParameterfv or vgSetParameteriv

– if count is not a valid value for the given parameter

vgGetParameter and vgGetParameterVectorSize

The vgGetParameter functions return the value of a parameter on a given
VGHandle-based object.

The vgGetParameterVectorSize function returns the number of elements in the
vector that will be returned by the vgGetParameteriv or vgGetParameterfv
functions if called with the given paramType argument. For scalar values, 1 is
returned. If vgGetParameteriv or vgGetParameterfv is called with a smaller
value for count than that returned by vgGetParameterVectorSize, only the first
count elements of the vector are retrieved. Use of a greater value for count will
result in an error.

The original value passed to vgSetParameter (provided the call to
vgSetParameter completed without error) should be returned by
vgGetParameter (except where specifically noted), even if the implementation
makes use of a truncated or quantized value internally.

If an error occurs during a call to vgGetParameterf, vgGetParameteri, or
vgGetParameterVectorSize, the return value is undefined. If an error occurs
during a call to vgGetParameterfv or vgGetParameteriv, nothing is written to
values.

28

OpenVG 1.0 Specification 5.3 – Setting and Querying Object Parameter Values

VGfloat vgGetParameterf (VGHandle object,
 VGint paramType)
VGint vgGetParameteri (VGHandle object,
 VGint paramType)

VGint vgGetParameterVectorSize (VGHandle object,
 VGint paramType)

void vgGetParameterfv(VGHandle object,
 VGint paramType,
 VGint count, VGfloat * values)
void vgGetParameteriv(VGHandle object,
 VGint paramType,
 VGint count, VGint * values)

ERRORS

VG_BAD_HANDLE_ERROR

– if object is not a valid handle, or is not shared with the current context

VG_ILLEGAL_ARGUMENT_ERROR

– if paramType is not a valid value from the appropriate enumeration

– if paramType refers to a vector parameter in vgGetParameterf or
vgGetParameteri

– if values is NULL in vgGetParameterfv or vgGetParameteriv

– if values is not properly aligned in vgGetParameterfv or vgGetParameteriv

– if count is less than or equal to 0 in vgGetParameterfv or vgGetParameteriv

– if count is greater than the value returned by vgGetParameterVectorSize
for the given parameter in vgGetParameterfv or vgGetParameteriv

29

OpenVG 1.0 Specification 6 – Rendering Quality and Antialiasing

6 Rendering Quality and Antialiasing
Rendering quality settings are available to control implementation-specific

trade-offs between quality and performance. For example, an application might
wish to use the highest quality setting for still images, and the fastest setting
during UI operations or animation. The implementation must satisfy
conformance requirements regardless of the quality setting.

A non-antialiased mode is provided in which pixel coverage is always
assigned to be 0 or 1, based on the inclusion of the pixel center in the geometry
being rendered. When antialiasing is disabled, a coverage value of 1 will be
assigned to each pixel whose center lies within the estimated path geometry, and
a coverage value of 0 will be assigned otherwise. A consistent tie-breaking rule
must be used for paths that pass through pixel centers.

For purposes of estimating whether a pixel center is included within a path,
implementations may make use of approximations to the exact path geometry,
providing that the following constraints are met. Conceptually, draw a disc D
around each pixel center with a radius of just under ½ a pixel (in topological
terms, an open disc of radius ½) and consider its intersection with the exact path
geometry:

 1. If D is entirely inside the path, the coverage at the pixel center must be
estimated as 1;

 2. If D is entirely outside the path, the coverage at the pixel center must be
estimated as 0;

 3. If D lies partially inside and partially outside the path, the coverage
may be estimated as either 0 or 1 subject to the additional constraints that:
a. The estimation is deterministic and invariant with respect to state
variables apart from the current user-to-surface transformation and path
coordinate geometry; and
b. For two disjoint paths that share a common segment, if D is partially
covered by each path and completely covered by the union of the paths,
the coverage must be estimated as 1 for exactly one of the paths. A
segment is considered common to two paths if and only if both paths
have the same path format, path datatype, scale, and bias, and the
segments have bit-for-bit identical segment types and coordinate values. If
the segment is specified using relative coordinates, any preceding
segments that may influence the segment must also have identical
segment types and coordinate values.

Non-antialiased rendering may be useful for previewing results or for
techniques such as picking (selecting the geometric primitive that appears at a

30

OpenVG 1.0 Specification 6 – Rendering Quality and Antialiasing

given screen location) that require a single geometric entity to be associated with
each pixel after rendering has completed.

Applications may indicate the sub-pixel color layout of the display in order to
optimize rendering quality.

6.1 Rendering Quality
The overall rendering quality may be set to one of three settings: non-

antialiased, faster, or better.

VGRenderingQuality

The VGRenderingQuality enumeration defines the values for setting the
rendering quality:
typedef enum {
 VG_RENDERING_QUALITY_NONANTIALIASED = 0x1200,
 VG_RENDERING_QUALITY_FASTER = 0x1201,
 VG_RENDERING_QUALITY_BETTER = 0x1202 /* Default */
} VGRenderingQuality;

The VG_RENDERING_QUALITY_NONANTIALIASED setting disables
antialiasing. The VG_RENDERING_QUALITY_FASTER setting causes rendering to
be done at the highest available speed, while still satisfying all API conformance
criteria. The VG_RENDERING_QUALITY_BETTER setting, which is the default,
causes rendering to be done with the highest available quality.

The vgSet function is used to control the quality setting to one of
VG_RENDERING_QUALITY_NONANTIALIASED,
VG_RENDERING_QUALITY_FASTER, or VG_RENDERING_QUALITY_BETTER:
vgSeti(VG_RENDERING_QUALITY, VG_RENDERING_QUALITY_NONANTIALIASED);
vgSeti(VG_RENDERING_QUALITY, VG_RENDERING_QUALITY_FASTER);
vgSeti(VG_RENDERING_QUALITY, VG_RENDERING_QUALITY_BETTER);

6.2 Additional Quality Settings

VGPixelLayout

The VGPixelLayout enumeration describes a number of possible geometric
layouts of the red, green, and blue emissive or reflective elements within a pixel.
This information may be used as a hint to the rendering engine to improve
rendering quality. The supported pixel layouts are illustrated in Figure 2.

31

OpenVG 1.0 Specification 6.2 – Additional Quality Settings

typedef enum {
 VG_PIXEL_LAYOUT_UNKNOWN = 0x1300,
 VG_PIXEL_LAYOUT_RGB_VERTICAL = 0x1301,
 VG_PIXEL_LAYOUT_BGR_VERTICAL = 0x1302,
 VG_PIXEL_LAYOUT_RGB_HORIZONTAL = 0x1303,
 VG_PIXEL_LAYOUT_BGR_HORIZONTAL = 0x1304
} VGPixelLayout;

The pixel layout of the display device associated with the current drawing
surface may be queried using vgGeti with a paramType value of
VG_SCREEN_LAYOUT. The value VG_PIXEL_LAYOUT_UNKNOWN may indicate
that the color elements of a pixel are geometrically coincident, or that no layout
information is available to the implementation.

To provide the renderer with a pixel layout hint, use vgSeti with a paramType
value of VG_PIXEL_LAYOUT and a value from the VGPixelLayout
enumeration. The value VG_PIXEL_LAYOUT_UNKNOWN disables any
optimizations based on pixel layout, treating the color elements of a pixel as
geometrically coincident. Reading back the value of VG_PIXEL_LAYOUT with
vgGet simply returns the value set by the application or the default value and
does not reflect the properties of the drawing surface.

Figure 2: VGPixelLayout Values

6.3 Coordinate Systems and Transformations
Geometry is defined in a two-dimensional coordinate system that may or may

not correspond to pixel coordinates. Drawing may be performed independently
of the details of screen size, resolution, and drawing area by establishing suitable
transformations between coordinate systems.

32

R G B B G R

R
G
B

B
G
R

RGB_VERTICAL BGR_VERTICAL

RGB_HORIZONTAL BGR_HORIZONTAL

OpenVG 1.0 Specification 6.4 – Coordinate Systems

6.4 Coordinate Systems
Geometric coordinates are specified in the user coordinate system. The path-user-

to-surface and image-user-to-surface transformations map between the user
coordinate system and pixel coordinates on the destination drawing surface. This
pixel-based coordinate system is known as the surface coordinate system. The
relationship between the user and surface coordinate systems and the
transformations that map between them is shown in Figure 3 below.

The user coordinate system is oriented such that values along the X axis
increase from left to right and values along the Y axis increase from bottom to
top, as in OpenGL. When the user-to-surface transformation is the identity
transformation, a change of 1 unit along the X axis corresponds to moving by
one pixel.

In the surface coordinate system, pixel (0, 0) is located at the lower-left corner
of the drawing surface. The pixel (x, y) has its center at the point (x + ½, y + ½).
Antialiasing filters used to evaluate the color or coverage of a pixel are centered
at the pixel center. If antialiasing is disabled, the evaluation of each pixel occurs
at its center.

6.5 Transformations
Geometry is defined in the user coordinate system, and is ultimately

transformed into surface coordinates and assigned colors by means of a set of
user-specified transformations that apply to geometric path data and to paint.

6.5.1 Homogeneous Coordinates
Homogeneous coordinates are used in order to allow translation factors to be

included in the affine matrix formulation, as well as to allow perspective effects
for images. In homogeneous coordinates, a two-dimensional point (x, y) is
represented by the three-dimensional column vector [x, y, 1]T. The same point
may be equivalently represented by the vector [s*x, s*y, s]T for any non-zero scale
factor s. More detailed explanations of the use of homogeneous coordinates may
be found in most standard computer graphics textbooks, for example
[FvDFH95].

33

OpenVG 1.0 Specification 6.5.1 – Homogeneous Coordinates

Figure 3: Coordinates, Transformation, Clipping, and Scissoring

6.5.2 Affine Transformations
Geometric objects to be drawn are transformed from user coordinates to

surface coordinates as they are drawn by means of a 3x3 affine transformation
matrix with the following entries:

The entries may be divided by their function:

• sx and sy define scaling in the x and y directions, respectively;
• shx and shy define shearing in the x and y directions, respectively;
• tx and ty define translation in the x and y directions, respectively.

34

[sx shx tx
shy sy ty
0 0 1]

T
u

User Coordinates

Surface Coordinates

Scissoring
Rectangles

Clipping and Scissoring

Scissoring
Rectangles

Drawing
Surface
Bounds

OpenVG 1.0 Specification 6.5.2 – Affine Transformations

An affine transformation maps a point (x, y) (represented using homogeneous
coordinates as the column vector [x, y, 1]T) into the point (x*sx + y*shx + tx, x*shy
+ y*sy + ty) using matrix multiplication:

Affine transformations allow any combination of scaling, rotation, shearing,
and translation. The concatenation of two affine transformations is an affine
transformation, whose matrix form is the product of the matrices of the original
transformations.

Gradients and patterns are subject to an additional affine transformation
mapping the coordinate system used to specify the gradient parameters into user
coordinates. The path-user-to-surface transformation is then applied to yield
surface coordinates.

 OpenVG does not provide the notion of a hierarchy of transformations;
applications must maintain their own matrix stacks if desired.

6.5.3 Projective (Perspective) Transformations
The vgDrawImage function uses a 3x3 projective (or perspective) transformation

matrix (representing the image-user-to-surface transformation) with the
following entries to transform from user coordinates to surface coordinates:

A projective transformation maps a point (x, y) into the point:

using matrix multiplication and division by the third homogeneous coordinate:

35

[sx shx tx
shy sy ty
w0 w1 w2

]

[sx shx tx
shy sy ty
0 0 1]⋅[x

y
1] =[x∗sx + y∗shx + tx

x∗shy + y∗sy + ty
1]

[sx shx tx
shy sy ty
w 0 w1 w2

]⋅[x
y
1]=[x∗sx y∗shxtx

x∗shy y∗syty
x∗w0 y∗w1w2

] ≡[
x∗sx y∗shxtx
x∗w0 y∗w1w2

x∗shy y∗syty
x∗w0 y∗w1w2

1
]

 x∗sx y∗shxtx
x∗w0 y∗w1w2

,
x∗shy y∗syty
x∗w0 y∗w 1w 2



OpenVG 1.0 Specification 6.5.3 – Projective (Perspective) Transformations

The concatenation of two projective transformations is a projective
transformation, whose matrix form is the product of the matrices of the original
transformations.

Both affine and projective transformations map straight lines to straight lines.
However, affine transformations map evenly spaced points along a source line to
evenly spaced points in the destination, whereas projective transformations
allow the distance between points to vary due to the effect of division by the
denominator d = (x*w0 + y*w1 + w2). Although OpenVG does not provide support
for three-dimensional coordinates, proper setting of the w matrix entries can
simulate the effect of placement of images in three dimensions, as well as other
warping effects.

6.6 Matrix Manipulation
Transformation matrices are manipulated using the vgLoadIdentity,

vgLoadMatrix, and vgMultMatrix functions. For convenience, the vgTranslate,
vgScale, vgShear, and vgRotate functions may be used to concatenate common
types of transformations.

The matrix conventions used by OpenVG are similar to those of OpenGL. A
point to be transformed is given by a homogeneous column vector [x, y, 1]T.
Transformation of a point p by a matrix M is defined as the product M∙p.
Concatenation of transformations is performed using right-multiplication of
matrices.

In the following sections, the matrix being updated by each call will be
represented by the symbol M.

VGMatrixMode

The current matrix to be manipulated is specified by setting the matrix mode.
Separate matrices are maintained for transforming paths, images, and paint
(gradients and patterns). The matrix modes are defined in the VGMatrixMode
enumeration:
typedef enum {
 VG_MATRIX_PATH_USER_TO_SURFACE = 0x1400,
 VG_MATRIX_IMAGE_USER_TO_SURFACE = 0x1401,
 VG_MATRIX_FILL_PAINT_TO_USER = 0x1402,
 VG_MATRIX_STROKE_PAINT_TO_USER = 0x1403
} VGMatrixMode;

To set the matrix mode, call vgSeti with a type of VG_MATRIX_MODE and a
value of VG_MATRIX_*. For example, to set the matrix mode to allow
manipulation of the path-user-to-surface transformation, call:
vgSeti(VG_MATRIX_MODE, VG_MATRIX_PATH_USER_TO_SURFACE);

36

OpenVG 1.0 Specification 6.6 – Matrix Manipulation

vgLoadIdentity

The vgLoadIdentity function sets the current matrix M to the identity matrix:

void vgLoadIdentity(void)

vgLoadMatrix

The vgLoadMatrix function loads an arbitrary set of matrix values into the
current matrix. Nine matrix values are read from m, in the order:

{ sx, shy, w0, shx, sy, w1, tx, ty, w2 }

defining the matrix:

However, if the targeted matrix is affine (i.e., the matrix mode is not
VG_MATRIX_IMAGE_USER_TO_SURFACE), the values { w0, w1, w2 } are ignored
and replaced by the values { 0, 0, 1 }, resulting in the affine matrix:

void vgLoadMatrix(const VGfloat * m)

ERRORS

VG_ILLEGAL_ARGUMENT_ERROR

– if m is NULL

– if m is not properly aligned

37

M=[1 0 0
0 1 0
0 0 1]

M=[sx shx tx
shy sy ty
w0 w1 w2

]

M=[sx shx tx
shy sy ty
0 0 1]

OpenVG 1.0 Specification 6.6 – Matrix Manipulation

vgGetMatrix

It is possible to retrieve the value of the current transformation by calling
vgGetMatrix. Nine values are written to m in the order:

{ sx, shy, w0, shx, sy, w1, tx, ty, w2 }

For an affine matrix, w0 and w1 will always be 0 and w2 will always be 1.
void vgGetMatrix(VGfloat * m)

ERRORS

VG_ILLEGAL_ARGUMENT_ERROR

– if m is NULL

– if m is not properly aligned

vgMultMatrix

The vgMultMatrix function right-multiplies the current matrix M by a given
matrix:

Nine matrix values are read from m in the order:

{ sx, shy, w0, shx, sy, w1, tx, ty, w2 }

and the current matrix is multiplied by the resulting matrix. However, if the
targeted matrix is affine (i.e., the matrix mode is not
VG_MATRIX_IMAGE_USER_TO_SURFACE), the values { w0, w1, w2 } are ignored
and replaced by the values { 0, 0, 1 } prior to multiplication.
void vgMultMatrix(const VGfloat * m)

ERRORS

VG_ILLEGAL_ARGUMENT_ERROR

– if m is NULL

– if m is not properly aligned

38

M=M⋅[sx shx tx
shy sy ty
w0 w1 w2

]

OpenVG 1.0 Specification 6.6 – Matrix Manipulation

vgTranslate

The vgTranslate function modifies the current transformation by appending a
translation. This is equivalent to right-multiplying the current matrix M by a
translation matrix:

void vgTranslate(VGfloat tx, VGfloat ty)

vgScale

The vgScale function modifies the current transformation by appending a
scale. This is equivalent to right-multiplying the current matrix M by a scale
matrix:

void vgScale(VGfloat sx, VGfloat sy)

vgShear

The vgShear function modifies the current transformation by appending a
shear. This is equivalent to right-multiplying the current matrix M by a shear
matrix:

void vgShear(VGfloat shx, VGfloat shy)

39

M=M⋅[1 0 tx
0 1 ty
0 0 1]

M=M⋅[sx 0 0
0 sy 0
0 0 1]

M=M⋅[1 shx 0
shy 1 0
0 0 1]

OpenVG 1.0 Specification 6.6 – Matrix Manipulation

vgRotate

The vgRotate function modifies the current transformation by appending a
counter-clockwise rotation by a given angle (expressed in degrees) about the
origin. This is equivalent to right-multiplying the current matrix M by the
following matrix (using the symbol a to represent the value of the angle
parameter):

To rotate about a center point (cx, cy) other than the origin, the application may
perform a translation by (-cx, -cy), followed by the rotation, followed by a
translation by (cx, cy).
void vgRotate(VGfloat angle)

40

M=M⋅[cosa  −sin a 0
sina cos a 0

0 0 1]

OpenVG 1.0 Specification 7 – Scissoring, Masking, and Clearing

7 Scissoring, Masking, and Clearing
All drawing is clipped (restricted) to the bounds of the drawing surface, and

may be further clipped to the interior of a set of scissoring rectangles. If available,
an alpha mask is applied for further clipping and to create soft edge and partial
transparency effects.

Pixels outside the drawing surface bounds, or (when scissoring is enabled) not
in any scissoring rectangle are not affected by any drawing operation. For any
drawing operation, each pixel will receive the same value for any setting of the
scissoring rectangles that contains the pixel. That is, the placement of the
scissoring rectangles, and whether scissoring is enabled, affects only whether a
given pixel will be written, without affecting what value it will receive.

7.1 Scissoring
Drawing may be restricted to the union of a set of scissoring rectangles.

Scissoring is enabled when the parameter VG_SCISSORING has the value
VG_TRUE. Scissoring may be disabled by calling vgSeti with a paramType
argument of VG_SCISSORING and a value of VG_FALSE.

VG_MAX_SCISSOR_RECTS

The VG_MAX_SCISSOR_RECTS parameter contains the maximum number of
scissoring rectangles that may be supplied for the VG_SCISSOR_RECTS
parameter. All implementations must support at least 32 scissor rectangles. If
there is no implementation-defined limit, a value of VG_MAXINT may be
returned. The value may be retrieved by calling vgGeti with a paramType
argument of VG_MAX_SCISSOR_RECTS:
VGint maxScissorRects = vgGeti(VG_MAX_SCISSOR_RECTS);

Specifying Scissoring Rectangles

Each scissoring rectangle is specified as an integer 4-tuple of the form (minX,
minY, width, height), where minX and minY are inclusive. A rectangle with width ≤
0 or height ≤ 0 is ignored. The scissoring region is defined as the union of all the
specified rectangles. The rectangles as specified need not be disjoint. If scissoring
is enabled and no valid scissoring rectangles are present, no drawing occurs. If
more than VG_MAX_SCISSOR_RECTS rectangles are specified, those beyond the
first VG_MAX_SCISSOR_RECTS are discarded immediately (and will not be
returned by vgGet).
#define NUM_RECTS 2
/* { Min X, Min Y, Width, Height } 4-Tuples */
VGint coords[4*NUM_RECTS] = { 20, 30, 100, 200,
 50, 70, 80, 80 };
vgSetiv(VG_SCISSOR_RECTS, 4*NUM_RECTS, coords)

41

OpenVG 1.0 Specification 7.2 – Alpha Masking

7.2 Alpha Masking
All drawing operations may be modified by an alpha mask, defining an

additional alpha value at each pixel of the drawing surface that is multiplied by
the coverage value computed by the rasterization stage of the pipeline. Alpha
masking is enabled when an alpha mask is present for the drawing surface (e.g.,
by specifying an EGLConfig with an EGL_ALPHA_MASK_SIZE attribute having
a value greater than zero) and the VG_MASKING parameter has the value
VG_TRUE. Alpha masking may be disabled by calling vgSeti with a parameter of
VG_MASKING and a value of VG_FALSE. If an alpha mask is present, it may be
manipulated by the vgMask function regardless of the value of VG_MASKING at
the time of the call. If an alpha mask is not present, the behavior is the same as
though there were an alpha mask having a value of 1 at every pixel; functions
that manipulate the mask values have no effect.

In this section, we will describe alpha values as ranging from 0 to 1. The actual
bit depth used for computation is implementation-dependent. It must be
possible to obtain configurations supporting a mask with at least 1 bit for 1-bit
black and white drawing surfaces, a mask with at least 4 bits for 16-bit color
drawing surfaces, and a mask with at least 8 bits for 8-bit grayscale and 24-bit
color drawing surfaces.

An alpha mask may be thought of as an alpha-only image with the same size
as the current drawing surface. Initially, an alpha mask has the value of 1 at
every pixel. Changes to the alpha mask outside of the current drawing surface
bounds are ignored. If the drawing surface size changes, the alpha mask is
resized accordingly, with new pixels being initialized to an alpha value of 1. If
the context acquires a new drawing surface, the alpha mask is reset.

An alpha mask defines a stencil area through which primitives are placed
before being drawn. The union, intersection, and subtraction operations on
masks are defined by analogy with the corresponding operations on the stencil
areas.

The mask alpha values are multiplied by the corresponding coverage values of
each primitive being drawn in the clipping and masking stage (stage 5) of the
rendering pipeline (see Section 2.5). The masking step is equivalent to replacing
the source image with the result of the Porter-Duff operation “Src in Mask” (see
Section 12.2).

VGMaskOperation

The VGMaskOperation enumeration defines the set of possible operations
that may be used to modify the drawing surface alpha mask, possibly making
use of a new mask image. Each operation occurs within a rectangular region of
interest.

The VG_CLEAR_MASK operation sets all mask alpha values in the region of
interest to 0, ignoring the new mask image.

42

OpenVG 1.0 Specification 7.2 – Alpha Masking

The VG_FILL_MASK operation sets all mask alpha values in the region of
interest to 1, ignoring the new mask image.

The VG_SET_MASK operation copies alpha values in the region of interest from
the new mask image, overwriting the previous alpha mask values.

The VG_UNION_MASK operation replaces the previous alpha mask in the
region of interest by its union with the new mask image. The resulting alpha
values are always greater than or equal to their previous value.

The VG_INTERSECT_MASK operation replaces the previous alpha mask in the
region of interest by its intersection with the new mask image. The resulting
mask values are always less than or equal to their previous value.

The VG_SUBTRACT_MASK operation subtracts the new alpha mask from the
previous alpha mask and replaces the previous alpha mask in the region of
interest by the resulting mask. The resulting alpha values are always less than or
equal to their previous value.

Table 5 gives the equations defining the new mask alpha value for each mask
operation in terms of the previous alpha value αprev and the newly supplied
mask alpha value αmask.

Operation Alpha Equation

VG_CLEAR_MASK αnew = 0
VG_FILL_MASK αnew = 1
VG_SET_MASK αnew = αmask

VG_UNION_MASK αnew = 1 – (1 – αmask)*(1 – αprev)
VG_INTERSECT_MASK αnew = αmask *αprev

VG_SUBTRACT_MASK αnew = αprev*(1 – αmask)

Table 5: VGMaskOperation Equations

typedef enum {
 VG_CLEAR_MASK = 0x1500,
 VG_FILL_MASK = 0x1501,
 VG_SET_MASK = 0x1502,
 VG_UNION_MASK = 0x1503,
 VG_INTERSECT_MASK = 0x1504,
 VG_SUBTRACT_MASK = 0x1505
} VGMaskOperation;

vgMask

The vgMask function modifies the alpha mask values according to a given
operation, possibly using alpha values taken from a mask image. If no alpha
mask is configured, vgMask has no effect.

43

OpenVG 1.0 Specification 7.2 – Alpha Masking

The affected region is the intersection of the drawing surface bounds with the
rectangle extending from pixel (x, y) of the drawing surface and having the given
width and height in pixels. For operations that make use of the mask image
parameter (i.e., operations other than VG_CLEAR_MASK and VG_FILL_MASK),
mask image pixels starting at (0, 0) are used, and the region is further limited to
the width and height of mask. For the VG_CLEAR_MASK and VG_FILL_MASK
operations, the mask parameter is ignored and does not affect the region being
modified. The value VG_INVALID_HANDLE may be supplied in place of an
actual image handle.

The mask image defines alpha values at each of its pixels as follows. If the
image pixel format includes an alpha channel, the alpha channel is used.
Otherwise, values from the red (for color image formats) or grayscale (for
grayscale formats) channel are used. The value is divided by the maximum value
for the channel to obtain an alpha value between 0 and 1. If the image is bi-level
(black and white), black pixels receive an alpha value of 0 and white pixels
receive an alpha value of 1.
void vgMask(VGImage mask, VGMaskOperation operation,
 VGint x, VGint y, VGint width, VGint height)

ERRORS

VG_BAD_HANDLE_ERROR

– if operation is not VG_CLEAR_MASK or VG_FILL_MASK, and mask is not a
valid image handle, or is not shared with the current context

VG_IMAGE_IN_USE_ERROR

– if mask is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if operation is not a valid value from the VGMaskOperation
enumeration

– if width or height is less than or equal to 0

7.3 Fast Clearing
The vgClear function allows a region of pixels to be set to a single color with a

single call.

vgClear

The vgClear function fills the portion of the drawing surface intersecting the
rectangle extending from pixel (x, y) and having the given width and height

44

OpenVG 1.0 Specification 7.3 – Fast Clearing

with a constant color value, taken from the VG_CLEAR_COLOR parameter. The
color value is expressed in non-premultiplied sRGBA (sRGB color plus
alpha)format. Values outside the [0, 1] range are interpreted as the nearest
endpoint of the range. The color is converted to the destination color space in the
same manner as if a rectangular path were being filled. Clipping and scissoring
take place in the usual fashion, but antialiasing, masking, and blending do not
occur.
void vgClear(VGint x, VGint y, VGint width, VGint height)

ERRORS

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

For example, to set the entire drawing surface with dimensions WIDTH and
HEIGHT to an opaque yellow color, the following code could be used:
VGfloat color[4] = { 1.0f, 1.0f, 0.0f, 1.0f }; /* Opaque yellow */

vgSeti(VG_SCISSORING, VG_FALSE);
vgSetfv(VG_CLEAR_COLOR, 4, color);
vgClear(0, 0, WIDTH, HEIGHT);

45

OpenVG 1.0 Specification 8 – Paths

8 Paths
Paths are the heart of the OpenVG API. All geometry to be drawn must be

defined in terms of one or more paths. Paths are defined by a sequence of
segment commands (or segments). Each segment command in the standard format
may specify a move, a straight line segment, a quadratic or cubic Bézier segment,
or an elliptical arc. Extensions may define other segment types.

8.1 Moves
A path segment may consist of a “move to” segment command that causes the

path to jump directly to a given point, starting a new subpath without drawing.

8.2 Straight Line Segments
Paths may contain horizontal, vertical, or arbitrary line segment commands. A

special “close path” segment command may be used to generate a straight line
segment joining the current vertex of a path to the vertex that began the current
portion of the path.

8.3 Bézier Curves
Bézier curves are polynomial curves defined using a parametric

representation. That is, they are defined as the set of points of the form (x(t), y(t)),
where x(t) and y(t) are polynomials of t and t varies continuously from 0 to 1.
Paths may contain quadratic or cubic Bézier segment commands.

8.3.1 Quadratic Bézier Curves
A quadratic Bézier segment is defined by three control points, (x0, y0), (x1, y1),

and (x2, y2). The curve starts at (x0, y0) and ends at (x2, y2). The shape of the curve
is influenced by the placement of the internal control point (x1, y1), but the curve
does not usually pass through that point. Assuming non-coincident control
points, the tangent of the curve at the initial point x0 is aligned with and has the
same direction as the vector x1 – x0 and the tangent at the final point x2 is aligned
with and has the same direction as the vector x2 – x1. The curve is defined by the
set of points (x(t), y(t)) as t varies from 0 to 1, where:

8.3.2 Cubic Bézier Curves
Cubic Bézier segments are defined by four control points (x0, y0), (x1, y1), (x2, y2),

and (x3, y3). The curve starts at (x0, y0) and ends at (x3, y3). The shape of the curve

46

x t =x 0∗1−t 22∗x1∗1−t ∗tx2∗t2

y t = y0∗1−t 22∗y1∗1−t ∗t y2∗t 2

OpenVG 1.0 Specification 8.3.2 – Cubic Bézier Curves

is influenced by the placement of the internal control points (x1, y1) and (x2, y2),
but the curve does not usually pass through those points. Assuming non-
coincident control points, the tangent of the curve at the initial point x0 is aligned
with and has the same direction as the vector x1 – x0 and the tangent at the final
point x3 is aligned with and has the same direction as the vector x3 – x2. The curve
is defined by the set of points (x(t), y(t)) as t varies from 0 to 1, where:

8.3.3 G1 Smooth Segments
G1 Smooth quadratic or cubic segments implicitly define their first internal

control point in such a manner as to guarantee a continuous tangent direction at
the join point when they are joined to a preceding quadratic or cubic segment.
Geometrically, this ensures that the two segments meet without a sharp corner.
However, the length of the unnormalized tangent vector may experience a
discontinuity at the join point.

G1 smoothness at the initial point of a quadratic or cubic segment may be
guaranteed by suitable placement of the first internal control point (x1, y1) of the
following segment. Given a previous quadratic or cubic segment with an internal
control point (px, py) and final endpoint (ox, oy), we compute (x1, y1) as (2*ox – px,
2*oy – py) (i.e., the reflection of the point (px, py) about the point (ox, oy)). For
segments of the same type, this will provide C1 smoothness (see the next
section).

Figure 4: Smooth Curve Construction

47

x t = x0∗1−t 33∗x1∗1−t 2∗t3∗x2∗1−t∗t 2x3∗t3

y t = y0∗1−t 33∗ y1∗1−t 2∗t3∗y2∗1−t ∗t 2 y3∗t3

(px,py)

(ox,oy)

(x
1
,y

1
)=(2*ox-px,2*oy-py)

OpenVG 1.0 Specification 8.3.4 – C1 Smooth Segments

8.3.4 C1 Smooth Segments
[Note: this section is informative only.]

C1 smooth quadratic or cubic segments define their first internal control point
(x1, y1) in such a manner as to guarantee a continuous first derivative at the join
point when they are joined to a preceding quadratic or cubic segment.
Geometrically, this ensures that the two segments meet with continuous
parametric velocity at the join point. This is a stronger condition than G1

continuity.

Note that joining a C1 smooth segment to a preceding line segment will not
produce a smooth join. To guarantee a smooth join, convert line segments to
equivalent quadratic or cubic curves whose internal control points all lie along
the line segment.

Given a previous quadratic or cubic segment with an internal control point
(px, py) and final endpoint (ox, oy), (x1, y1) is computed as follows:

• When joining a previous quadratic or cubic segment to a following segment
of the same type (quadratic or cubic):

(x1, y1) = (2*ox – px, 2*oy – py)

• When joining a previous quadratic segment to a following cubic segment:

(x1, y1) = (5*ox – 2*px, 5*oy – 2*py)/3

• When joining a previous cubic segment to a following quadratic segment:

(x1, y1) = (5*ox – 3*px, 5*oy – 3*py)/2

8.3.5 C2 Smooth Segments
[Note: this section is informative only.]

C2 smooth cubic segments implicitly define both of their internal control points
(x1, y1) and (x2, y2) in such a manner as to guarantee continuous first and second
derivatives at the join point when they are joined to a preceding quadratic or
cubic segment. Geometrically, this ensures that the two segments meet with
continuous velocity and acceleration at the join point.

Note that joining a C2 smooth segment to a preceding line segment will not
produce a smooth join. To guarantee a smooth join, convert line segments to
equivalent quadratic or cubic curves whose internal control points all lie along
the line segment.

Given three previous control points (qx, qy), (px, py), and (ox, oy) (for a
quadratic segment, (qx, qy) is the initial endpoint, (px, py) is the internal control
point and (ox, oy) is the final endpoint; for a cubic segment, (qx, qy), and (px, py)
are the first and second internal control points, respectively, and (ox, oy) is the

48

OpenVG 1.0 Specification 8.3.5 – C2 Smooth Segments

final endpoint), (x1, y1) is computed as described in the preceding section, and (x2,
y2) is computed as follows.

• When joining a previous quadratic segment to a following cubic segment:

(x2, y2) = (8*ox – 6*px + qx, 8*oy – 6*py + qy)/3

• When joining a previous cubic segment to a following cubic segment:

(x2, y2) = (4*(ox – px) + qx, 4*(oy – py) + qy)

8.3.6 Converting Segments From Quadratic to Cubic Form
[Note: This section is informative only.]

Given a quadratic Bézier curve with control points (x0, y0), (x1, y1), and (x2, y2),
an identical cubic Bézier curve may be formed using the control points (x0, y0),
(x0 + 2*x1, y0 + 2*y1)/3, (x2 + 2*x1, y2 + 2*y1)/3, (x2, y2).

8.4 Elliptical Arcs
Elliptical arc segments join a pair of points with a section of an ellipse with

given horizontal and vertical axes and a rotation angle (in degrees). Given these
parameters, there are four possible arcs distinguished by their direction around
the ellipse (clockwise or counter-clockwise) and whether they take the smaller or
larger path around the ellipse.

Figure 5 below shows the two possible ellipses with horizontal axis rh, vertical
axis rv, and counter-clockwise rotation angle rot (shown as the angle between the
vertical line labeled rot and the line labeled rv) passing through the points (x0, y0)
and (x1, y1). The four arcs connecting the points are labeled L and S for large and
small, and CW and CCW for clockwise and counter-clockwise.

Negative values of rh and rv are replaced with their absolute values. If exactly
one of rh and rv is 0, and the arc endpoints are not coincident, the arc is drawn as
if it were projected onto the line containing the endpoints. If both rh and rv are 0,
or if the arc endpoints are coincident, the arc is drawn as a line segment between
its endpoints. The rot parameter is taken modulo 360 degrees.

If no elliptical arc exists with the given parameters because the endpoints are
too far apart (as detailed in the next section), the arc is drawn as if the radii were
scaled up uniformly by the smallest factor that permits a solution.

Some notes on the mathematics of ellipses are provided in Appendix A
(Section 17).

49

OpenVG 1.0 Specification 8.4 – Elliptical Arcs

Figure 5: Elliptical Arcs

8.5 The Standard Path Format
Complex paths may be constructed in application (client-side) memory and

passed into OpenVG to define a VGPath object. Such path data is defined by a
sequence of segment commands referencing a separate sequence of geometric
coordinates and parameters.

In this section, we define the standard data format for paths that may be used
to define sequences of various types of path segments. Extensions may define
other path data formats.

VG_PATH_FORMAT_STANDARD

The VG_PATH_FORMAT_STANDARD macro defines a constant to be used as an
argument to vgCreatePath to indicate that path data are stored using the
standard format. As this API is revised, the lower 16 bits of version number may
increase. Each version of OpenVG will accept formats defined in all prior
specification versions with which it is backwards-compatible.

Extensions wishing to define additional path formats may register for format
identifiers that will differ in their upper 16 bits; the lower 16 bits may be used by
the extension vendor for versioning purposes.
#define VG_PATH_FORMAT_STANDARD 0

8.5.1 Path Segment Command Side Effects
In order to define the semantics of each segment command type, we define

three reference points (all are initially (0, 0)):

50

LCCW

SCCW

SCW

LCW

rv
rh

rot

(x
0
, y

0
)

(x
1
, y

1
)

OpenVG 1.0 Specification 8.5.1 – Path Segment Command Side Effects

• (sx, sy): the beginning of the current subpath, i.e., the position of the last
MOVE_TO segment.

• (ox, oy): the last point of the previous segment.

• (px, py): the last internal control point of the previous segment, if the
segment was a (regular or smooth) quadratic or cubic Bézier, or else the last
point of the previous segment.

Figure 6 illustrates the locations of these points at the end of a sequence of
segment commands { MOVE_TO, LINE_TO, CUBIC_TO }.

Figure 6: Segment Reference Points

We define points (x0, y0), (x1, y1), and (x2, y2) in the discussion below as
absolute coordinates. For segments defined using relative coordinates, (x0, y0),
etc., are defined as the incoming coordinate values added to (ox, oy). Ellipse rh,
rv, and rot parameters are unaffected by the use of relative coordinates.

Each segment (except for MOVE_TO segments) begins at the point (ox, oy)
defined by the previous segment.

A path consists of a sequence of subpaths. As path segment commands are
encountered, each segment is appended to the current subpath. The current
subpath is ended by a MOVE_TO or CLOSE_PATH segment, and a new current
subpath is begun. The end of the path data also ends the current subpath.

8.5.2 Segment Commands
The following table describes each segment command type along with its

prefix, the number of specified coordinates and parameters it requires, the
numerical value of the segment command, the formulas for any implicit

51

CUBIC
_TO

LINE_TO

M
OVE_T

O

(sx, sy)

(px, py)

(ox, oy)

OpenVG 1.0 Specification 8.5.2 – Segment Commands

coordinates, and the side effects of the segment command on the points (ox, oy),
(sx, sy), and (px, py) and on the termination of the current subpath.

Type Command Coordinates Value
Implicit
Points

Side Effects

Close Path CLOSE_PATH none 0
(px,py)=(ox,oy)=(sx,sy)

End current subpath

Move MOVE_TO x0,y0 1
(sx,sy)=(px,py)=(ox,oy)

=(x0,y0)

End current subpath

Line LINE_TO x0,y0 2 (px,py)=(ox,oy)=(x0,y0
)

Horizontal Line HLINE_TO x0 3 y0=oy
(px,py)=(x0,oy)

ox=x0

Vertical Line VLINE_TO y0 4 x0=ox
(px,py)=(ox,y0)

oy=y0

Quadratic QUAD_TO x0,y0,x1,y1 5
(px,py)=(x0,y0)

(ox,oy)=(x1,y1)

Cubic CUBIC_TO
x0,y0,x1,y1,

x2,y2
6

(px,py)=(x1,y1)

(ox,oy)=(x2,y2)

G1 Smooth
Quad SQUAD_TO x1,y1 7

(x0,y0)=

(2*ox-px,

2*oy-py)

(px,py)=

(2*ox-px, 2*oy-py)

(ox,oy)=(x1,y1)

G1 Smooth
Cubic SCUBIC_TO x1,y1,x2,y2 8

(x0,y0)=

(2*ox-px,

2*oy-py)

(px,py)=(x1,y1)

(ox,oy)=(x2,y2)

Small CCW
Arc SCCWARC_TO rh,rv,rot,x0,y0 9 (px,py)=(ox,oy)=(x0,y0

)

Small CW
Arc SCWARC_TO rh,rv,rot,x0,y0 10 (px,py)=(ox,oy)=(x0,y0

)

Large CCW
Arc LCCWARC_TO rh,rv,rot,x0,y0 11 (px,py)=(ox,oy)=(x0,y0

)

Large CW
Arc LCWARC_TO rh,rv,rot,x0,y0 12 (px,py)=(ox,oy)=(x0,y0

)

Reserved Reserved 13-15

52

OpenVG 1.0 Specification 8.5.2 – Segment Commands

Table 6: Client-Side Path Segment Commands

Each segment type may be defined using either absolute or relative
coordinates. A relative coordinate (x, y) is added to (ox, oy) to obtain the
corresponding absolute coordinate (ox + x, oy + y). Relative coordinates are
converted to absolute coordinates immediately as each segment is encountered
during rendering.

The HLINE_TO and VLINE_TO segment types are provided in order to avoid
the need for an SVG viewing application (for example) to perform its own
relative to absolute conversions when parsing path data.

In SVG, the behavior of smooth quadratic and cubic segments differs slightly
from the behavior defined above. If a smooth quadratic segment does not follow
a quadratic segment, or a smooth cubic segment does not follow a cubic
segment, the initial control point (x0, y0) is placed at (ox, oy) instead of being
computed as the reflection of (px, py). This behavior may be emulated by
converting an SVG smooth segment into a regular segment with all of its control
points specified when the preceding segment is of a different degree.

Note that the coordinates of a path are defined even if the path begins with a
segment type other than MOVE_TO (including HLINE_TO, VLINE_TO, or relative
segment types) since the coordinates are based on the initial values of (ox, oy),
(sx, sy), and (px, py) which are each defined as (0, 0).

8.5.3 Coordinate Data Formats
Coordinate and parameter data (henceforth called simply coordinate data)

may be expressed in the set of formats shown in Table 7 below. Multi-byte
coordinate data (i.e., S_16, S_32 and F datatypes) are stored within a client-side
representation using the native byte order (endianness) of the platform.
Implementations may quantize incoming data in the S_32 and F formats to a
lesser number of bits, provided at least 16 bits of precision are maintained.

Judicious use of smooth curve segments and 8- and 16-bit datatypes can result
in substantial memory savings for common path data, such as font glyphs. Using
smaller datatypes also conserves bus bandwidth when transferring paths from
application memory to OpenVG.

Datatype VG_PATH_DATATYPE Suffix Bytes Value

8-bit signed integer S_8 1 0
16-bit signed integer S_16 2 1
32-bit signed integer S_32 4 2
IEEE 754 floating-point F 4 3

Table 7: Client-Side Path Coordinate Datatypes

53

OpenVG 1.0 Specification 8.5.3 – Coordinate Data Formats

VGPathDatatype

The VGPathDatatype enumeration defines values describing the possible
numerical datatypes for path coordinate data.
typedef enum {
 VG_PATH_DATATYPE_S_8 = 0,
 VG_PATH_DATATYPE_S_16 = 1,
 VG_PATH_DATATYPE_S_32 = 2,
 VG_PATH_DATATYPE_F = 3
} VGPathDatatype;

8.5.4 Segment Type Marker Definitions
Segment type markers are defined as 8-bit integers, with the leading 3 bits

reserved for future use, the next 4 bits containing the segment command type,
and the least significant bit indicating absolute vs. relative coordinates (0 for
absolute, 1 for relative). The reserved bits must be set to 0.

For the CLOSE_PATH segment command, the value of the Abs/Rel bit is
ignored.

Figure 7: Segment Type Marker Layout

VGPathAbsRel

The VGPathAbsRel enumeration defines values indicating absolute
(VG_ABSOLUTE) and relative (VG_RELATIVE) values.
typedef enum {
 VG_ABSOLUTE = 0,
 VG_RELATIVE = 1
} VGPathAbsRel;

VGPathSegment

The VGPathSegment enumeration defines values for each segment command
type. The values are pre-shifted by 1 bit to allow them to be combined easily
with values from VGPathAbsRel.

54

Abs/
Rel

7 0

Command TypeReserved

OpenVG 1.0 Specification 8.5.4 – Segment Type Marker Definitions

typedef enum {
 VG_CLOSE_PATH = (0 << 1),
 VG_MOVE_TO = (1 << 1),
 VG_LINE_TO = (2 << 1),
 VG_HLINE_TO = (3 << 1),
 VG_VLINE_TO = (4 << 1),
 VG_QUAD_TO = (5 << 1),
 VG_CUBIC_TO = (6 << 1),
 VG_SQUAD_TO = (7 << 1),
 VG_SCUBIC_TO = (8 << 1),
 VG_SCCWARC_TO = (9 << 1),
 VG_SCWARC_TO = (10 << 1),
 VG_LCCWARC_TO = (11 << 1),
 VG_LCWARC_TO = (12 << 1)
} VGPathSegment;

VGPathCommand

The VGPathCommand enumeration defines combined values for each segment
command type and absolute/relative value. The values are shifted left by one bit
and ORed bitwise (i.e., using the C | operator) with the appropriate value from
VGPathAbsRel to obtain a complete segment command value.
typedef enum {
 VG_MOVE_TO_ABS = VG_MOVE_TO | VG_ABSOLUTE,
 VG_MOVE_TO_REL = VG_MOVE_TO | VG_RELATIVE,
 VG_LINE_TO_ABS = VG_LINE_TO | VG_ABSOLUTE,
 VG_LINE_TO_REL = VG_LINE_TO | VG_RELATIVE,
 VG_HLINE_TO_ABS = VG_HLINE_TO | VG_ABSOLUTE,
 VG_HLINE_TO_REL = VG_HLINE_TO | VG_RELATIVE,
 VG_VLINE_TO_ABS = VG_VLINE_TO | VG_ABSOLUTE,
 VG_VLINE_TO_REL = VG_VLINE_TO | VG_RELATIVE,
 VG_QUAD_TO_ABS = VG_QUAD_TO | VG_ABSOLUTE,
 VG_QUAD_TO_REL = VG_QUAD_TO | VG_RELATIVE,
 VG_CUBIC_TO_ABS = VG_CUBIC_TO | VG_ABSOLUTE,
 VG_CUBIC_TO_REL = VG_CUBIC_TO | VG_RELATIVE,
 VG_SQUAD_TO_ABS = VG_SQUAD_TO | VG_ABSOLUTE,
 VG_SQUAD_TO_REL = VG_SQUAD_TO | VG_RELATIVE,
 VG_SCUBIC_TO_ABS = VG_SCUBIC_TO | VG_ABSOLUTE,
 VG_SCUBIC_TO_REL = VG_SCUBIC_TO | VG_RELATIVE,
 VG_SCCWARC_TO_ABS = VG_SCCWARC_TO | VG_ABSOLUTE,
 VG_SCCWARC_TO_REL = VG_SCCWARC_TO | VG_RELATIVE,
 VG_SCWARC_TO_ABS = VG_SCWARC_TO | VG_ABSOLUTE,
 VG_SCWARC_TO_REL = VG_SCWARC_TO | VG_RELATIVE,
 VG_LCCWARC_TO_ABS = VG_LCCWARC_TO | VG_ABSOLUTE,
 VG_LCCWARC_TO_REL = VG_LCCWARC_TO | VG_RELATIVE,
 VG_LCWARC_TO_ABS = VG_LCWARC_TO | VG_ABSOLUTE,
 VG_LCWARC_TO_REL = VG_LCWARC_TO | VG_RELATIVE
} VGPathCommand;

55

OpenVG 1.0 Specification 8.5.5 – Client-Side Path Example

8.5.5 Client-Side Path Example
The following code example shows how to traverse a client-side path stored

using the standard representation. A byte is read containing a segment
command, and the segment command type and relative/absolute flag are
extracted by application-defined SEGMENT_COMMAND and SEGMENT_ABS_REL
macros. The number of coordinates and number of bytes per coordinate (for the
given data format) are also determined using lookup tables. Finally, the relevant
portion of the path data stream representing the current segment is copied into a
temporary buffer and used as an argument to a user-defined processSegment
function that may perform further processing.

56

OpenVG 1.0 Specification 8.5.5 – Client-Side Path Example

#define PATH_MAX_COORDS 6 /* Maximum number of coordinates/command */
#define PATH_MAX_BYTES 4 /* Bytes in largest data type */
#define SEGMENT_COMMAND(command) /* Extract segment type */ \
 (((command) & 0x1e) >> 1)
#define SEGMENT_ABS_REL(command) /* Extract absolute/relative bit */ \
 ((command) & 0x1)

/* Number of coordinates for each command */
static const VGint numCoords[] = {0,2,2,1,1,4,6,2,4,5,5,5,5};
/* Number of bytes for each datatype */
static const VGint numBytes[] = {1,2,4,4};

/* User-defined function to process a single segment */
extern void
processSegment(VGPathSegment command, VGPathAbsRel absRel,
 VGPathDatatype datatype,
 void * segmentData);

/* Process a path in the standard format, one segment at a time. */
void
processPath(const VGubyte * pathSegments, const void * pathData,
 int numSegments, VGPathDatatype datatype)
{
 VGubyte segmentType, segmentData[PATH_MAX_COORDS*PATH_MAX_BYTES];
 VGint segIdx = 0, dataIdx = 0;
 VGint command, absRel, numBytes;

 while (segIdx < numSegments) {
 segmentType = pathSegments[segIdx++];
 command = SEGMENT_COMMAND(segmentType);
 absRel = SEGMENT_ABS_REL(segmentType);
 numBytes = numCoords[command]*numBytes[datatype];

 /* Copy segment data for further processing */
 memcpy(segmentData, &pathData[dataIdx], numBytes);

 /* Process command */
 processSegment(command, absRel, datatype, (void *) segmentData);
 dataIdx += numBytes;
 }
}

8.6 Path Operations
In addition to filling or stroking a path, the API allows the following basic

operations on paths:

• Create a path with a given set of capabilities (vgCreatePath)
• Remove data from a path (vgClearPath)
• Deallocate a path (vgDestroyPath)

57

OpenVG 1.0 Specification 8.6 – Path Operations

• Query path information (using vgGetParameter)
• Query the set of capabilities for a path (vgGetPathCapabilities)
• Reduce the set of capabilities for a path (vgRemovePathCapabilities)
• Append data from one path onto another (vgAppendPath)
• Append client-side data onto a path (vgAppendPathData)
• Modify coordinates stored in a path (vgModifyPathCoords)
• Transform a path (vgTransformPath)
• Interpolate between two paths (vgInterpolatePath)
• Determine the geometrical length of a path (vgPathLength)
• Get position and tangent information for a point at a given geometric distance

along path (vgPointAlongPath)
• Get an axis-aligned bounding box for a path (vgPathBounds,

vgTransformedPathBounds)

Higher-level geometric primitives are defined in the optional VGU utility
library (see Section 16):

• Append a line to a path (vguLine)
• Append a polyline or polygon to a path (vguPolygon)
• Append a rectangle to a path (vguRect)
• Append a round-cornered rectangle to a path (vguRoundRect)
• Append an ellipse to a path (vguEllipse)
• Append a circular arc to a path (vguArc)

8.6.1 Storage of Paths
OpenVG stores path data internally to the implementation. Paths are

referenced via opaque VGPath handles. Applications may initialize paths using
the client-side memory representation defined above or other representations
defined by extensions.

It is possible for an implementation to store path data in hardware-accelerated
memory. Implementations may also make use of their own internal
representation of path segments. The intent is for applications to be able to
define a set of paths, for example one for each glyph in the current typeface, and
to be able to re-render each previously defined path with maximum efficiency.

VGPath

VGPath represents an opaque handle to a path.
typedef VGHandle VGPath;

58

OpenVG 1.0 Specification 8.6.2 – Creating and Destroying Paths

8.6.2 Creating and Destroying Paths
Paths are created and destroyed using the vgCreatePath and vgDestroyPath

functions. During the lifetime of a path, an application may indicate which path
operations it plans to perform using path capability flags defined by the
VGPathCapabilities enumeration.

VGPathCapabilities

The VGPathCapabilities enumeration defines a set of constants specifying
which operations may be performed on a given path object. At the time a path is
defined, the application specifies which operations it wishes to be able to
perform on the path. Over time, the application may disable previously enabled
capabilities, but it may not re-enable capabilities once they have been disabled.
This feature allows OpenVG implementations to make use of internal path
representations that may not support all path operations, possibly resulting in
higher performance on paths where those operations will not be performed.

The capability bits and the functionality they allow are described below:
• VG_PATH_CAPABILITY_APPEND_FROM – use path as the srcPath argument to
vgAppendPath
• VG_PATH_CAPABILITY_APPEND_TO - use path as the dstPath argument to
vgAppendPath and vgAppendPathData
• VG_PATH_CAPABILITY_MODIFY – use path as the dstPath argument to
vgModifyPathCoords
• VG_PATH_CAPABILITY_TRANSFORM_FROM – use path as the srcPath argument to
vgTransformPath
• VG_PATH_CAPABILITY_TRANSFORM_TO – use path as the dstPath argument to
vgTransformPath
• VG_PATH_CAPABILITY_INTERPOLATE_FROM – use path as the startPath or endPath
argument to vgInterpolatePath
• VG_PATH_CAPABILITY_INTERPOLATE_TO – use path as the dstPath argument to
vgInterpolatePath
• VG_PATH_CAPABILITY_PATH_LENGTH – use path as the path argument to vgPathLength
• VG_PATH_CAPABILITY_POINT_ALONG_PATH – use path as the path argument to
vgPointAlongPath
• VG_PATH_CAPABILITY_TANGENT_ALONG_PATH – use path as the path argument to
vgPointAlongPath with non-NULL tangentX and tangentY arguments
• VG_PATH_CAPABILITY_PATH_BOUNDS – use path as the path argument to
vgPathBounds
• VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS – use path as the path argument
to vgPathTransformedBounds
• VG_PATH_CAPABILITY_ALL – a bitwise OR of all the defined path capabilities

59

OpenVG 1.0 Specification 8.6.2 – Creating and Destroying Paths

typedef enum {
 VG_PATH_CAPABILITY_APPEND_FROM = (1 << 0),
 VG_PATH_CAPABILITY_APPEND_TO = (1 << 1),
 VG_PATH_CAPABILITY_MODIFY = (1 << 2),
 VG_PATH_CAPABILITY_TRANSFORM_FROM = (1 << 3),
 VG_PATH_CAPABILITY_TRANSFORM_TO = (1 << 4),
 VG_PATH_CAPABILITY_INTERPOLATE_FROM = (1 << 5),
 VG_PATH_CAPABILITY_INTERPOLATE_TO = (1 << 6),
 VG_PATH_CAPABILITY_PATH_LENGTH = (1 << 7),
 VG_PATH_CAPABILITY_POINT_ALONG_PATH = (1 << 8),
 VG_PATH_CAPABILITY_TANGENT_ALONG_PATH = (1 << 9),
 VG_PATH_CAPABILITY_PATH_BOUNDS = (1 << 10),
 VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS = (1 << 11),
 VG_PATH_CAPABILITY_ALL = (1 << 12) - 1
} VGPathCapabilities;

It is legal to call vgCreatePath, vgClearPath, and vgDestroyPath regardless of
the current setting of the path’s capability bits, as these functions discard the
existing path definition.

vgCreatePath

vgCreatePath creates a new path that is ready to accept segment data and
returns a VGPath handle to it. The path data will be formatted in the format
given by pathFormat, typically VG_PATH_FORMAT_STANDARD. The datatype
parameter contains a value from the VGPathDatatype enumeration indicating
the datatype that will be used for coordinate data. The capabilities
argument is a bitwise OR of the desired VGPathCapabilities values. Bits of
capabilities that do not correspond to values from VGPathCapabilities
have no effect. If an error occurs, VG_INVALID_HANDLE is returned.

The scale and bias parameters are used to interpret each coordinate of the
path data; an incoming coordinate value v will be interpreted as the value
(scale*v + bias). scale must not equal 0. The datatype, scale, and bias together
define a valid coordinate data range for the path; segment commands that
attempt to place a coordinate in the path that is outside this range will overflow
silently, resulting in an undefined coordinate value. Functions that query a path
containing such values, such as vgPathLength and vgPointAlongPath, also
return undefined results.

The segmentCapacityHint parameter provides a hint as to the total
number of segments that will eventually be stored in the path. The
coordCapacityHint parameter provides a hint as to the total number of
specified coordinates (as defined in the “Coordinates” column of Table 6) that
will eventually be stored in the path. A value less than or equal to 0 for either
hint indicates that the capacity is unknown. The path storage space will in any
case grow as needed, regardless of the hint values. However, supplying hints

60

OpenVG 1.0 Specification 8.6.2 – Creating and Destroying Paths

may improve performance by reducing the need to allocate additional space as
the path grows. Implementations should allow applications to append segments
and coordinates up to the stated capacity in small batches without degrading
performance due to excessive memory reallocation.
VGPath vgCreatePath(VGint pathFormat,
 VGPathDatatype datatype,
 VGfloat scale, VGfloat bias,
 VGint segmentCapacityHint,
 VGint coordCapacityHint,
 VGbitfield capabilities)

ERRORS

VG_UNSUPPORTED_PATH_FORMAT_ERROR

– if pathFormat is not a supported format

VG_ILLEGAL_ARGUMENT_ERROR

– if datatype is not a valid value from the VGPathDatatype enumeration

– if scale is equal to 0

61

OpenVG 1.0 Specification 8.6.2 – Creating and Destroying Paths

vgClearPath

vgClearPath removes all segment command and coordinate data associated
with a path. The handle continues to be valid for use in the future, and the path
format and datatype retain their existing values. The capabilities argument
is a bitwise OR of the desired VGPathCapabilities values. Bits of
capabilities that do not correspond to values from VGPathCapabilities
have no effect. Using vgClearPath may be more efficient than destroying and re-
creating a path for short-lived paths.
void vgClearPath(VGPath path, VGbitfield capabilities)

ERRORS

VG_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

vgDestroyPath

vgDestroyPath releases any resources associated with path, and makes the
handle invalid in all contexts that shared it.
void vgDestroyPath(VGPath path)

ERRORS

VG_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

8.6.3 Path Queries

VGPathParamType

Values from the VGPathParamType enumeration may be used as the
paramType argument to vgGetParameter to query various features of a path. All
of the parameters defined by VGPathParamType are read-only. Table 8 shows
the datatypes for each parameter type.

62

OpenVG 1.0 Specification 8.6.3 – Path Queries

typedef enum {
 VG_PATH_FORMAT = 0x1600,
 VG_PATH_DATATYPE = 0x1601,
 VG_PATH_SCALE = 0x1602,
 VG_PATH_BIAS = 0x1603,
 VG_PATH_NUM_SEGMENTS = 0x1604,
 VG_PATH_NUM_COORDS = 0x1605
} VGPathParamType;

Parameter Datatype

VG_PATH_FORMAT VGint

VG_PATH_DATATYPE VGint

VG_PATH_SCALE VGfloat

VG_PATH_BIAS VGfloat

VG_PATH_NUM_SEGMENTS VGint

VG_PATH_NUM_COORDS VGint

Table 8: VGPathParamType Datatypes

Path Format

The command format of a path is queried as an integer value using the
VG_PATH_FORMAT parameter:
VGPath path;
VGint pathFormat = vgGetParameteri(path, VG_PATH_FORMAT);

Path Datatype

The coordinate datatype of a path is queried as an integer value using the
VG_PATH_DATATYPE parameter. The returned integral value should be cast to
the VGPathDatatype enumeration:
VGPath path;
VGPathDatatype pathDatatype =
 (VGPathDatatype)vgGetParameteri(path, VG_PATH_DATATYPE);

Path Scale

The scale factor of the path is queried as a floating-point value using the
VG_PATH_SCALE parameter:
VGPath path;
VGfloat pathScale = vgGetParameterf(path, VG_PATH_SCALE);

63

OpenVG 1.0 Specification 8.6.3 – Path Queries

Path Bias

The bias of the path is queried as a floating-point value using the
VG_PATH_BIAS parameter:
VGPath path;
VGfloat pathBias = vgGetParameterf(path, VG_PATH_BIAS);

Number of Segments

The number of segments stored in the path is queried as an integer value using
the VG_PATH_NUM_SEGMENTS parameter:
VGPath path;
VGint pathNumSegments = vgGetParameteri(path, VG_PATH_NUM_SEGMENTS);

Number of Coordinates

The total number of specified coordinates (i.e., those defined in the
“Coordinates” column of Table 6) stored in the path is queried as an integer
value using the VG_PATH_NUM_COORDS parameter:
VGPath path;
VGint pathNumCoords = vgGetParameteri(path, VG_PATH_NUM_COORDS);

8.6.4 Querying and Modifying Path Capabilities

vgGetPathCapabilities

The vgGetPathCapabilities function returns the current capabilities of the
path, as a bitwise OR of VGPathCapabilities constants. If an error occurs, 0
is returned.
VGbitfield vgGetPathCapabilities(VGPath path)

ERRORS

VG_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

vgRemovePathCapabilities

The vgRemovePathCapabilities function requests the set of capabilities
specified in the capabilities argument to be disabled for the given path. The
capabilities argument is a bitwise OR of the VGPathCapabilities values
whose removal is requested. Attempting to remove a capability that is already

64

OpenVG 1.0 Specification 8.6.4 – Querying and Modifying Path Capabilities

disabled has no effect. Bits of capabilities that do not correspond to values
from VGPathCapabilities have no effect.

An implementation may choose to ignore the request to remove a particular
capability if no significant performance improvement would result. In this case,
vgGetPathCapabilities will continue to report the capability as enabled.

void vgRemovePathCapabilities(VGPath path, VGbitfield capabilities)

ERRORS

VG_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

8.6.5 Copying Data Between Paths

vgAppendPath

vgAppendPath appends a copy of all path segments from srcPath onto the
end of the existing data in dstPath. It is legal for srcPath and dstPath to be
handles to the same path object, in which case the contents of the path are
duplicated. If srcPath and dstPath are handles to distinct path objects, the
contents of srcPath will not be affected by the call.

 The VG_PATH_CAPABILITY_APPEND_FROM capability must be enabled for
srcPath, and the VG_PATH_CAPABILITY_APPEND_TO capability must be
enabled for dstPath.

If the scale and bias of dstPath define a narrower range than that of
srcPath, overflow may occur silently.
void vgAppendPath(VGPath dstPath, VGPath srcPath)

ERRORS

VG_BAD_HANDLE_ERROR

– if either dstPath or srcPath is not a valid path handle, or is not shared
with the current context

VG_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_APPEND_FROM is not enabled for srcPath

– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for dstPath

65

OpenVG 1.0 Specification 8.6.6 – Appending Client-Side Data to a Path

8.6.6 Appending Client-Side Data to a Path

vgAppendPathData

vgAppendPathData appends data taken from a client-side representation
stored in pathData to the given path dstPath. The data are formatted using
the path format of dstPath (as returned by querying the path’s
VG_PATH_FORMAT parameter using vgGetParameteri). The numSegments
parameter gives the total number of entries in the pathSegments array, and
must be greater than 0. Legal values for the pathSegments array are the values
from the VGPathCommand enumeration as well as VG_CLOSE_PATH and
(VG_CLOSE_PATH | VG_RELATIVE) (which are synonymous).

The pathData pointer must be aligned on a 1-, 2-, or 4-byte boundary (as
defined in the “Bytes” column of Table 7) depending on the size of the
coordinate datatype (as returned by querying the path’s VG_PATH_DATATYPE
parameter using vgGetParameteri). The VG_PATH_CAPABILITY_APPEND_TO
capability must be enabled for path.

Each incoming coordinate value, regardless of datatype, is transformed by the
scale factor and bias of the path.
void vgAppendPathData(VGPath dstPath,
 VGint numSegments,
 const VGubyte * pathSegments,
 const void * pathData)

ERRORS

VG_BAD_HANDLE_ERROR

– if dstPath is not a valid path handle, or is not shared with the current
context

VG_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for dstPath

VG_ILLEGAL_ARGUMENT_ERROR

– if pathSegments or pathData is NULL

– if pathData is not properly aligned

– if numSegments is less than or equal to 0

– if pathSegments contains an illegal command

66

OpenVG 1.0 Specification 8.6.7 – Modifying Path Data

8.6.7 Modifying Path Data
Coordinate data in an existing path may be modified, for example to create

animation effects. Implementations should choose an internal representation for
paths that have the VG_PATH_CAPABILITY_MODIFY capability enabled that
allows for efficient modification of the coordinate data.

vgModifyPathCoords

vgModifyPathCoords modifies the coordinate data for a contiguous range of
segments of dstPath, starting at startIndex (where 0 is the index of the first
path segment) and having length numSegments. The data in pathData must be
formatted in exactly the same manner as the original coordinate data for the
given segment range, unless the path has been transformed using
vgTransformPath or interpolated using vgInterpolatePath. In these cases, the
path will have been subject to the segment promotion rules as specified in those
functions.

The pathData pointer must be aligned on a 1-, 2-, or 4-byte boundary
depending on the size of the coordinate datatype (as returned by querying the
path’s VG_PATH_DATATYPE parameter using vgGetParameteri). The
VG_PATH_CAPABILITY_MODIFY capability must be enabled for path.

Each incoming coordinate value, regardless of datatype, is transformed by the
scale factor and bias of the path.
void vgModifyPathCoords(VGPath dstPath,
 VGint startIndex, VGint numSegments,
 const void * pathData)

ERRORS

VG_BAD_HANDLE_ERROR

– if dstPath is not a valid path handle, or is not shared with the current
context

VG_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_MODIFY is not enabled for dstPath

VG_ILLEGAL_ARGUMENT_ERROR

– if pathData is NULL

– if pathData is not properly aligned

– if startIndex is less than 0

– if numSegments is less than or equal to 0

67

OpenVG 1.0 Specification 8.6.7 – Modifying Path Data

– if startIndex + numSegments is greater than the number of segments in
the path

8.6.8 Transforming a Path

vgTransformPath

vgTransformPath appends a transformed copy of srcPath to the current
contents of dstPath. The appended path is equivalent to the results of applying
the current path-user-to-surface transformation (VG_MATRIX_PATH_USER_TO_
SURFACE) to srcPath.

It is legal for srcPath and dstPath to be handles to the same path object, in
which case the the transformed path will be appended to the existing path. If
srcPath and dstPath are handles to distinct path objects, the contents of
srcPath will not be affected by the call.

All HLINE_TO_* and VLINE_TO_* segments present in srcPath are
implicitly converted to LINE_TO_* segments prior to applying the
transformation. The original copies of these segments in srcPath remain
unchanged.

Any *ARC_TO segments are transformed, but the endpoint parametrization of
the resulting arc segments are implementation-dependent. The results of calling
vgInterpolatePath on a transformed path that contains such segments are
undefined.

The VG_PATH_CAPABILITY_TRANSFORM_FROM capability must be enabled
for srcPath, and the VG_PATH_CAPABILITY_TRANSFORM_TO capability must
be enabled for dstPath.

Overflow may occur silently if coordinates are transformed outside the
datatype range of dstPath.
void vgTransformPath(VGPath dstPath, VGPath srcPath)

ERRORS

VG_BAD_HANDLE_ERROR

– if either dstPath or srcPath is not a valid path handle, or is not shared
with the current context

VG_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_TRANSFORM_FROM is not enabled for srcPath

– if VG_PATH_CAPABILITY_TRANSFORM_TO is not enabled for dstPath

68

OpenVG 1.0 Specification 8.6.9 – Interpolating Between Paths

8.6.9 Interpolating Between Paths
Interpolation takes two compatible paths, in a sense described below, and

defines a new path that interpolates between them by a parameter amount.
When amount is equal to 0, the result is equivalent to the first path; when
amount is equal to 1, the result is equivalent to the second path. Values between
0 and 1 produce paths that smoothly interpolate between the two extremes.
Values outside the [0, 1] range produce extrapolated paths. Conceptually,
interpolation occurs as follows. First, the two path parameters are copied and the
copies are normalized by:

• Converting all coordinates to floating-point format, applying the path scale
and bias parameters
• Converting all relative segments to absolute form
• Converting {H,V}LINE_TO_* segments to LINE_TO form
• Converting (S)QUAD_TO_*/SCUBIC_TO_* segments to CUBIC_TO form
• Retaining all *ARC_TO_* and CLOSE_PATH segments

If, following normalization, both paths have the same sequence of segment
types (treating all forms of arc as the same), interpolation proceeds by linearly
interpolating between each corresponding pair of segment parameters in the
normalized paths. If the starting arc type differs from the final arc type, the
starting arc type is used for values of amount less than 0.5, and the final arc type
is used for values greater than or equal to 0.5. Finally, the coordinates are
converted to the data type of the destination.

vgInterpolatePath

The vgInterpolatePath function appends a path, defined by interpolation (or
extrapolation) between the paths startPath and endPath by the given
amount, to the path dstPath. It returns VG_TRUE if interpolation was
successful (i.e., the paths had compatible segment types after normalization), and
VG_FALSE otherwise. If interpolation is unsuccessful, dstPath is left
unchanged.

It is legal for dstPath to be a handle to the same path object as either
startPath or endPath or both, in which case the contents of the source path
or paths referenced by dstPath will have the interpolated path appended. If
dstPath is not the a handle to the same path object as either startPath or
endPath, the contents of startPath and endPath will not be affected by the
call.

Overflow may occur silently if the datatype of dstPath has insufficient range
to store an interpolated coordinate value.

69

OpenVG 1.0 Specification 8.6.9 – Interpolating Between Paths

The VG_PATH_CAPABILITY_INTERPOLATE_FROM capability must be
enabled for both of startPath and endPath, and the
VG_PATH_CAPABILITY_INTERPOLATE_TO capability must be enabled for
dstPath.
VGboolean vgInterpolatePath(VGPath dstPath,
 VGPath startPath,
 VGPath endPath,
 VGfloat amount)

ERRORS

VG_BAD_HANDLE_ERROR

– if any of dstPath, startPath, or endPath is not a valid path handle, or is
not shared with the current context

VG_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_PATH_INTERPOLATE_TO is not enabled for
dstPath

– if VG_PATH_CAPABILITY_PATH_INTERPOLATE_FROM is not enabled for
startPath or endPath

8.6.10 Length of a Path
An approximation to the geometric length of a portion of a path may be

obtained by calling the vgPathLength function. MOVE_TO segments and implicit
path closures (see Section 8.7.1) do not contribute to the path length.
CLOSE_PATH segments have the same length as a LINE_TO segment with the
same endpoints.

vgPathLength

The vgPathLength function returns the length of a given portion of a path in
the user coordinate system (that is, in the path’s own coordinate system,
disregarding any matrix settings). Only the subpath consisting of the
numSegments path segments beginning with startSegment (where the initial
path segment has index 0) is used. If an error occurs, -1.0f is returned.

The VG_PATH_CAPABILITY_PATH_LENGTH capability must be enabled for
path.
VGfloat vgPathLength(VGPath path,
 VGint startSegment, VGint numSegments);

70

OpenVG 1.0 Specification 8.6.10 – Length of a Path

ERRORS

VG_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VG_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_PATH_LENGTH is not enabled for path

VG_ILLEGAL_ARGUMENT_ERROR

– if startSegment is less than 0 or greater than the index of the final path
segment

– if numSegments is less than or equal to 0

– if (startSegment + numSegments – 1) is less than 0 or greater than the
index of the final path segment

8.6.11 Position and Tangent Along a Path
Some path operations, such as the placement and orientation of text along a

path, require the computation of a set of points along a path as well as a normal
(perpendicular) vector at each point. The vgPointAlongPath function provides
points along the path as well as normalized tangent vectors (from which normals
may easily be derived).

The Tangents of a Path Segment

The tangent at a given point along a path is defined as a vector pointing in the
same direction as the path at that point. The tangent at any point of a line
segment is parallel to the line segment; the tangent at any point along a Bézier
curve or elliptical arc segment may be defined using the derivatives of the
parametric equations x(t) and y(t) that define the curve. The incoming tangent at
a point is defined using the direction in which the curve is “traveling” prior to
arriving at the point; the outgoing tangent is defined using the direction the
curve is traveling as it leaves the point. The incoming and outgoing tangents
may differ at a vertex joining different curve segments, or at a sharp “cusp” in a
curve.

If a point along a path segment has no tangent defined, for example where a
path segment has collapsed to a single point, the following algorithm is used to
define incoming and outgoing tangents at the point. Search backwards until a
segment is found with a tangent defined at its end point, or the start of the
current path is reached; if a tangent is found, use it as the incoming tangent.
Search forwards until a segment is found with a tangent defined at its starting
point, or the end of the current path is reached; if a tangent is found, use it as the
outgoing tangent. If these searches produce exactly one defined tangent, that
tangent is used as both the incoming and outgoing tangent. If the searches

71

OpenVG 1.0 Specification 8.6.11 – Position and Tangent Along a Path

produced no defined tangent, the incoming and outgoing tangents are both
assigned the value (1, 0). Tangent vectors are normalized to have unit length.

vgPointAlongPath

The vgPointAlongPath function returns the point lying a given distance along
a given portion of a path and the unit-length tangent vector at that point. Only
the subpath consisting of the numSegments path segments beginning with
startSegment (where the initial path segment has index 0) is used. For the
remainder of this section we refer only to this subpath when discussing paths.

If distance is less than or equal to 0, the starting point of the path is used. If
distance is greater than or equal to the path length (i.e., the value returned by
vgPathLength when called with the same startSegment and numSegments
parameters), the visual ending point of the path is used.

Intermediate values return the (x, y) coordinates and tangent vector of the
point at the given distance along the path. Because it is not possible in general to
compute exact distances along a path, an implementation is not required to use
exact computation even for segments where such computation would be
possible. For example, the path:
MOVE_TO 0, 0; LINE_TO 10, 0 // draw a line of length 10

MOVE_TO 10, 10 // create a discontinuity

LINE_TO 10, 20 // draw a line of length 10

may return either (10, 0) or (10, 10) (or points nearby) as the point at distance
10.0. Implementations are not required to compute distances exactly, as long as
they satisfy the constraint that as distance increases monotonically the
returned point and tangent move forward monotonically along the path.

Where the implementation is able to determine that the point being queried
lies exactly at a discontinuity or cusp, the incoming point and tangent should be
returned. In the example above, returning the pre-discontinuity point (10, 0) and
incoming tangent (1, 0) is preferred to returning the post-discontinuity point (10,
10) and outgoing tangent (0, 1).

The VG_PATH_CAPABILITY_POINT_ALONG_PATH capability must be
enabled for path.

If the reference arguments x and y are both non-NULL, and the
VG_PATH_CAPABILITY_POINT_ALONG_PATH capability is enabled for path,
the point (x, y) is returned in x and y. Otherwise the variables referenced by x
and y are not written.

If the reference arguments tangentX and tangentY are both non-NULL, and
the VG_PATH_CAPABILITY_TANGENT_ALONG_PATH capability is enabled for
path, the geometric tangent vector at the point (x, y) is returned in tangentX
and tangentY. Otherwise the variables referenced by tangentX and
tangentY are not written.

72

OpenVG 1.0 Specification 8.6.11 – Position and Tangent Along a Path

Where the incoming tangent is defined, vgPointAlongPath returns it. Where
only the outgoing tangent is defined, the outgoing tangent is returned.

The points returned by vgPointAlongPath are not guaranteed to match the
path as rendered; some deviation is to be expected.
void vgPointAlongPath(VGPath path,
 VGint startSegment, VGint numSegments,
 VGfloat distance,
 VGfloat * x, VGfloat * y,
 VGfloat * tangentX, VGfloat * tangentY)

ERRORS

VG_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VG_PATH_CAPABILITY_ERROR

– If x and y are both non-NULL, and the
VG_PATH_CAPABILITY_POINT_ALONG_PATH is not enabled for path

– If tangentX and tangentY are both non-NULL, and the
VG_PATH_CAPABILITY_TANGENT_ALONG_PATH capability is not enabled
for path

VG_ILLEGAL_ARGUMENT_ERROR

– if startSegment is less than 0 or greater than the index of the final path
segment

– if numSegments is less than or equal to 0

– if (startSegment + numSegments – 1) is less than 0 or greater than the
index of the final path segment

– if x, y, tangentX or tangentY is not properly aligned

8.6.12 Querying the Bounding Box of a Path
To draw complex scenes efficiently, it is important to avoid drawing objects

that do not appear in the region being drawn. A simple way to determine
whether an object may be visible is to determine whether its bounding box – an
axis-aligned rectangle that is guaranteed to contain the entire object – intersects
the drawn region. The vgPathBounds and vgPathTransformedBounds functions
provide bounding box information.

Two types of bounding boxes may be obtained for a path. The first, obtained
by calling vgPathBounds, returns a tight axis-aligned bounding box for the area
contained within the path in its own coordinate system. The second, obtained by

73

OpenVG 1.0 Specification 8.6.12 – Querying the Bounding Box of a Path

calling vgPathTransformedBounds, returns an axis-aligned bounding box for the
path as it will appear when drawn on the drawing surface (i.e., following
application of the current path-user-to-surface transform). The latter function
does not guarantee to bound the shape tightly, but still may provide tighter
bounds than those obtained by transforming the result of vgPathBounds, at a
lower cost.

The bounding box of a path is defined to contain the area within the path, i.e.,
the area that would be drawn if the path were to be filled. If the path is to be
stroked, the application must adjust the bounding box to take the stroking
parameters into account. Note that Miter joins in particular may extend far
outside the bounding box.

vgPathBounds

The vgPathBounds function returns an axis-aligned bounding box that tightly
bounds the interior of the given path. Stroking parameters are ignored. If path
is empty, minX and minY are set to 0 and width and height are set to -1. If
path contains a single point, minX and minY are set to the coordinates of the
point and width and height are set to 0.

The VG_PATH_CAPABILITY_PATH_BOUNDS capability must be enabled for
path.
void vgPathBounds(VGPath path,
 VGfloat * minX, VGfloat * minY,
 VGfloat * width, VGfloat * height)

ERRORS

VG_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VG_ILLEGAL_ARGUMENT_ERROR

– if minX, minY, width, or height is NULL

– if minX, minY, width, or height is not properly aligned

VG_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_PATH_BOUNDS is not enabled for path

vgPathTransformedBounds

The vgPathTransformedBounds function returns an axis-aligned bounding
box that is guaranteed to enclose the geometry of the given path following
transformation by the current path-user-to-surface transform. The returned
bounding box is not guaranteed to fit tightly around the path geometry. If path

74

OpenVG 1.0 Specification 8.6.12 – Querying the Bounding Box of a Path

is empty, minX and minY are set to 0 and width and height are set to -1. If
path contains a single point, minX and minY are set to the transformed
coordinates of the point and width and height are set to 0.

The VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS capability must
be enabled for path.
void vgPathTransformedBounds(VGPath path,
 VGfloat * minX, VGfloat * minY,
 VGfloat * width, VGfloat * height)

ERRORS

VG_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VG_ILLEGAL_ARGUMENT_ERROR

– if minX, minY, width, or height is NULL

– if minX, minY, width, or height is not properly aligned

VG_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS is not enabled
for path

8.7 Interpretation of Paths
The interpretation of a path, composed of a sequence of one or more subpaths,

depends on whether it is to be stroked or filled. For stroked paths, each subpath
has stroking parameters applied to it separately, with the dash phase at the end
of each subpath used at the beginning of the next subpath. This process results in
a set of stroked shapes. The union of these shapes then defines the outline path
to be filled. For filled paths, the interior of the path (as defined below) is filled.

8.7.1 Filling Paths
A simple, non-self-intersecting closed path divides the plane into two regions,

a bounded inside region and an unbounded outside region. Note that knowing the
orientation of the outermost path (i.e., clockwise or counter-clockwise) is not
necessary to differentiate between the inside and outside regions.

A path that self-intersects, or that has multiple overlapping subpaths, requires
additional information in order to define the inside region. Two rules that
provide different definitions for the area enclosed by such paths, known as the
non-zero and even/odd fill rules, are supported by OpenVG. To determine

75

OpenVG 1.0 Specification 8.7.1 – Filling Paths

whether any point in the plane is contained in the inside region, imagine
drawing a line from that point out to infinity in any direction such that the line
does not cross any vertex of the path. For each edge that is crossed by the line,
add 1 to the counter if the edge crosses from left to right, as seen by an observer
walking along the line towards infinity, and subtract 1 if the edge crosses from
right to left. In this way, each region of the plane will receive an integer value.

The non-zero fill rule says that the point is inside the shape if the resulting
sum is not equal to 0. The even/odd rule says that the point is inside the shape if
the resulting sum is odd, regardless of sign (e.g., -7 is odd, 0 is even). Consider
the star-shaped path shown in Figure 8 below, indicated with solid lines. The
orientation of the lines making up the path is indicated with arrows. An
imaginary line to infinity starting in the central region of the star is shown as a
dashed line pointing to the right. Two edges of the star cross the line to infinity
going left to right, indicated by the downward-pointing arrows. The central
region therefore has a count of +2. According to the even/odd rule, it is outside
the path, whereas according to the non-zero rule it is inside. Implementations
must be able to deal with paths having up to 255 crossings along any line. The
behavior of more complex paths is undefined.

Figure 8: Even/Odd Fill Rule

76

1

2

1

0

1

1 1

OpenVG 1.0 Specification 8.7.1 – Filling Paths

Creating Holes in Paths

The fill rule is applied with respect to all subpaths simultaneously during
filling. Thus, one subpath may be used to create a hole inside an enclosing
subpath by defining the two subpaths with opposing orientations (clockwise
versus counter-clockwise). Note that the orientation of extremely small paths
may depend on the numerical precision of the internal representation of points.
Care should be taken to avoid the use of paths that have nearly collapsed to a
line or a point.

The relative orientation of subpaths, along with the fill rule, determines
whether overlapping subpaths will result in holes, as shown in Figure 9 below.

Even/Odd Fill Rule Non-Zero Fill Rule

Same

Orientation

Opposing

Orientation

Figure 9: Creating Holes with Subpaths

77

0 +1 0 +10 +1 0 +1

0 +1 +2 +10 +
1

+2 +1

OpenVG 1.0 Specification 8.7.1 – Filling Paths

Implicit Closure of Filled Subpaths

When filling a path, any subpaths that do not end with a CLOSE_PATH
segment command (i.e., they are terminated with a MOVE_TO_ABS or
MOVE_TO_REL segment command, or they contain the final segment of the path)
are implicitly closed, without affecting the position of any other vertices of the
path or the (sx, sy), (px, py) or (ox, oy) variables. For example, consider the
sequence of segment commands:

MOVE_TO_ABS 0, 0; LINE_TO_ABS 10, 10; LINE_TO_ABS 10, 0
MOVE_TO_REL 10, 2; LINE_TO_ABS 30, 12; LINE_TO_ABS 30, 2

If filled, this sequence will result in one filled triangle with vertices (0, 0), (10,
10), and (10, 0) and another filled triangle with vertices (20, 2), (30, 12), and (30,
2). Note that the implicit closure of the initial subpath prior to the MOVE_TO_REL
segment command has no effect on the starting coordinate of the second triangle;
it is computed by adding the relative offset (10, 2) to the final coordinate of the
previous segment (10, 0) to obtain (20, 2) and is not altered by the (virtual)
insertion of the line connecting the first subpath’s final vertex (10, 0) to its initial
vertex (0, 0)). Figure 10 illustrates this process, with the resulting filled areas
highlighted. When stroking a path, no implicit closure takes place, as shown in
Figure 11. Implicit closure affects only the output when filling a path, and does
not alter the path data in any way.

Figure 10: Implicit Closure of Filled Paths

Figure 11: Stroked Paths Have No Implicit Closure

78

M
O

V
E_TO

 0,0 LIN
E_T

0 1
0,1

0

LIN
E

_TO
 10,0

MOVE_TO_REL 10,2

LIN
E_T

O 30
,12

LIN
E

_TO
 30,2

(implicit closure)

(implicit closure)

LIN
E_T

0 1
0,1

0

LIN
E

_TO
 10,0

LIN
E _T

O
 30,2LIN

E_T
O 30

,12

MOVE_TO_REL 10,2

OpenVG 1.0 Specification 8.7.2 – Stroking Paths

8.7.2 Stroking Paths
Stroking a path consists of “widening” the edges of the path using a straight-

line pen held perpendicularly to the path. At the start and end vertices of the
path, an additional end-cap style is applied. At interior vertices of the path, a line
join style is applied.

Conceptually, stroking of a path is performed in two steps. First, the stroke
parameters are applied in the user coordinate system to form a new shape
representing the end result of dashing, widening the path, and applying the end
cap and line join styles. Second, a path is created that defines the outline of this
stroked shape. This path is transformed using the path-user-to-surface
transformation (possibly involving shape distortions due to non-uniform scaling
or shearing). Finally, the resulting path is filled with paint in exactly the same
manner as when filling a user-defined path using the non-zero fill rule.

Stroking a path applies a single “layer” of paint, regardless of any intersections
between portions of the thickened path. Figure 12 illustrates this principle. A
single stroke (above) is drawn with a black color and an alpha value of 50%,
compared with two separate strokes (below) drawn with the same color and
alpha values. The single stroke produces a shape with a uniform color of 50%
gray, as if a single layer of translucent paint has been applied, even where
portions of the path overlap one another. By contrast, the separate strokes
produce two applications of the translucent paint in the area of overlap, resulting
in a darkened area.

Figure 12: Each Stroke Applies a Single Layer of Paint

79

Single Stroke

Separate Strokes

OpenVG 1.0 Specification 8.7.3 – Stroke Parameters

8.7.3 Stroke Parameters
Stroking a path involves the following parameters, set on a context:

• Line width in user coordinate system units
• End cap style – one of Butt, Round, or Square
• Line join style – one of Miter, Round, or Bevel
• Miter limit – if using Miter join style
• Dash pattern – array of dash on/off lengths in user units
• Dash phase – initial offset into the dash pattern

These parameters are set on the current context using the variants of the vgSet
function. The values most recently set prior to calling vgDrawPath (see Section
8.8) are applied to generate the stroke.

End Cap Styles

Figure 13 illustrates the Butt (top), Round (center), and Square (bottom) end
cap styles applied to a path consisting of a single line segment. Figure 14
highlights the additional geometry created by the end caps. The Butt end cap
style terminates each segment with a line perpendicular to the tangent at each
endpoint. The Round end cap style appends a semicircle with a diameter equal
to the line width centered around each endpoint. The Square end cap style
appends a rectangle with two sides of length equal to the line width
perpendicular to the tangent, and two sides of length equal to half the line width
parallel to the tangent, at each endpoint. The outgoing tangent is used at the left
endpoint and the incoming tangent is used at the right endpoint.

Figure 13: End Cap Styles

Figure 14: End Cap Styles with Additional Geometry Highlighted

80

Butt

Round

Square

OpenVG 1.0 Specification 8.7.3 – Stroke Parameters

Line Join Styles

Figure 15 illustrates the Bevel (left), Round (center), and Miter (right) line join
styles applied to a pair of line segments. Figure 16 highlights the additional
geometry created by the line joins. The Bevel join style appends a triangle with
two vertices at the outer endpoints of the two “fattened” lines and a third vertex
at the intersection point of the two original lines. The Round join style appends a
wedge-shaped portion of a circle, centered at the intersection point of the two
original lines, having a radius equal to half the line width. The Miter join style
appends a trapezoid with one vertex at the intersection point of the two original
lines, two adjacent vertices at the outer endpoints of the two “fattened” lines and
a fourth vertex at the extrapolated intersection point of the outer perimeters of
the two “fattened” lines. A Round join is used at a cusp of a cubic Bézier
segment.

When stroking using the Miter join style, the miter length (i.e., the length
between the intersection points of the inner and outer perimeters of the two
“fattened” lines) is compared to the product of the user-set miter limit and the
line width. If the miter length exceeds this product, the Miter join is not drawn
and a Bevel join is substituted.

Figure 15: Line Join Styles

Figure 16: Line Join Styles with Additional Geometry Highlighted

81

Bevel Round Miter

Miter Length

OpenVG 1.0 Specification 8.7.3 – Stroke Parameters

Miter Length

The ratio of miter length to line width may be computed directly from the
angle θ between the two line segments being joined as 1/sin(/2θ). A number of
angles with their corresponding miter limits for a line width of 1 are shown in
Table 9.

Angle (degrees) Miter Limit Angle (degrees) Miter Limit

10 11.47 45 2.61
11.47 10 60 2

23 5 90 1.41
28.95 4 120 1.15

30 3.86 150 1.03
38.94 3 180 1

Table 9: Corresponding Angles and Miter Limits

Dashing

The dash pattern consists of a sequence of lengths of alternating “on” and
“off” dash segments. The first value of the dash array defines the length, in user
coordinates, of the first “on” dash segment. The second value defines the length
of the following “off” segment. Each subsequent pair of values defines one “on”
and one “off” segment.

The dash phase defines the starting point in the dash pattern that is associated
with the start of the first segment of the path. For example, if the dash pattern is
[10 20 30 40] and the dash phase is 35, the path will be stroked with an “on”
segment of length 25 (skipping the first “on” segment of length 10, the following
“off” segment of length 20, and the first 5 units of the next “on” segment),
followed by an “off” segment of length 40. The pattern will then repeat from the
beginning, with an “on” segment of length 10, an “off” segment of length 20, an
“on” segment of length 30, etc. Figure 17 illustrates this dash pattern.

Conceptually, dashing is performed by breaking the path into a set of subpaths
according to the dash pattern. Each subpath is then drawn independently using
the end cap, line join style, and miter limit that were set for the path as a whole.

Dashes of length 0 are drawn only if the end cap style is VG_CAP_ROUND or
VG_CAP_SQUARE. The incoming and outgoing tangents (which may differ if the
dash falls at a vertex of the path) are evaluated at the point, using the
vgPointAlongPath algorithm. The end caps are drawn using the orientation of
each tangent, and a join is drawn between them if the tangent directions differ. If
the end cap style is VG_CAP_BUTT, nothing will be drawn.

82

OpenVG 1.0 Specification 8.7.3 – Stroke Parameters

A dash, or space between dashes, with length less than 0 is treated as having a
length of 0.

A negative dash phase is equivalent to the positive phase obtained by adding a
suitable multiple of the dash pattern length.

Figure 17: Dash Pattern and Phase Example

8.7.4 Stroke Generation
The algorithm for generating a stroke is as follows. The steps described in this

section conceptually take place in user coordinates, on a copy of the path being
stroked in which all relative and implicit coordinates have been converted to
absolute coordinates. An initial MOVE_TO 0,0 segment is added if the path does
not begin with a MOVE_TO.

The path to be stroked is divided into subpaths, each ending with a MOVE_TO
or CLOSE_PATH segment command or with the final path segment. Subpaths
consisting of only a single MOVE_TO segment are discarded.

A subpath consisting of a single point (i.e., a MOVE_TO segment followed by a
sequence of LINE_TO, QUAD_TO, CUBIC_TO, and/or ARC_TO segments with all
control points equal to the current point, possibly followed by a CLOSE_PATH
segment) is collapsed to a lone vertex, which is marked as an END vertex (for
later generation of end caps). A tangent vector of (1, 0) is used for Square end
caps.

83

Dash Phase=35

25 10 30 10 30 10 30 ...

Dash Pattern:

Resulting Line:

10

20

30

40

OpenVG 1.0 Specification 8.7.4 – Stroke Generation

Subpaths that do not consist only of a single point have any zero-length
segments removed.

If a subpath does not end with a CLOSE_PATH segment command, its first and
last vertices are marked as END vertices. All the internal vertices that begin or
end path segments within the subpath, as well as the initial/final vertex if the
subpath ends with a CLOSE_PATH segment, are marked as JOIN vertices (for
later generation of line joins).

Each subpath is processed in turn as described below until all subpaths have
been stroked.

If dashing is enabled, the dash pattern and phase are used to break the
subpath into a series of smaller subpaths representing the “on” portions of the
dash pattern. New vertices are created at the endpoints of each dash subpath
and marked as END vertices. The old subpath is discarded and replaced with the
dash subpaths for the remainder of the stroke processing. The dash phase is
advanced for each subsequent segment by the length of the previous segment
(where CLOSE_PATH segments are treated as LINE_TO segments). If
VG_DASH_PHASE_RESET is disabled (set to VG_FALSE), the final dash phase at
the end of the subpath is used as the initial dash phase for the next subpath.
Otherwise, the original dash phase is used for all subpaths.

For each END vertex, an end cap is created (if Square or Round end caps have
been requested) using the orientation given by the tangent vector. The tangent
vector is defined in the same manner as for the vgPointAlongPath function (see
p. 71).

For each JOIN vertex, a line join is created using the orientations given by the
tangent vectors of the two adjacent path segments. If Miter joins are being used,
the length of the miter is computed and compared to the product of the line
width and miter limit; if the miter would be too long, a Bevel join is substituted.

8.7.5 Setting Stroke Parameters
Setting the line width of a stroke is performed using vgSetf with a paramType

argument of VG_STROKE_LINE_WIDTH. A line width less than or equal to 0
prevents stroking from taking place.
VGfloat lineWidth;
vgSetf(VG_STROKE_LINE_WIDTH, lineWidth);

VGCapStyle

The VGCapStyle enumeration defines constants for the Butt, Round, and
Square end cap styles:

84

OpenVG 1.0 Specification 8.7.5 – Setting Stroke Parameters

typedef enum {
 VG_CAP_BUTT = 0x1700,
 VG_CAP_ROUND = 0x1701,
 VG_CAP_SQUARE = 0x1702
} VGCapStyle;

Setting the end cap style is performed using vgSeti with a paramType
argument of VG_STROKE_CAP_STYLE and a value from the VGCapStyle
enumeration.
VGCapStyle capStyle;
vgSeti(VG_STROKE_CAP_STYLE, capStyle);

VGJoinStyle

The VGJoinStyle enumeration defines constants for the Miter, Round, and
Bevel line join styles:
typedef enum {
 VG_JOIN_MITER = 0x1800,
 VG_JOIN_ROUND = 0x1801,
 VG_JOIN_BEVEL = 0x1802
} VGJoinStyle;

Setting the line join style is performed using vgSeti with a paramType
argument of VG_STROKE_JOIN_STYLE and a value from the VGJoinStyle
enum.
VGJoinStyle joinStyle;
vgSeti(VG_STROKE_JOIN_STYLE, joinStyle);

Setting the miter limit is performed using vgSetf with a paramType argument
of VG_STROKE_MITER_LIMIT:
VGfloat miterLimit;
vgSetf(VG_STROKE_MITER_LIMIT, miterLimit);

Miter limit values less than 1 are silently clamped to 1.

VG_MAX_DASH_COUNT

The VG_MAX_DASH_COUNT parameter contains the maximum number of dash
segments that may be supplied for the VG_STROKE_DASH_PATTERN parameter.
All implementations must must support at least 16 dash segments (8 on/off
pairs). If there is no implementation-defined limit, a value of VG_MAXINT may be
returned. The value may be retrieved by calling vgGeti:
VGint maxDashCount = vgGeti(VG_MAX_DASH_COUNT);

85

OpenVG 1.0 Specification 8.7.5 – Setting Stroke Parameters

Setting the Dash Pattern

The dash pattern is set using vgSetfv with a paramType argument of
VG_STROKE_DASH_PATTERN:
VGfloat dashPattern[DASH_COUNT];
VGint count = DASH_COUNT;
vgSetfv(VG_STROKE_DASH_PATTERN, count, dashPattern);

Dashing may be disabled by calling vgSetfv with a count of 0:
vgSetfv(VG_STROKE_DASH_PATTERN, 0, NULL);

The dash phase is set using vgSetf with a paramType argument of
VG_STROKE_DASH_PHASE. The resetting behavior of the dash phase when
advancing to a new subpath is set using vgSeti with a paramType argument of
VG_STROKE_DASH_PHASE_RESET:
VGfloat dashPhase;
VGboolean dashPhaseReset;
vgSetf(VG_STROKE_DASH_PHASE, dashPhase);
vgSeti(VG_STROKE_DASH_PHASE_RESET, dashPhaseReset);

If the dash pattern has length 0, dashing is not performed. If the dash pattern
has an odd number of elements, the final element is ignored. Note that this
behavior is different from that defined by SVG; the SVG behavior may be
implemented by duplicating the odd-length dash pattern to obtain one with
even length.

If more than VG_MAX_DASH_COUNT dashes are specified, those beyond the
first VG_MAX_DASH_COUNT are discarded immediately (and will not be returned
by vgGet).

8.7.6 Non-Scaling Strokes
In some cases, applications may wish stroked geometry to appear with a

particular stroke width in the surface coordinate system, independent of the
current user-to-surface transformation. For example, a stroke representing a road
on a map might stay the same width as the user zooms in and out of the map,
since the stroke width is intended to indicate the type of road (e.g., one-way
street, divided road, interstate highway or Autobahn) rather than its true width
on the ground.

OpenVG does not provide direct support for this “non-scaling stroke”
behavior. However, the behavior may be obtained relatively simply using a
combination of features.

If the current user-to-surface transformation consists only of uniform scaling,
rotation, and translation (i.e., no shearing or non-uniform scaling), then the
stroke width may be set to the desired stroke width in drawing surface
coordinates, divided by the scaling factor introduced by the transformation. This

86

OpenVG 1.0 Specification 8.7.6 – Non-Scaling Strokes

scaling factor may be known to the application a priori, or else it may be
computed as the square root of the absolute value of the determinant (sx*sy –
shx*shy) of the user-to-surface transformation.

If the user-to-surface transformation includes shearing or non-uniform scaling,
the geometry to be stroked must be transformed into surface coordinates prior to
stroking. The paint transformation must also be set to the concatenation of the
paint-to-user and user-to-surface transformations in order to allow correct
painting of the stroked geometry. The following code illustrates this technique:
VGPath srcPath; /* Path to be drawn with non-scaling stroke */
VGPath dstPath; /* Path in drawing surface coordinates */
VGfloat strokePaintToUser[9]; /* Paint-to-user transformation */
VGfloat pathUserToSurface[9]; /* User-to-surface transformation */

/* Transform the geometry into surface coordinates. */
vgMatrixMode(VG_MATRIX_PATH_USER_TO_SURFACE);
vgLoadMatrix(pathUserToSurface);
vgTransformPath(dstPath, srcPath);

/* Use the identity matrix for drawing the stroked path. */
vgLoadIdentity();

/* Set the paint transformation to the concatenation of the
 * paint-to-user and user-to-surface transformations.
 */
vgMatrixMode(VG_MATRIX_FILL_PAINT_TO_USER);
vgLoadMatrix(pathUserToSurface);
vgMultMatrix(strokePaintToUser);

/* Stroke the transformed path. */
vgDrawPath(dstPath, VG_STROKE_PATH);

8.8 Filling or Stroking a Path

VGFillRule

The VGFillRule enumeration defines constants for the even/odd and non-
zero fill rules.
typedef enum {
 VG_EVEN_ODD = 0x1900,
 VG_NON_ZERO = 0x1901
} VGFillRule;

To set the rule for filling, call vgSeti with a type parameter value of
VG_FILL_RULE and a value parameter defined using a value from the
VGFillRule enumeration. When the path is filled, the most recent setting of the

87

OpenVG 1.0 Specification 8.8 – Filling or Stroking a Path

fill rule on the current context is used. The fill rule setting has no effect on
stroking.
VGFillRule fillRule;
vgSeti(VG_FILL_RULE, fillRule);

VGPaintMode

The VGPaintMode enumeration defines constants for stroking and filling
paths, to be used by the vgDrawPath, vgSetPaint, and vgGetPaint functions.
typedef enum {
 VG_STROKE_PATH = (1 << 0),
 VG_FILL_PATH = (1 << 1)
} VGPaintMode;

vgDrawPath

Filling and stroking are performed by the vgDrawPath function. The
paintModes argument is a bitwise OR of values from the VGPaintMode
enumeration, determining whether the path is to be filled (VG_FILL_PATH),
stroked (VG_STROKE_PATH), or both (VG_FILL_PATH | VG_STROKE_PATH). If
both filling and stroking are to be performed, the path is first filled, then stroked.
void vgDrawPath(VGPath path, VGbitfield paintModes)

ERRORS

VG_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VG_ILLEGAL_ARGUMENT_ERROR

– if paintModes is not a valid bitwise OR of values from the VGPaintMode
enumeration

Filling a Path

Calling vgDrawPath with a paintModes argument of VG_FILL_PATH causes
the given path to be filled, using the paint defined for the VG_FILL_PATH paint
mode and the current fill rule.

The matrix currently set for the VG_MATRIX_FILL_PAINT_TO_USER matrix
mode is applied to the paint used to fill the path outline. The matrix currently set
for the VG_MATRIX_PATH_USER_TO_SURFACE matrix mode is used to
transform the outline of the path and the paint into surface coordinates.
vgDrawPath(VGPath path, VG_FILL_PATH);

88

OpenVG 1.0 Specification 8.8 – Filling or Stroking a Path

Stroking a Path

Calling vgDrawPath with a paintModes argument of VG_STROKE_PATH
causes the given path to be stroked, using the paint defined for the
VG_STROKE_PATH paint mode and the current set of stroke parameters.

The matrix currently set for the VG_MATRIX_STROKE_PAINT_TO_USER
matrix mode is applied to the paint used to fill the stroked path outline. The
matrix currently set for the VG_MATRIX_PATH_USER_TO_SURFACE matrix
mode is used to transform the outline of the stroked path and the paint into
surface coordinates.
vgDrawPath(VGPath path, VG_STROKE_PATH);

The following code sample shows how an application might set stroke
parameters using variants of vgSet, and stroke a path object (defined elsewhere):
VGPath path;

/* Set the line width to 2.5 */
vgSetf(VG_STROKE_LINE_WIDTH, 2.5f);
/* Set the miter limit to 10.5 */
vgSetf(VG_STROKE_MITER_LIMIT, 10.5f);
/* Set the cap style to CAP_SQUARE */
vgSeti(VG_STROKE_CAP_STYLE, VG_CAP_SQUARE);
/* Set the join style to JOIN_MITER */
vgSeti(VG_STROKE_JOIN_STYLE, VG_JOIN_MITER);

/* Set the dash pattern */
VGfloat dashes[] = { 1.0f, 2.0f, 2.0f, 2.0f };
vgSetfv(VG_STROKE_DASH_PATTERN, 4, dashes);

/* Set the dash phase to 0.5 and reset it for every subpath */
vgSetf(VG_STROKE_DASH_PHASE, 0.5f);
vgSeti(VG_STROKE_DASH_PHASE_RESET, VG_TRUE);

/* Stroke the path */
vgDrawPath(path, VG_STROKE_PATH);

Filling and Stroking a Path

Calling vgDrawPath with a paintModes argument of (VG_FILL_PATH |
VG_STROKE_PATH) causes the given path to be first filled, then stroked, exactly
as if vgDrawPath were called twice in succession, first with a paintModes
argument of VG_FILL_PATH and second with a paintModes argument of
VG_STROKE_PATH.
vgDrawPath(VGPath path, VG_FILL_PATH | VG_STROKE_PATH);

89

OpenVG 1.0 Specification 9 – Paint

9 Paint
Paint defines a color and an alpha value for each pixel being drawn. Color paint

defines a constant color for all pixels; gradient paint defines a linear or radial
pattern of smoothly varying colors; and pattern paint defines a possibly repeating
rectangular pattern of colors based on a source image. It is possible to define new
types of paint as extensions.

Paint is defined in its own coordinate system, which is transformed into user
coordinates by means of the fill-paint-to-user and stroke-paint-to-user
transformations (set using the VG_MATRIX_FILL_PAINT_TO_USER and
VG_MATRIX_STROKE_PAINT_TO_USER matrix modes) depending on whether
the current geometry is being filled or stroked.

Given a (fill or stroke) paint-to-user transformation Tp and user-to-surface
transformation Tu, the paint color and alpha of a pixel to be drawn with surface
coordinates (x, y) is defined by mapping its center point (x + ½, y + ½) through
the inverse transformation (Tu ◦ Tp)-1, resulting in a sample point in the paint
coordinate space. This transformation must be evaluated with sufficient accuracy
to ensure a deviation from the ideal of no more than 1/8 of a pixel along either
axis. The paint value nearest that point may be used (point sampling), or paint
values from multiple points surrounding the central sample point may be
combined to produce an interpolated paint value. Paint color values are
processed in premultiplied alpha format during interpolation. The user-to-
surface transformation Tu is taken from the path-user-to-surface transformation
when fulfilling a vgDrawPath call, or from the image-user-to-surface
transformation when fulfilling a vgDrawImage call.

If the inverse transformation cannot be computed due to a (near-)singularity,
no drawing occurs.

9.1 Paint Definitions
The OpenVG context stores two paint definitions at a time, one to be applied

to stroked shapes and one for filled shapes. This allows the interior of a path to
be filled using one type of paint and its outline to be stroked with another kind
of paint in a single vgDrawPath operation. Initially, default values are used.

VGPaint

VGPaint represents an opaque handle to a paint object. A VGPaint object is
live; changes to a VGPaint object (using vgSetParameter, or by altering an
attached pattern image) attached to a context will immediately affect drawing
calls on that context. If a VGPaint object is accessed from multiple threads, the
application must ensure (using vgFinish along with application-level
synchronization primitives) that the paint definition is not altered from one
context while another context may still be using it for drawing.

90

OpenVG 1.0 Specification 9.1 – Paint Definitions

typedef VGHandle VGPaint;

9.1.1 Creating and Destroying Paint Objects

vgCreatePaint

vgCreatePaint creates a new paint object that is initialized to a set of default
values and returns a VGPaint handle to it. If insufficient memory is available to
allocate a new object, VG_INVALID_HANDLE is returned.
VGPaint vgCreatePaint(void)

vgDestroyPaint

The resources associated with a paint object may be deallocated by calling
vgDestroyPaint. Following the call, the paint handle is no longer valid in any
of the contexts that shared it. If the paint object is currently active in a drawing
context, the context continues to access it until it is replaced or the context is
destroyed.
void vgDestroyPaint(VGPaint paint)

ERRORS

VG_BAD_HANDLE_ERROR

– if paint is not a valid paint handle, or is not shared with the current context

9.1.2 Setting the Current Paint

vgSetPaint

Paint definitions are set on the current context using the vgSetPaint function.
The paintModes argument is a bitwise OR of values from the VGPaintMode
enumeration, determining whether the paint object is to be used for filling
(VG_FILL_PATH), stroking (VG_STROKE_PATH), or both (VG_FILL_PATH |
VG_STROKE_PATH). The current paint replaces the previously set paint object,
if any, for the given paint mode or modes. If paint is equal to
VG_INVALID_HANDLE, the previously set paint object for the given mode (if
present) is removed and the paint settings are restored to their default values.
void vgSetPaint(VGPaint paint, VGbitfield paintModes)

91

OpenVG 1.0 Specification 9.1.2 – Setting the Current Paint

ERRORS

VG_BAD_HANDLE_ERROR

– if paint is neither a valid paint handle nor equal to VG_INVALID_HANDLE,
or is not shared with the current context

VG_ILLEGAL_ARGUMENT_ERROR

– if paintModes is not a valid bitwise OR of values from the VGPaintMode
enumeration

vgGetPaint

The vgGetPaint function returns the paint object currently set for the given
paintMode, or VG_INVALID_HANDLE if an error occurs or if no paint object is
set (i.e., the default paint is present) on the given context with the given
paintMode.
VGPaint vgGetPaint(VGPaintMode paintMode)

ERRORS

VG_ILLEGAL_ARGUMENT_ERROR

– if paintMode is not a valid value from the VGPaintMode enumeration

9.1.3 Setting Paint Parameters
Paint functionality is controlled by a number of paint parameters that are

stored in each paint object.

VGPaintParamType

Values from the VGPaintParamType enumeration may be used as the
paramType argument to vgSetParameter and vgGetParameter to set and query
various features of a paint object:

92

OpenVG 1.0 Specification 9.1.3 – Setting Paint Parameters

typedef enum {
 /* Color paint parameters */
 VG_PAINT_TYPE = 0x1A00,
 VG_PAINT_COLOR = 0x1A01,
 VG_PAINT_COLOR_RAMP_SPREAD_MODE = 0x1A02,
 VG_PAINT_COLOR_RAMP_STOPS = 0x1A03,
 VG_PAINT_COLOR_RAMP_PREMULTIPLIED = 0x1A07,

 /* Linear gradient paint parameters */
 VG_PAINT_LINEAR_GRADIENT = 0x1A04,

 /* Radial gradient paint parameters */
 VG_PAINT_RADIAL_GRADIENT = 0x1A05,

 /* Pattern paint parameters */
 VG_PAINT_PATTERN_TILING_MODE = 0x1A06
} VGPaintParamType;

The default values that are used when no paint object is present (i.e., in a
newly-created context or following a call to vgSetPaint with a paint value of
VG_INVALID_HANDLE) are shown in Table 10. These values are also used as the
initial parameter value for a newly created paint object.

Parameter Datatype Default Value

VG_PAINT_TYPE VGPaintType VG_PAINT_TYPE_COLOR

VG_PAINT_COLOR VGfloat[4] { 0.0f, 0.0f, 0.0f, 1.0f }

VG_PAINT_COLOR_RAMP_
SPREAD_MODE

VGColorRampSpreadMode VG_COLOR_RAMP_SPREAD_PAD

VG_PAINT_COLOR_RAMP_
STOPS

VGfloat * Array of Length 0

VG_PAINT_COLOR_RAMP_
PREMULTIPLIED

VGboolean VG_TRUE

VG_PAINT_LINEAR_
GRADIENT

VGfloat[4] { 0.0f, 0.0f, 1.0f, 0.0f }

VG_PAINT_RADIAL_
GRADIENT

VGfloat[5] { 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }

VG_PAINT_PATTERN_
TILING_MODE

VGTilingMode VG_TILE_FILL

Table 10: VGPaintParamType Defaults

93

OpenVG 1.0 Specification 9.1.3 – Setting Paint Parameters

VGPaintType

The VGPaintType enumeration is used to supply values for the
VG_PAINT_TYPE paint parameter to determine the type of paint to be applied.
typedef enum {
 VG_PAINT_TYPE_COLOR = 0x1B00,
 VG_PAINT_TYPE_LINEAR_GRADIENT = 0x1B01,
 VG_PAINT_TYPE_RADIAL_GRADIENT = 0x1B02,
 VG_PAINT_TYPE_PATTERN = 0x1B03
} VGPaintType;

9.2 Color Paint
Color paint uses a fixed color and alpha for all pixels. An alpha value of 1

produces a fully opaque color. Colors are specified in non-premultiplied sRGBA
format.

Setting Color Paint Parameters

To enable color paint, use vgSetParameteri to set the paint type to
VG_PAINT_TYPE_COLOR.

The vgSetParameterfv function allows the color and alpha values to be set
using the VG_PAINT_COLOR paint parameter to values between 0 and 1. Values
outside this range are interpreted as the nearest endpoint of the range.
VGfloat fill_red, fill_green, fill_blue, fill_alpha;
VGfloat stroke_red, stroke_green, stroke_blue, stroke_alpha;
VGPaint myFillPaint, myStrokePaint;

VGfloat * fill_RGBA = {
 fill_red, fill_green, fill_blue, fill_alpha
};

VGfloat * stroke_RGBA = {
 stroke_red, stroke_green, stroke_blue, stroke_alpha
};

/* Fill with color paint */
vgSetParameteri(myFillPaint, VG_PAINT_TYPE, VG_PAINT_TYPE_COLOR);
vgSetParameterfv(myFillPaint, VG_PAINT_COLOR, 4, fill_RGBA);

/* Stroke with color paint */
vgSetParameteri(myStrokePaint, VG_PAINT_TYPE, VG_PAINT_TYPE_COLOR);
vgSetParameterfv(myStrokePaint, VG_PAINT_COLOR, 4, stroke_RGBA);

vgSetColor

As a shorthand, the vgSetColor function allows the VG_PAINT_COLOR
parameter of a given paint object to be set using a 32-bit non-premultiplied

94

OpenVG 1.0 Specification 9.2 – Color Paint

sRGBA_8888 representation (see Section 10.210.2). The rgba parameter is a
VGuint with 8 bits of red starting at the most significant bit, followed by 8 bits
each of green, blue, and alpha. Each color or alpha channel value is conceptually
divided by 255.0f to obtain a value between 0 and 1.
void vgSetColor(VGPaint paint, VGuint rgba)

ERRORS

VG_BAD_HANDLE_ERROR

– if paint is not a valid paint handle, or is not shared with the current context

The code:
VGPaint paint;
VGuint rgba;
vgSetColor(paint, rgba)

is equivalent to the code:
VGfloat rgba_f[4];
rgba_f[0] = ((rgba >> 24) & 0xff)/255.0f;
rgba_f[1] = ((rgba >> 16) & 0xff)/255.0f;
rgba_f[2] = ((rgba >> 8) & 0xff)/255.0f;
rgba_f[3] = (rgba & 0xff)/255.0f;
vgSetParameterfv(paint, VG_PAINT_COLOR, 4, rgba_f);

vgGetColor

The current setting of the VG_PAINT_COLOR parameter on a given paint
object may be queried as a 32-bit non-premultiplied sRGBA_8888 value. Each
color channel or alpha value is clamped to the [0, 1] range, multiplied by 255,
and rounded to obtain an 8-bit integer; the resulting values are packed into a 32-
bit value in the same format as for vgSetColor.
VGuint vgGetColor(VGPaint paint)

ERRORS

VG_BAD_HANDLE_ERROR

– if paint is not a valid paint handle, or is not shared with the current context

The code:
VGPaint paint;
VGuint rgba;
rgba = vgGetColor(paint);

95

OpenVG 1.0 Specification 9.2 – Color Paint

96

OpenVG 1.0 Specification 9.2 – Color Paint

is equivalent to the code:
#define CLAMP(x) ((x) < 0.0f ? 0.0f : ((x) > 1.0f ? 1.0f : (x)))

VGfloat rgba_f[4];
int red, green, blue, alpha;

vgGetParameterfv(paint, VG_PAINT_COLOR, 4, rgba_f);

/*
 * Clamp color and alpha values from vgGetParameterfv to the
 * [0, 1] range, scale to 8 bits, and round to integer.
 */
red = (int)(CLAMP(rgba_f[0])*255.0f + 0.5f);
green = (int)(CLAMP(rgba_f[1])*255.0f + 0.5f);
blue = (int)(CLAMP(rgba_f[2])*255.0f + 0.5f);
alpha = (int)(CLAMP(rgba_f[3])*255.0f + 0.5f);
rgba = (red << 24) | (green << 16) | (blue << 8) | alpha;

9.3 Gradient Paint
Gradients are patterns used for filling or stroking. They are defined

mathematically in two parts; a scalar-valued gradient function defined at every
point in the two-dimensional plane (in paint coordinates), followed by a color
ramp mapping.

9.3.1 Linear Gradients
Linear gradients define a scalar-valued gradient function based on two points

(x0, y0) and (x1, y1) (in the paint coordinate system) with the following
properties:

• It is equal to 0 at (x0, y0)
• It is equal to 1 at (x1, y1)
• It increases linearly along the line from (x0, y0) to (x1, y1)
• It is constant along lines perpendicular to the line from (x0, y0) to (x1, y1)

An expression for the gradient function is:

where x = x1 – x0Δ and y = y1 – y0Δ . If the points (x0, y0) and (x1, y1) are
coincident (and thus xΔ 2 + yΔ 2 = 0), the function is given the value 1 everywhere.

97

g x , y =
 x x−x0  y  y− y0

 x2 y2

OpenVG 1.0 Specification 9.3.1 – Linear Gradients

Setting Linear Gradient Parameters

To enable linear gradient paint, use vgSetParameteri to set the paint type to
VG_PAINT_TYPE_LINEAR_GRADIENT.

The linear gradient parameters are set using vgSetParameterfv with a
paramType argument of VG_PAINT_LINEAR_GRADIENT. The gradient values
are supplied as a vector of 4 floats in the order { x0, y0, x1, y1 }.
VGfloat fill_x0, fill_y0, fill_x1, fill_y1;
VGfloat stroke_x0, stroke_y0, stroke_x1, stroke_y1;
VGPaint myFillPaint, myStrokePaint;
VGfloat * fill_linear_gradient = {
 fill_x0, fill_y0, fill_x1, fill_y1
};
VGfloat * stroke_linear_gradient = {
 stroke_x0, stroke_y0, stroke_x1, stroke_y1
};

/* Fill with linear gradient paint */
vgSetParameteri(myFillPaint, VG_PAINT_TYPE,
 VG_PAINT_TYPE_LINEAR_GRADIENT);
vgSetParameterfv(myFillPaint, VG_PAINT_LINEAR_GRADIENT,
 4, fill_linear_gradient);
/* Stroke with linear gradient paint */
vgSetParameteri(myStrokePaint, VG_PAINT_TYPE,
 VG_PAINT_TYPE_LINEAR_GRADIENT);
vgSetParameterfv(myStrokePaint, VG_PAINT_LINEAR_GRADIENT,
 4, stroke_linear_gradient);

9.3.2 Radial Gradients
Radial gradients define a scalar-valued gradient function based on a gradient

circle defined by a center point (cx, cy), a radius r, and a focal point (fx, fy) that is
forced to lie within the circle. All parameters are given in the paint coordinate
system.

The computation of the radial gradient function is illustrated in Figure 18. The
function is equal to 0 at the focal point and 1 along the circumference of the
gradient circle. Elsewhere, it is equal to the distance between (x, y) and (fx, fy)
(shown as d

1
) divided by the length of the line segment starting at (fx, fy), passing

through (x, y), and ending on the circumference of the gradient circle (shown as
d

2
). If the radius is less than or equal to 0, the function is given the value 1

everywhere.

An expression for the gradient function may be derived by defining the line
between (fx, fy) and (x, y) by the parametric expression (fx, fy) + t*(x – fx, y – fy)
and determining the positive value of t at which the line intersects the circle
(x – cx)2 + (y – cy)2 = r2. Figure 18 illustrates the construction. The gradient value
g(x, y) is then given by 1/t. The resulting expression is:

98

OpenVG 1.0 Specification 9.3.2 – Radial Gradients

where fx' = fx – cx, fy' = fy – cy, dx = x – fx and dy = y – fy.

This may be rearranged and simplified to obtain a formula that does not
require per-pixel division:

One way to evaluate the gradient function efficiently is to rewrite it in the form:

and to use forward differencing of Ax + B and Cx2 + Dx + E to evaluate it
incrementally along a scanline with several additions and a single square root
per pixel.

Figure 18: Radial Gradient Function

99

g x , y =
dx fx 'dy fy'  r2dx 2dy2−dx fy'−dy fx' 2

r 2− fx ' 2 fy ' 2

g x , y = dx2dy2

 r 2dx2dy2−dx fy'−dy fx ' 2−dx fx 'dy fy' 

g y x =A xB C x2D xE

(cx, cy)

(fx, fy)

r

(x, y)

d
2

d
1

gradient(x, y) = d
1
/d

2

(fx, fy)

(x-cx)2+(y-cy)2=r2

x'=fx+t*(x-fx)
y'=fy+t*(y-fy)

OpenVG 1.0 Specification 9.3.2 – Radial Gradients

Setting Radial Gradient Parameters

To enable radial gradient paint, use vgSetParameteri to set the paint type to
VG_PAINT_TYPE_RADIAL_GRADIENT. The radial gradient parameters are set
using vgSetParameterfv with a paramType argument of
VG_PAINT_RADIAL_GRADIENT. The gradient values are supplied as a vector of
5 floats in the order { cx, cy, fx, fy, r }.

If (fx, fy) lies outside the circumference of the circle, the intersection of the line
from the center to the focal point with the circumference of the circle is used as
the focal point in place of the specified point. To avoid a division by 0, the
implementation may move the focal point along the line towards the center of
the circle by an amount sufficient to avoid numerical instability, provided the
new location lies at a distance of at least .99r from the circle center. The following
code illustrates the setting of radial gradient parameters:
VGPaint myFillPaint, myStrokePaint;
VGfloat fill_cx, fill_cy, fill_fx, fill_fy, fill_r;
VGfloat stroke_cx, stroke_cy, stroke_fx, stroke_fy, stroke_r;
VGfloat * fill_radial_gradient = { fill_cx, fill_cy,
 fill_fx, fill_fy, fill_r };
VGfloat * stroke_radial_gradient = { stroke_cx, stroke_cy,
 stroke_fx, stroke_fy, stroke_r };
vgSetParameteri(myFillPaint, VG_PAINT_TYPE, /* Fill */
 VG_PAINT_TYPE_RADIAL_GRADIENT);
vgSetParameterfv(myFillPaint, VG_PAINT_RADIAL_GRADIENT,
 5, fill_radial_gradient);
vgSetParameteri(myStrokePaint, VG_PAINT_TYPE, /* Stroke */
 VG_PAINT_TYPE_RADIAL_GRADIENT);
vgSetParameterfv(myStrokePaint, VG_PAINT_RADIAL_GRADIENT,
 5, stroke_radial_gradient);

9.3.3 Color Ramps
Color ramps map the scalar values produced by gradient functions to colors.

The application defines the non-premultiplied sRGBA color and alpha value
associated with each of a number of values, called stops. A stop is defined by an
offset between 0 and 1, inclusive, and a color value. Stops must be specified in
increasing order; if they are not, the entire sequence is ignored. It is legal to have
multiple stops with the same offset value, which will result in a discontinuity in
the color ramp, with the first stop with a given offset value defining the right
endpoint of one interval and the last stop with the same offset value defining the
left endpoint of the next interval. At an offset value equal to that of a stop, the
color value is that of the last stop with the given offset. Intermediate stops with
the same offset value have no effect. Stops with offsets less than 0 or greater than
1 are ignored.

If no valid stops have been specified (e.g., due to an empty input array, out-of-
range, or out-of-order stops), a stop at 0 with (R, G, B, α) color (0.0, 0.0, 0.0, 1.0)

100

OpenVG 1.0 Specification 9.3.3 – Color Ramps

(opaque black) and a stop at 1 with color (1.0, 1.0, 1.0, 1.0) (opaque white) are
implicitly defined. If at least one valid stop has been specified, but none has been
defined with an offset of 0, an implicit stop is added with an offset of 0 and the
same color as the first user-defined stop. If at least one valid stop has been
specified, but none has been defined with an offset of 1, an implicit stop is added
with an offset of 1 and the same color as the last user-defined stop.

If a color or alpha value of a given stop falls outside of the range [0, 1], the
closest endpoint of the range is used instead.

If the paint’s VG_PAINT_COLOR_RAMP_PREMULTIPLIED flag is set to
VG_TRUE, color and alpha values at each gradient stop are multiplied together to
form premultiplied sRGBA values prior to interpolation. Otherwise, color and
alpha values are processed independently.

Color and alpha values at offset values between the stops are defined by
means of linear interpolation between the premultiplied or non-premultiplied
color values defined at the nearest stops above and below the given offset value.

VG_MAX_COLOR_RAMP_STOPS

The VG_MAX_COLOR_RAMP_STOPS parameter contains the maximum number
of gradient stops supported by the OpenVG implementation. All
implementations must support at least 32 stops. If there is no implementation-
defined limit, a value of VG_MAXINT may be returned. Implicitly defined stops at
offsets 0 and 1 are not counted against this maximum. The value may be
retrieved by calling vgGeti:
VGint maxStops = vgGeti(VG_MAX_COLOR_RAMP_STOPS);

VGColorRampSpreadMode

The application may only define stops with offsets between 0 and 1. Spread
modes define how the given set of stops are repeated or extended in order to
define interpolated color values for arbitrary input values outside the [0,1] range.
The VGColorRampSpreadMode enumeration defines three modes:

• VG_COLOR_RAMP_SPREAD_PAD – extend stops
• VG_COLOR_RAMP_SPREAD_REPEAT – repeat stops
• VG_COLOR_RAMP_SPREAD_REFLECT – repeat stops in reflected order

typedef enum {
 VG_COLOR_RAMP_SPREAD_PAD = 0x1C00,
 VG_COLOR_RAMP_SPREAD_REPEAT = 0x1C01,
 VG_COLOR_RAMP_SPREAD_REFLECT = 0x1C02
} VGColorRampSpreadMode;

101

OpenVG 1.0 Specification 9.3.3 – Color Ramps

In pad mode, the colors defined at 0 and 1 are used for all stop values less than
0 or greater than 1, respectively.

In repeat mode, the color values defined between 0 and 1 are repeated
indefinitely in both directions. Gradient values outside the [0, 1] range are
shifted by an integer amount to place them into that range. For example, a
gradient value of 5.6 will receive the same color as a gradient value of 0.6. A
gradient value of -5.6 will receive the same color as a gradient value of 0.4 (since
0.4 = -5.6 + 6).

In reflect mode, the color values defined between 0 and 1 are repeated
indefinitely in both directions, but with alternate copies of the range reversed. A
gradient value of 1.2 will receive the same color as a gradient value of 0.8, since
0.8 = 1.0 – 0.2 and 1.2 = 1.0 + 0.2. A gradient value of 2.4 will receive the same
color as a gradient value of 0.4.

The color ramp pad modes are illustrated schematically in Figure 19.

Figure 19: Color Ramp Pad Modes

Setting Color Ramp Parameters

Color ramp parameters are set using vgSetParameter. The
VG_PAINT_COLOR_RAMP_SPREAD_MODE parameter controls the spread mode
using a value from the VGColorRampSpreadMode enumeration. The
VG_PAINT_COLOR_RAMP_PREMULTIPLIED parameter takes a VGboolean
value and controls whether color and alpha values are interpolated in
premultiplied or non-premultiplied form. The VG_PAINT_COLOR_RAMP_STOPS
parameter takes an array of floating-point values giving the offsets and colors of
the stops, in order. Each stop is defined by a floating-point offset value and four

102

0 10 1

Pad

Repeat

Reflect

OpenVG 1.0 Specification 9.3.3 – Color Ramps

floating-point values containing the sRGBA color and alpha value associated
with each stop, in the form of a non-premultiplied (R, G, B, α) quad. The
vgSetParameter function will generate an error if the number of values
submitted is not a multiple of 5 (zero is acceptable). Up to
VG_MAX_COLOR_RAMP_STOPS 5-tuples may be set. If more than
VG_MAX_COLOR_RAMP_STOPS 5-tuples are specified, those beyond the first
VG_MAX_COLOR_RAMP_STOPS are discarded immediately (and will not be
returned by vgGetParameter).
VGPaint myFillPaint, myStrokePaint;

VGColorRampSpreadMode fill_spreadMode;
VGboolean fill_premultiplied;
VGfloat fill_stops[5*FILL_NUM_STOPS];

VGColorRampSpreadMode stroke_spreadMode;
VGboolean stroke_premultiplied;
VGfloat stroke_stops[5*STROKE_NUM_STOPS];

vgSetParameteri(myFillPaint, VG_PAINT_COLOR_RAMP_SPREAD_MODE,
 fill_spreadMode);
vgSetParameteri(myFillPaint, VG_PAINT_COLOR_RAMP_PREMULTIPLIED,
 fill_premultiplied);
vgSetParameterfv(myFillPaint, VG_PAINT_COLOR_RAMP_STOPS,
 5*FILL_NUM_STOPS, fill_stops);

vgSetParameteri(myStrokePaint, VG_PAINT_COLOR_RAMP_SPREAD_MODE,
 stroke_spreadMode);
vgSetParameteri(myStrokePaint, VG_PAINT_COLOR_RAMP_PREMULTIPLIED,
 stroke_premultiplied);
vgSetParameterfv(myStrokePaint, VG_PAINT_COLOR_RAMP_STOPS,
 5*STROKE_NUM_STOPS, stroke_stops);

A common set of color ramp settings are used for both linear and radial
gradients defined on a given paint object.

Formal Definition of Spread Modes

This section provides a formal definition of the color ramp spread modes.

In the following, assume that a sequence of stops {S0, S1, ..., SN-1} have been
defined by the application, and/or by default or implicit values. The stop Si is
defined to have offset xi and color ci. The stops are assumed to be ordered by
offset but may have duplicate offsets; that is, for all i < j, xi ≤ xj. To determine the
interpolated color value at a given offset value v, determine the smallest i such
that xi+1 > v. If xi = v, use the color ci, otherwise perform linear interpolation
between the stops Si and Si+1 to produce the color ci + (ci+1 – ci)(v – xi)/(xi+1 – xi).

In pad mode, values smaller than 0 are assigned the color c0 and values greater
than or equal to 1 are assigned the color cN-1.

103

OpenVG 1.0 Specification 9.3.3 – Color Ramps

In repeat mode, the offset value v is mapped to a new value v´ that is
guaranteed to lie between 0 and 1. Following this mapping, the color is defined
as for pad mode:

In reflect mode, the offset value v is mapped to a new value v´ that is
guaranteed to lie between 0 and 1. Following this mapping, the color is defined
as for pad mode:

9.3.4 Gradient Examples
Figure 20 shows a square from (0, 0) to (400, 400) painted with a set of linear

gradients with (x0, y0) = (50, 50), (x1, y1) = (350, 350).

 Figure 21 shows the same square painted with radial gradients with centered
and non-centered focal points. The centered gradient, shown in the top row, has
its center (cx, cy) and focal point (fx, fy) both at (200, 200). The non-centered
gradient, shown in the bottom row, has its center (cx, cy) at (200, 200) and its focal
point (fx, fy) at (250, 250). The radius r for both gradients is equal to 100.

All the gradients shown in this section utilize a color ramp with stops at offsets
0.0, 0.33, 0.66, and 1.0 colored white, red, green, and blue, respectively, as shown
in Figure 22.

Pad Repeat Reflect

Figure 20: Linear Gradients

104

v ' reflect={ v−⌊ v ⌋ , if ⌊v ⌋is even

1− v−⌊ v ⌋  , if ⌊v ⌋ is odd

v ' repeat=v−⌊ v ⌋

OpenVG 1.0 Specification 9.3.4 – Gradient Examples

Pad Repeat Reflect

Figure 21: Centered and Non-Centered Radial Gradients

Figure 22: Color Ramp used for Gradient Examples

9.4 Pattern Paint
Pattern paint defines a rectangular pattern of colors based on the pixel values

of an image. Images are described below in Section 10. Each pixel (x, y) of the
pattern image defines a point of color at the pixel center (x + ½, y + ½).

Filtering may be used to construct an interpolated pattern value at the sample
point, based on the pattern image pixel values. The pattern tiling mode is used to
define values for pixel centers in the pattern space that lie outside of the bounds
of the pattern.

105

.33/R
ed

.66/G
reen

0.0/W
hite

1.0/B
lue

OpenVG 1.0 Specification 9.4 – Pattern Paint

Interpolation may be performed between multiple pixels of the pattern image
to produce an antialiased pattern value. The image quality setting at the time of
drawing (determined by the VG_IMAGE_QUALITY parameter) is used to control
the quality of pattern interpolation. If the image quality is set to
VG_IMAGE_QUALITY_NONANTIALIASED, nearest-neighbor interpolation (point
sampling) is used. If the image quality is set to VG_IMAGE_QUALITY_FASTER or
VG_IMAGE_QUALITY_BETTER, higher-quality interpolation will be used if
available. Interpolation is done in the color space of the image using a
premultiplied representation.

vgPaintPattern

The vgPaintPattern function replaces any previous pattern image defined on
the given paint object for the given set of paint modes with a new pattern
image. A value of VG_INVALID_HANDLE for the pattern parameter removes
the current pattern image from the paint object.

If the current paint object has its VG_PAINT_TYPE parameter set to
VG_PAINT_TYPE_PATTERN, but no pattern image is set, the paint object
behaves as if VG_PAINT_TYPE were set to VG_PAINT_TYPE_COLOR.

While an image is set as the paint pattern for any paint object, it may not be
used as a rendering target. Conversely, an image that is currently a rendering
target may not be set as a paint pattern.
void vgPaintPattern(VGPaint paint, VGImage pattern)

ERRORS

VG_BAD_HANDLE_ERROR

– if paint is not a valid paint handle, or is not shared with the current context

– if pattern is neither a valid image handle nor equal to
VG_INVALID_HANDLE, or is not shared with the current context

VG_IMAGE_IN_USE_ERROR

– if pattern is currently a rendering target

9.4.1 Pattern Tiling
Patterns may be extended (tiled) using one of four possible tiling modes,

defined by the VGTilingMode enumeration.

VGTilingMode

The VGTilingMode enumeration defines possible methods for defining colors
for source pixels that lie outside the bounds of the source image.

106

OpenVG 1.0 Specification 9.4.1 – Pattern Tiling

The VG_TILE_FILL condition specifies that pixels outside the bounds of the
source image should be taken as the color VG_TILE_FILL_COLOR. The color is
expressed as a non-premultiplied sRGBA color and alpha value. Values outside
the [0, 1] range are interpreted as the nearest endpoint of the range.

The VG_TILE_PAD condition specifies that pixels outside the bounds of the
source image should be taken as having the same color as the closest edge pixel
of the source image. That is, a pixel (x, y) has the same value as the image pixel
(max(0, min(x, width – 1)), max(0, min(y, height – 1))).

The VG_TILE_REPEAT condition specifies that the source image should be
repeated indefinitely in all directions. That is, a pixel (x, y) has the same value as
the image pixel (x mod width, y mod height) where the operator ‘a mod b’ returns a
value between 0 and (b – 1) such that a = k*b + (a mod b) for some integer k.

The VG_TILE_REFLECT condition specifies that the source image should be
reflected indefinitely in all directions. That is, a pixel (x, y) has the same value as
the image pixel (x’, y’) where:

x’ = x mod width if floor(x/width) is even,

 width – 1 – (x mod width) otherwise.

y’ = y mod height if floor(y/height) is even,

 height – 1 – (y mod height) otherwise.

typedef enum {
 VG_TILE_FILL = 0x1D00,
 VG_TILE_PAD = 0x1D01,
 VG_TILE_REPEAT = 0x1D02,
 VG_TILE_REFLECT = 0x1D03,
} VGTilingMode;

107

OpenVG 1.0 Specification 9.4.1 – Pattern Tiling

Setting the Pattern Tiling Mode

The pattern tiling mode is set using vgSetParameteri with a paramType
argument of VG_PAINT_PATTERN_TILING_MODE.
VGPaint myFillPaint, myStrokePaint;
VGImage myFillPaintPatternImage, myStrokePaintPatternImage;

VGTilingMode fill_tilingMode, stroke_tilingMode;

vgSetParameteri(myFillPaint, VG_PAINT_TYPE,
 VG_PAINT_TYPE_PATTERN);
vgSetParameteri(myFillPaint, VG_PAINT_PATTERN_TILING_MODE,
 fill_tilingMode);
vgPaintPattern(myFillPaint, myFillPaintPatternImage);

vgSetParameteri(myStrokePaint, VG_PAINT_TYPE,
 VG_PAINT_TYPE_PATTERN);
vgSetParameteri(myStrokePaint, VG_PAINT_PATTERN_TILING_MODE,
 stroke_tilingMode);
vgPaintPattern(myStrokePaint, myStrokePaintPatternImage);

108

OpenVG 1.0 Specification 10 – Images

10 Images
Images are rectangular collections of pixels. Image data may be inserted or

extracted in a variety of formats with varying bit depths, color spaces, and alpha
channel types. The actual storage format of an image is implementation-
dependent, and may be optimized for a given device. Images may be drawn to a
drawing surface, used to define paint patterns, or operated on directly by image
filter operations.

10.1 Image Coordinate Systems
An image defines a coordinate system in which pixels are indexed using

integer coordinates, with each integer corresponding to a distinct pixel. The
lower-left pixel has a coordinate of (0, 0), the x coordinate increases horizontally
from left to right, and the y coordinate increases vertically from bottom to top.
Note that this orientation is consistent with the other coordinate systems used in
the OpenVG API, but differs from the top-to-bottom orientation used by many
other imaging systems.

The “energy” of a pixel is located at the pixel center; that is, the pixel with
coordinate (x, y) has its energy at the point (x + ½, y + ½). The color at a point not
located at a pixel center may be defined by applying a suitable filter to the colors
defined at a set of nearby pixel centers.

10.2 Image Formats

VGImageFormat

The VGImageFormat enumeration defines the set of supported pixel formats
and color spaces for images:

typedef enum {

109

OpenVG 1.0 Specification 10.2 – Image Formats

 /* RGB{A,X} channel ordering */
 VG_sRGBX_8888 = 0,
 VG_sRGBA_8888 = 1,
 VG_sRGBA_8888_PRE = 2,
 VG_sRGB_565 = 3,
 VG_sRGBA_5551 = 4,
 VG_sRGBA_4444 = 5,
 VG_sL_8 = 6,
 VG_lRGBX_8888 = 7,
 VG_lRGBA_8888 = 8,
 VG_lRGBA_8888_PRE = 9,
 VG_lL_8 = 10,
 VG_A_8 = 11,
 VG_BW_1 = 12,

110

OpenVG 1.0 Specification 10.2 – Image Formats

 /* {A,X}RGB channel ordering */
 VG_sXRGB_8888 = 0 | (1 << 6),
 VG_sARGB_8888 = 1 | (1 << 6),
 VG_sARGB_8888_PRE = 2 | (1 << 6),
 VG_sARGB_1555 = 4 | (1 << 6),
 VG_sARGB_4444 = 5 | (1 << 6),
 VG_lXRGB_8888 = 7 | (1 << 6),
 VG_lARGB_8888 = 8 | (1 << 6),
 VG_lARGB_8888_PRE = 9 | (1 << 6),

 /* BGR{A,X} channel ordering */
 VG_sBGRX_8888 = 0 | (1 << 7),
 VG_sBGRA_8888 = 1 | (1 << 7),
 VG_sBGRA_8888_PRE = 2 | (1 << 7),
 VG_sBGR_565 = 3 | (1 << 7),
 VG_sBGRA_5551 = 4 | (1 << 7),
 VG_sBGRA_4444 = 5 | (1 << 7),
 VG_lBGRX_8888 = 7 | (1 << 7),
 VG_lBGRA_8888 = 8 | (1 << 7),
 VG_lBGRA_8888_PRE = 9 | (1 << 7),

 /* {A,X}BGR channel ordering */
 VG_sXBGR_8888 = 0 | (1 << 6) | (1 << 7),
 VG_sABGR_8888 = 1 | (1 << 6) | (1 << 7),
 VG_sABGR_8888_PRE = 2 | (1 << 6) | (1 << 7),
 VG_sABGR_1555 = 4 | (1 << 6) | (1 << 7),
 VG_sABGR_4444 = 5 | (1 << 6) | (1 << 7),
 VG_lXBGR_8888 = 7 | (1 << 6) | (1 << 7),
 VG_lABGR_8888 = 8 | (1 << 6) | (1 << 7),
 VG_lABGR_8888_PRE = 9 | (1 << 6) | (1 << 7)
} VGImageFormat;

The letter A denotes an alpha (α) channel , R denotes red, G denotes green, and
B denotes blue. X denotes a padding byte that is ignored. L denotes grayscale,
and BW denotes (linear) bi-level grayscale (black-and-white), with 0 representing
black and 1 representing white in either case. A lower-case letter s represents a
non-linear, perceptually-uniform color space, as in sRGB and sL; a lower-case
letter l represents a linear color space using the sRGB primaries. Formats with a
suffix of _PRE store pixel values in premultiplied format.

Bit 6 of the numeric values of the enumeration indicates the position of the
alpha channel (or unused byte for formats that do not include alpha). If bit 6 is
disabled, the alpha or unused channel appears as the last channel, otherwise it
appears as the first channel. Bit 7 indicates the ordering of the RGB color
channels. If bit 7 is disabled, the color channels appear in RGB order, otherwise
they appear in BGR order.

111

OpenVG 1.0 Specification 10.2 – Image Formats

The VG_A_8 format is treated as though it were VG_lRGBA_8888, with
R=G=B=1. Color information is discarded when placing an RGBA value into a
VG_A_8 pixel.

Abbreviated names such as lL or sRGBA_PRE are used in this document
where the exact number of bits per channel is not relevant, such as when pixel
values are considered to have been remapped to a [0, 1] range. Such abbreviated
names are not an official part of the API.

The bits for each color channel are stored within a machine word representing
a single pixel from left to right (MSB to LSB) in the order indicated by the pixel
format name. For example, in a pixel with a format of VG_sRGB_565, the bits
representing the red channel may be obtained by shifting right by 11 bits (to
remove 6 bits of green and 5 bits of blue) and masking with the 5-bit wide mask
value 0x1f. Note that this definition is independent of the endianness of the
underlying platform as sub-word memory addresses are not involved.

Table 11 summarizes the symbols used in image format names.

Table 12 lists the size of a single pixel for each image format, in terms of bytes
and bits. Note that all formats other than VG_BW_1 use a whole number of bytes
per pixel.

Formats having linear-light coding (VG_lRGBX_8888, VG_lRGBA_8888,
VG_lRGBA_8888_PRE, and VG_lL8) are liable to exhibit banding (or
contouring) artifacts when viewed with a contrast ratio greater than about 10:1
[POYN03] and are intended mainly for inputting existing linearly-coded
imagery. For high-quality imaging, consider using one of the non-linear,
perceptually uniform image formats such as VG_sRGBX_8888,
VG_sRGBA_8888, VG_sRGBA_8888_PRE, and VG_sL_8.

Symbol Interpretation

A Alpha channel
R Red color channel
G Green color channel
B Blue color channel
X Uninterpreted padding byte
L Grayscale
BW 1-bit Black and White
l Linear color space
s Non-linear (sRGB) color space

PRE Alpha values are premultiplied

Table 11: Symbols Used in Image Format Names

112

OpenVG 1.0 Specification 10.2 – Image Formats

Format Bytes Per Pixel Bits Per Pixel

VG_sRGBX_8888 4 32
VG_sRGBA_8888 4 32
VG_sRGBA_8888_PRE 4 32
VG_sRGB_565 2 16
VG_sRGBA_5551 2 16
VG_sRGBA_4444 2 16
VG_sL_8 1 8
VG_lRGBX_8888 4 32
VG_lRGBA_8888 4 32
VG_lRGBA_8888_PRE 4 32
VG_lL_8 1 8
VG_A_8 1 8
VG_BW_1 n/a 1

Table 12: Image Format Pixel Sizes

10.3 Creating and Destroying Images

VGImage

Images are accessed using opaque handles of type VGImage.
typedef VGHandle VGImage;

VGImageQuality

The VGImageQuality enumeration defines varying levels of resampling
quality to be used when drawing images.

The VG_IMAGE_QUALITY_NONANTIALIASED setting disables resampling;
images are drawn using point sampling (also known as nearest-neighbor
interpolation) only. VG_IMAGE_QUALITY_FASTER enables low-to-medium
quality resampling that does not require extensive additional resource allocation.
VG_IMAGE_QUALITY_BETTER enables high-quality resampling that may
allocate additional memory for pre-filtering, tables, and the like.
Implementations are not required to provide three distinct resampling
algorithms, but the non-antialiased (point sampling) mode must be supported.

113

OpenVG 1.0 Specification 10.3 – Creating and Destroying Images

typedef enum {
 VG_IMAGE_QUALITY_NONANTIALIASED = (1 << 0),
 VG_IMAGE_QUALITY_FASTER = (1 << 1),
 VG_IMAGE_QUALITY_BETTER = (1 << 2)
} VGImageQuality;

Use vgSeti with a parameter type of VG_IMAGE_QUALITY to set the filter type
to be used for image drawing:
VGImageQuality quality;
vgSeti(VG_IMAGE_QUALITY, quality);

VG_MAX_IMAGE_WIDTH

The VG_MAX_IMAGE_WIDTH read-only parameter contains the largest legal
value of the width parameter to the vgCreateImage function. All
implementations must define VG_MAX_IMAGE_WIDTH to be an integer no
smaller than 256. If there is no implementation-defined limit, a value of
VG_MAXINT may be returned. The value may be retrieved by calling vgGeti:
VGint imageMaxWidth = vgGeti(VG_MAX_IMAGE_WIDTH);

VG_MAX_IMAGE_HEIGHT

The VG_MAX_IMAGE_HEIGHT read-only parameter contains the largest legal
value of the height parameter to the vgCreateImage function. All
implementations must define VG_MAX_IMAGE_HEIGHT to be an integer no
smaller than 256. If there is no implementation-defined limit, a value of
VG_MAXINT may be returned. The value may be retrieved by calling vgGeti:
VGint imageMaxHeight = vgGeti(VG_MAX_IMAGE_HEIGHT);

VG_MAX_IMAGE_PIXELS

The VG_MAX_IMAGE_PIXELS read-only parameter contains the largest legal
value of the product of the width and height parameters to the vgCreateImage
function. All implementations must define VG_MAX_IMAGE_PIXELS to be an
integer no smaller than 65536. If there is no implementation-defined limit, a
value of VG_MAXINT may be returned. The value may be retrieved by calling
vgGeti:
VGint imageMaxPixels = vgGeti(VG_MAX_IMAGE_PIXELS);

VG_MAX_IMAGE_BYTES

The VG_MAX_IMAGE_BYTES read-only parameter contains the largest number
of bytes that may make up the image data passed to the vgCreateImage function.
All implementations must define VG_MAX_IMAGE_BYTES to be an integer no

114

OpenVG 1.0 Specification 10.3 – Creating and Destroying Images

smaller than 65536. If there is no implementation-defined limit, a value of
VG_MAXINT may be returned. The value may be retrieved by calling vgGeti:
VGint imageMaxBytes = vgGeti(VG_MAX_IMAGE_BYTES);

vgCreateImage

vgCreateImage creates an image with the given width, height, and pixel
format and returns a VGImage handle to it. If an error occurs,
VG_INVALID_HANDLE is returned. All color and alpha channel values are
initially set to zero. The format parameter must contain a value from the
VGImageFormat enumeration.

The allowedQuality parameter is a bitwise OR of values from the
VGImageQuality enumeration, indicating which levels of resampling quality
may be used to draw the image. It is always possible to draw an image using the
VG_IMAGE_QUALITY_NONANTIALIASED quality setting even if it is not
explicitly specified.
VGImage vgCreateImage(VGImageFormat format,
 VGint width, VGint height,
 VGbitfield allowedQuality)

ERRORS

VG_UNSUPPORTED_IMAGE_FORMAT_ERROR

– if format is not a valid value from the VGImageFormat enumeration

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height are less than or equal to 0

– if width is greater than VG_MAX_IMAGE_WIDTH

– if height is greater than VG_MAX_IMAGE_HEIGHT

– if width*height is greater than VG_MAX_IMAGE_PIXELS

– if width*height*(pixel size of format) is greater than
VG_MAX_IMAGE_BYTES

– if allowedQuality is not a bitwise OR of values from the
VGImageQuality enumeration

vgDestroyImage

The resources associated with an image may be deallocated by calling
vgDestroyImage. Following the call, the image handle is no longer valid in any
context that shared it. If the image is currently in use as a rendering target, is the
ancestor of another image (see vgChildImage), or is set as a paint pattern image

115

OpenVG 1.0 Specification 10.3 – Creating and Destroying Images

on a VGPaint object, its definition remains available to those consumers as long
as they remain valid, but the handle may no longer be used. When those uses
cease, the image’s resources will automatically be deallocated.
void vgDestroyImage(VGImage image);

ERRORS

VG_BAD_HANDLE_ERROR

– if image is not a valid image handle, or is not shared with the current
context

10.4 Querying Images

VGImageParamType

Values from the VGImageParamType enumeration may be used as the
paramType argument to vgGetParameter to query various features of an image.
All of the parameters defined by VGImageParamType have integer values and
are read-only.
typedef enum {
 VG_IMAGE_FORMAT = 0x1E00,
 VG_IMAGE_WIDTH = 0x1E01,
 VG_IMAGE_HEIGHT = 0x1E02
} VGImageParamType;

Image Format

The value of the format parameter that was used to define the image may be
queried using the VG_IMAGE_FORMAT parameter. The returned integral value
should be cast to the VGImageFormat enumeration:
VGImage image;
VGImageFormat imageFormat =
 (VGImageFormat)vgGetParameteri(image, VG_IMAGE_FORMAT);

Image Width

The value of the width parameter that was used to define the image may be
queried using the VG_IMAGE_WIDTH parameter:
VGImage image;
VGint imageWidth = vgGetParameteri(image, VG_IMAGE_WIDTH);

116

OpenVG 1.0 Specification 10.4 – Querying Images

Image Height

The value of the height parameter that was used to define the image may be
queried using the VG_IMAGE_HEIGHT parameter:
VGImage image;
VGint imageHeight = vgGetParameteri(image, VG_IMAGE_HEIGHT);

10.5 Reading and Writing Image Pixels

vgClearImage

The vgClearImage function fills a given rectangle of an image with the color
specified by the VG_CLEAR_COLOR parameter. The rectangle to be cleared is
given by x, y, width, and height, which must define a positive region. The
rectangle is clipped to the bounds of the image.
void vgClearImage(VGImage image,
 VGint x, VGint y, VGint width, VGint height)

ERRORS

VG_BAD_HANDLE_ERROR

– if image is not a valid image handle, or is not shared with the current
context

VG_IMAGE_IN_USE_ERROR

– if image is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

vgImageSubData

The vgImageSubData function reads pixel values from memory, performs
format conversion if necessary, and stores the resulting pixels into a rectangular
portion of an image.

Pixel values are read starting at the address given by the pointer data;
adjacent scanlines are separated by dataStride bytes. Negative or zero values
of dataStride are allowed. The region to be written is given by x, y, width,
and height, which must define a positive region. Pixels that fall outside the
bounds of the image are ignored.

Pixel values in memory are formatted according to the dataFormat
parameter, which must contain a value from the VGImageFormat enumeration.
The data pointer must be aligned according to the number of bytes of the pixel

117

OpenVG 1.0 Specification 10.5 – Reading and Writing Image Pixels

format specified by dataFormat, unless dataFormat is equal to VG_BW_1, in
which case 1 byte alignment is sufficient. Each pixel is converted into the format
of the destination image as it is written.

If dataFormat is not equal to VG_BW_1, the destination image pixel
(x + i, y + j) for 0 ≤ i < width and 0 ≤ j < height is taken from the N bytes of
memory starting at data + j*dataStride + i*N, where N is the number of bytes per
pixel given in Table 12. For multi-byte pixels, the bits are arranged in the same
order used to store native multi-byte primitive datatypes. For example, a 16-bit
pixel would be written to memory in the same format as when writing through a
pointer with a native 16-bit integral datatype.

If dataFormat is equal to VG_BW_1, pixel (x + i, y + j) of the destination
image is taken from the bit at position (i % 8) within the byte at data + j*dataStride
+ floor(i/8) where the least significant bit (LSB) of a byte is considered to be at
position 0 and the most significant bit (MSB) is at position 7. Each scanline must
be padded to a multiple of 8 bits. Note that dataStride is always given in
terms of bytes, not bits.

If dataFormat specifies a premultiplied format (VG_sRGBA_8888_PRE or
VG_lRGBA_8888_PRE), color channel values of a pixel greater than their
corresponding alpha value are clamped to the alpha value.
void vgImageSubData(VGImage image,
 const void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint x, VGint y, VGint width, VGint height)

ERRORS

VG_BAD_HANDLE_ERROR

– if image is not a valid image handle, or is not shared with the current
context

VG_IMAGE_IN_USE_ERROR

– if image is currently a rendering target

VG_UNSUPPORTED_IMAGE_FORMAT_ERROR

– if dataFormat is not a valid value from the VGImageFormat enumeration

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

– if data is NULL

– if data is not properly aligned

118

OpenVG 1.0 Specification 10.5 – Reading and Writing Image Pixels

vgGetImageSubData

The vgGetImageSubData function reads pixel values from a rectangular
portion of an image, performs format conversion if necessary, and stores the
resulting pixels into memory.

Pixel values are written starting at the address given by the pointer data;
adjacent scanlines are separated by dataStride bytes. Negative or zero values
of dataStride are allowed. The region to be read is given by x, y, width, and
height, which must define a positive region. Pixels that fall outside the bounds
of the image are ignored.

Pixel values in memory are formatted according to the dataFormat
parameter, which must contain a value from the VGImageFormat enumeration.
The data pointer must be aligned according to the number of bytes of the pixel
format specified by dataFormat, unless dataFormat is equal to VG_BW_1, in
which case 1 byte alignment is sufficient. Each pixel is converted from the format
of the source image as it is read.

The pixel layout in memory is identical to that of vgImageSubData.
void vgGetImageSubData(VGImage image,
 void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint x, VGint y, VGint width, VGint height)

ERRORS

VG_BAD_HANDLE_ERROR

– if image is not a valid image handle, or is not shared with the current
context

VG_IMAGE_IN_USE_ERROR

– if image is currently a rendering target

VG_UNSUPPORTED_IMAGE_FORMAT_ERROR

– if dataFormat is not a valid value from the VGImageFormat enumeration

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

– if data is NULL

– if data is not properly aligned

119

OpenVG 1.0 Specification 10.6 – Child Images

10.6 Child Images
A child image is an image that shares physical storage with a portion of an

existing image, known as its parent. An image may have any number of children,
but each image has only one parent (that may be itself). An ancestor of an image
is defined as the image itself, its parent, its parent’s parent, etc. Thus a pair of
images share storage if and only if they have a common ancestor. Changes to an
image are immediately reflected in all other images that share storage with it.

A child image remains valid even following a call to vgDestroyImage on one of
its ancestors (other than itself). When the last image of a set of images that share
pixel storage is destroyed, the storage will be reclaimed. Implementations may
use a reference count to determine when image storage may be reclaimed.

An image that shares storage with any other image may not be used as a
rendering target until all the images with which it shares storage have been
destroyed.

vgChildImage

The vgChildImage function returns a new VGImage handle that refers to a
portion of the parent image. The region is given by the intersection of the
bounds of the parent image with the rectangle beginning at pixel (x, y) with
dimensions width and height, which must define a positive region contained
entirely within parent.
VGImage vgChildImage(VGImage parent,
 VGint x, VGint y, VGint width, VGint height)

ERRORS

VG_BAD_HANDLE_ERROR

– if parent is not a valid image handle, or is not shared with the current
context

VG_IMAGE_IN_USE_ERROR

– if parent is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if x is less than 0 or greater than or equal to the parent width

– if y is less than 0 or greater than or equal to the parent height

– if width or height is less than or equal to 0

– if x + width is greater than the parent width

– if y + height is greater than the parent height

120

OpenVG 1.0 Specification 10.6 – Child Images

vgGetParent

The vgGetParent function returns the parent of the given image. If image has
no parent, image is returned.
VGImage vgGetParent(VGImage image)

ERRORS

VG_BAD_HANDLE_ERROR

– if image is not a valid image handle, or is not shared with the current
context

VG_IMAGE_IN_USE_ERROR

– if image is currently a rendering target

10.7 Copying Pixels Between Images

vgCopyImage

Pixels may be copied between images using the vgCopyImage function. The
source image pixel (sx + i, sy + j) is copied to the destination image pixel
(dx + i, dy + j), for 0 ≤ i < width and 0 ≤ j < height. Pixels whose source or
destination lie outside of the bounds of the respective image are ignored. Pixel
format conversion is applied as needed.

If the dither flag is equal to VG_TRUE, an implementation-dependent
dithering algorithm may be applied. This may be useful when copying into a
destination image with a smaller color bit depth than that of the source image.
Implementations should choose an algorithm that will provide good results
when the output images are displayed as successive frames in an animation.

If src and dst are the same image, or have a common ancestor and thus share
storage, the copy will occur in a consistent fashion as though the source pixels
were first copied into a temporary buffer and then copied from the temporary
buffer to the destination.
void vgCopyImage(VGImage dst, VGint dx, VGint dy,
 VGImage src, VGint sx, VGint sy,
 VGint width, VGint height,
 VGboolean dither)

121

OpenVG 1.0 Specification 10.7 – Copying Pixels Between Images

ERRORS

VG_BAD_HANDLE_ERROR

– if either dst or src is not a valid image handle, or is not shared with the
current context

VG_IMAGE_IN_USE_ERROR

– if either dst or src is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

10.8 Drawing Images to the Drawing Surface
Images may be drawn onto a drawing surface. An affine or projective

transformation may be applied while drawing. The current image and blending
modes are used to control how image pixels are combined with the current paint
and blended into the destination. Conversion between the image and destination
pixel formats is applied automatically.

VGImageMode

The VGImageMode enumeration is used to select between several styles of
image drawing, described in the vgDrawImage section below.
typedef enum {
 VG_DRAW_IMAGE_NORMAL = 0x1F00,
 VG_DRAW_IMAGE_MULTIPLY = 0x1F01,
 VG_DRAW_IMAGE_STENCIL = 0x1F02
} VGImageMode;

To set the image drawing mode, use vgSeti with a paramType value of
VG_IMAGE_MODE:
VGImageMode drawImageMode;
vgSeti(VG_IMAGE_MODE, drawImageMode);

vgDrawImage

An image may be drawn to the current drawing surface using the
vgDrawImage function. The current image-user-to-surface transformation Ti is
applied to the image, so that the image pixel centered at (px + ½, py + ½) is
mapped to the point (Ti)(px + ½, py + ½). In practice, backwards mapping may be
used. That is, a sample located at (x, y) in the surface coordinate system is
colored according to an interpolated image pixel value at the point (Ti)-1(x, y) in

122

OpenVG 1.0 Specification 10.8 – Drawing Images to the Drawing Surface

the image coordinate system. If Ti is non-invertible (or nearly so, within the
limits of numerical accuracy), no drawing occurs.

Interpolation is done in the color space of the image. Image color values are
processed in premultiplied alpha format during interpolation.

When a projective transformation is used (i.e., the bottom row of the image-
user-to-surface transformation contains values [w0 w1 w2] different from [0 0 1]),
each corner point (x, y) of the image must result in a positive value of
d = (x*w0 + y*w1 + w2), or else nothing is drawn. This rule prevents degeneracies
due to transformed image points passing through infinity, which occurs when d
passes through 0. By requiring d to be positive at the corners, it is guaranteed to
be positive at all interior points as well.

When a projective transformation is used, the value of the VG_IMAGE_MODE
parameter is ignored and the behavior of VG_DRAW_IMAGE_NORMAL is
substituted. This avoids the need to generate paint pixels in perspective.

The set of pixels affected consists of the quadrilateral with vertices (Ti)(0, 0),
(Ti)(w, 0), (Ti)(w, h), and (Ti)(0, h) (where w and h are respectively the width and
height of the image), plus a boundary of up to 1½ pixels for filtering purposes.

Clipping, masking, and scissoring are applied in the same manner as with
vgDrawPath. To limit drawing to a subregion of the image, create a child image
using vgChildImage.

The image quality will be the maximum quality allowed by the image (as
determined by the allowedQuality parameter to vgCreateImage) that is not
higher than the current setting of VG_IMAGE_QUALITY.
void vgDrawImage(VGImage image)

ERRORS

VG_BAD_HANDLE_ERROR

– if image is not a valid image handle, or is not shared with the current
context

VG_IMAGE_IN_USE_ERROR

– if image is currently a rendering target

123

OpenVG 1.0 Specification 10.8 – Drawing Images to the Drawing Surface

The effects of vgDrawImage depend on the current setting of the
VG_IMAGE_MODE parameter:

VG_DRAW_IMAGE_NORMAL

When the VG_IMAGE_MODE parameter is set to VG_DRAW_IMAGE_NORMAL, the
image is drawn. If the image contains an alpha channel, the alpha values
associated with each pixel are used as the source alpha values. Otherwise, the
source alpha is taken to be 1 at each pixel. No paint generation takes place. When
a projective transformation is used, this mode is used regardless of the setting of
the VG_IMAGE_MODE parameter.

VG_DRAW_IMAGE_MULTIPLY

When the VG_IMAGE_MODE parameter is set to VG_DRAW_IMAGE_MULTIPLY,
the image being drawn is multiplied by the paint color and alpha values. This
allows the image to be drawn translucently (by setting the paint color to
R=G=B=1 and A=opacity), or to be modulated in other ways. For example, a
gradient paint could be used to create a fading effect, or a pattern paint could be
used to vary the opacity on a pixel-by-pixel basis. If the paint color is opaque
white (R=G=B=A=1) everywhere, the results are equivalent to those of
VG_DRAW_IMAGE_NORMAL.

Paint generation (using the VGPaint object defined for the VG_FILL_PATH
paint mode) occurs at each pixel, and the interpolated image and paint color and
alpha values are multiplied channel-by-channel. The result (considered to be in
the same color space as the image) is used as the input to the current blend
function and normal blending takes place.

Note that the use of a source image having a linear pixel format (e.g.,
lRGB_888) will result in a brightened output due to the fact that the paint
values are not converted from sRGB to linear, yet the results are treated as linear.
Therefore the use of a linear source image in this mode is recommended only for
special effects.

VG_DRAW_IMAGE_STENCIL

When the VG_IMAGE_MODE parameter is set to VG_DRAW_IMAGE_STENCIL,
the image being drawn acts as a stencil through which the current paint is
applied. This allows an image to take the place of a geometric path definition in
some cases, such as drawing text glyphs. A special set of blending equations
allows the red, green, and blue channels to be blended using distinct alpha
values taken from the image. This feature allows stencils to take advantage of
sub-pixel effects on LCD displays.

Paint generation (using the VGPaint object defined for the VG_FILL_PATH
paint mode) occurs at each pixel. The interpolated image and paint color and
alpha values are combined at each pixel as follows. Each image color channel

124

OpenVG 1.0 Specification 10.8 – Drawing Images to the Drawing Surface

value is multiplied by its corresponding alpha value (if the image has an alpha
channel) and by the paint alpha value to produce an alpha value associated with
that color channel. The result is considered to be in the same color space as the
paint (i.e., sRGB for all forms of paint except pattern paint with a linear pattern
image). The current blending equation (see Section 12) is applied separately for
each destination color channel, using the alpha value computed above as the
source alpha value for the blend, and the paint color value as the source color
value.

In terms of the blending functions (α αsrc, αdst) and c(csrc, cdst, αsrc, αdst) defined in
Section 12.1, the stenciled output color and alpha values are:

αtmp = (α αimage*αpaint, αdst)

Rdst ← c(Rpaint, Rdst, Rimage*αimage*αpaint, αdst) / αtmp

Gdst ← c(Gpaint, Gdst, Gimage*αimage*αpaint, αdst) / αtmp

Bdst ← c(Bpaint, Bdst, Bimage*αimage*αpaint, αdst) / αtmp

αdst ← αtmp

For example, if Porter-Duff “Src over Dst” blending is enabled (see Section
12.2), the destination alpha and color values are computed as:

αtmp = (αimage*αpaint + αdst*(1 – αimage*αpaint))

Rdst ← (αimage*αpaint *Rimage*Rpaint + αdst*Rdst*(1 – αimage*αpaint *Rimage)) / αtmp

Gdst ← (αimage*αpaint *Gimage*Gpaint + αdst*Gdst*(1 – αimage*αpaint *Gimage)) / αtmp

Bdst ← (αimage*αpaint *Bimage*Bpaint + αdst*Bdst*(1 – αimage*αpaint *Bimage)) / αtmp

αdst ← αtmp

10.9 Reading and Writing Drawing Surface Pixels
Several functions are provided to read and write pixels on the drawing surface

directly, without applying transformations, masking, or blending.

10.9.1 Writing Drawing Surface Pixels

vgSetPixels

The vgSetPixels function copies pixel data from the image src onto the
drawing surface. The image pixel (sx + i, sy + j) is copied to the drawing surface
pixel (dx + i, dy + j), for 0 ≤ i < width and 0 ≤ j < height. Pixels whose source
lies outside of the bounds of src or whose destination lies outside the bounds of

125

OpenVG 1.0 Specification 10.9.1 – Writing Drawing Surface Pixels

the drawing surface are ignored. Pixel format conversion is applied as needed.
Scissoring takes place normally. Transformations, masking, and blending are not
applied.
void vgSetPixels(VGint dx, VGint dy,
 VGImage src, VGint sx, VGint sy,
 VGint width, VGint height)

ERRORS

VG_BAD_HANDLE_ERROR

– if src is not a valid image handle, or is not shared with the current context

VG_IMAGE_IN_USE_ERROR

– if src is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

vgWritePixels

The vgWritePixels function allows pixel data to be copied to the drawing
surface without the creation of a VGImage object. The pixel values to be drawn
are taken from the data pointer at the time of the vgWritePixels call, so future
changes to the data have no effect. The effects of changes to the data by another
thread at the time of the call to vgWritePixels are undefined.

The dataFormat parameter must contain a value from the VGImageFormat.
If dataFormat is not equal to VG_BW_1, data must be aligned according to the
number of bytes of dataFormat, and the pixel at memory location data +
j*dataStride + i*(bytes per pixel of dataFormat) is written to the drawing surface pixel
(dx + i, dy + j), for 0 ≤ i < width and 0 ≤ j < height. If dataFormat is equal to
VG_BW_1, data must only be 1-byte aligned, and pixel (dx + i, dy + j) of the
destination image is taken from the bit at position (i % 8) within the byte at data
+ j*dataStride + floor(i/8) where the least significant bit (LSB) of a byte is
considered to be at position 0 and the most significant bit (MSB) is at position 7.

If dataFormat specifies a premultiplied format (VG_sRGBA_8888_PRE or
VG_lRGBA_8888_PRE), color channel values of a pixel greater than their
corresponding alpha value are clamped to the alpha value.

Pixels whose destination coordinate lies outside the bounds of the drawing
surface are ignored. Pixel format conversion is applied as needed. Scissoring
takes place normally. Transformations, masking, and blending are not applied.
void vgWritePixels(const void * data, VGint dataStride,
 VGImageFormat dataFormat,

126

OpenVG 1.0 Specification 10.9.1 – Writing Drawing Surface Pixels

 VGint dx, VGint dy,
 VGint width, VGint height)

ERRORS

VG_UNSUPPORTED_IMAGE_FORMAT_ERROR

– if dataFormat is not a valid value from the VGImageFormat enumeration

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

– if data is NULL

– if data is not properly aligned

The code:
void * data;
VGImageFormat dataFormat;
VGint dataStride;
VGint dx, dy, width, height;

vgWritePixels(data, dataStride, dataFormat, dx, dy, width, height);

is equivalent to the code:
VGImage image;
void * data;
VGImageFormat dataFormat;
VGint dataStride;
VGint dx, dy, width, height;

image = vgCreateImage(dataFormat, width, height, 0);
vgImageSubData(image, data, dataStride, dataFormat,
 0, 0, width, height);
vgSetPixels(dx, dy, image, width, height);
vgDestroyImage(image);

10.9.2 Reading Drawing Surface Pixels

vgGetPixels

The vgGetPixels function retrieves pixel data from the drawing surface into
the image dst. The drawing surface pixel (sx + i, sy + j) is copied to pixel
(dx + i, dy + j) of the image dst, for 0 ≤ i < width and 0 ≤ j < height. Pixels
whose source lies outside of the bounds of the drawing surface or whose
destination lies outside the bounds of dst are ignored. Pixel format conversion
is applied as needed. The scissoring region does not affect the reading of pixels.

127

OpenVG 1.0 Specification 10.9.2 – Reading Drawing Surface Pixels

void vgGetPixels(VGImage dst, VGint dx, VGint dy,
 VGint sx, VGint sy,
 VGint width, VGint height)

ERRORS

VG_BAD_HANDLE_ERROR

– if dst is not a valid image handle, or is not shared with the current context

VG_IMAGE_IN_USE_ERROR

– if dst is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

vgReadPixels

The vgReadPixels function allows pixel data to be copied from the drawing
surface without the creation of a VGImage object.

The dataFormat parameter must contain a value from the VGImageFormat
enumeration. If dataFormat is not equal to VG_BW_1, data must be aligned
according to the number of bytes of dataFormat, and the drawing surface pixel
(sx + i, sy + j) is written to the memory location data + j*dataStride + i*(bytes per
pixel of dataFormat), for 0 ≤ i < width and 0 ≤ j < height. If dataFormat is equal
to VG_BW_1, data must only be 1-byte aligned, and the drawing surface pixel
(sx + i, sy + j) is written to the bit at position (i % 8) within the byte at data +
j*dataStride + floor(i/8) where the least significant bit (LSB) of a byte is considered
to be at position 0 and the most significant bit (MSB) is at position 7.

Pixels whose source lies outside of the bounds of the drawing surface are
ignored. Pixel format conversion is applied as needed. The scissoring region
does not affect the reading of pixels.
void vgReadPixels(void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint sx, VGint sy,
 VGint width, VGint height)

128

OpenVG 1.0 Specification 10.9.2 – Reading Drawing Surface Pixels

ERRORS

VG_UNSUPPORTED_IMAGE_FORMAT_ERROR

– if dataFormat is not a valid value from the VGImageFormat enumeration

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

– if data is NULL

– if data is not properly aligned

The code:
void * data;
VGImageFormat dataFormat;
VGint dataStride;
VGint sx, sy, width, height;

vgReadPixels(data, dataStride, dataFormat, sx, sy, width, height);

is equivalent to the code:
VGImage image;
void * data;
VGint dataStride;
VGImageFormat dataFormat;
VGint sx, sy, width, height;

image = vgCreateImage(dataFormat, width, height, 0);
vgGetPixels(image, 0, 0, sx, sy, width, height);
vgGetImageSubData(image, data, dataStride, dataFormat, width, height);
vgDestroyImage(image);

129

OpenVG 1.0 Specification 10.10 – Copying Portions of the Drawing Surface

10.10 Copying Portions of the Drawing Surface

vgCopyPixels

The vgCopyPixels function copies pixels from one region of the drawing
surface to another. Copies between overlapping regions are allowed and always
produce consistent results identical to copying the entire source region to a
scratch buffer followed by copying the scratch buffer into the destination region.

 The drawing surface pixel (sx + i, sy + j) is copied to pixel (dx + i, dy + j) for
0 ≤ i < width and 0 ≤ j < height. Pixels whose source or destination lies outside
of the bounds of the drawing surface are ignored. Transformations, masking, and
blending are not applied. Scissoring is applied to the destination, but does not
affect the reading of pixels.

void vgCopyPixels(VGint dx, VGint dy,
 VGint sx, VGint sy,
 VGint width, VGint height)

ERRORS

VG_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

130

OpenVG 1.0 Specification 11 – Image Filters

11 Image Filters
Image filters allow images to be modified and/or combined using a variety of

imaging operations. Operations are carried out using a bit depth greater than or
equal to the largest bit depth of the supplied images. The lower-left corners of all
source and destination images are aligned. The destination area to be written is
the intersection of the source and destination image areas. The source and
destination images involved in the filter operation must not overlap (i.e., have
any pixels in common within any common ancestor image). Source and
destination images may have a common ancestor as long as they occupy disjoint
areas within that area.

11.1 Format Normalization
A series of steps are carried out on application-supplied source images in order

to produce normalized source images for filtering. In practice, these
normalizations may be combined with the filter operations themselves for
efficiency.

The source pixels are converted to one of sRGBA, sRGBA_PRE, lRGBA, or
lRGBA_PRE formats, as determined by the current values of the
VG_FILTER_FORMAT_PREMULTIPLIED and VG_FILTER_FORMAT_LINEAR
parameters. The conversions take place in the following order (equivalent to the
conversion rules defined in Section 3.4):

1) Source color and alpha values are scaled linearly to lie in a [0, 1] range. The
exact precision of the internal representation is implementation-dependent.
2) If the source image has premultiplied alpha, the alpha values are divided
out of each source color channel, and stored for later use. If the source image
has no alpha channel, an alpha value of 1 is added to each pixel.
3) If the source pixel is in a grayscale format (lL or sL), it is converted to an
RGB format (lRGB or sRGB, respectively) by replication.
4) If the VG_FILTER_FORMAT_LINEAR parameter is set to VG_TRUE, and the
source pixel is in non-linear format, it is converted into the corresponding
linear format (sRGBA→lRGBA). If the VG_FILTER_FORMAT_LINEAR
parameter is set to VG_FALSE, and the source pixel is in linear format, it is
converted into the corresponding non-linear format (lRGBA→sRGBA).
5) If the VG_FILTER_FORMAT_PREMULTIPLIED parameter is equal to
VG_TRUE, each source color channel is multiplied by the corresponding alpha
value. Otherwise, the color channels are left undisturbed.

An implementation may collapse steps algebraically; for example, if no
conversion is to take place in step 4, the division and multiplication by alpha in
steps 2 and 5 may be implemented as a no-op.

131

OpenVG 1.0 Specification 11.1 – Format Normalization

The resulting pixel will be in sRGBA, sRGBA_PRE, lRGBA, or lRGBA_PRE
format. The image filter then processes each of the four source channels in an
identical manner, resulting in a set of filtered pixels in the same pixel format as
the incoming pixels.

Finally, the filtered pixels are converted into the destination format using the
normal pixel format conversion rules, as described in section 3.4. Premultiplied
alpha values are divided out prior to color-space conversion, and restored
afterwards if necessary. The destination channels specified by the
VG_FILTER_CHANNEL_MASK parameter (see below) are written into the
destination image.

11.2 Channel Masks

VGImageChannel

All image filter functions make use of the VG_FILTER_CHANNEL_MASK
parameter that specifies which destination channels are to be written. The
parameter is supplied as a bitwise OR of values from the VGImageChannel
enumeration. If the destination pixel format is one of VG_sL_8, VG_lL_8 or
VG_BW_1 pixel format, the parameter is ignored. If the destination pixel format
does not contain an alpha channel, the VG_ALPHA bit is ignored. Bits other than
those defined by the VGImageChannel enumeration are ignored.

VG_FILTER_CHANNEL_MASK controls which color channels of the filtered
image are written into the destination image. In the case where the destination
image is premultiplied, and VG_FILTER_CHANNEL_MASK does not specify that
all channels are to be written, the following steps are taken to ensure consistency:

1. If VG_FILTER_FORMAT_PREMULTIPLIED is enabled, the filtered color
channels are clamped between 0 and their corresponding alpha value, and
converted into non-premultiplied form (as described in Section 3.4)

2. The resulting color is converted into the destination color space
3. The destination is read and converted into non-premultiplied form

4. The destination channels specified by VG_FILTER_CHANNEL_MASK are
replaced by the corresponding filtered values

5. The results are converted into premultiplied form and written to the
destination image

132

OpenVG 1.0 Specification 11.2 – Channel Masks

typedef enum {
 VG_RED = (1 << 3),
 VG_GREEN = (1 << 2),
 VG_BLUE = (1 << 1),
 VG_ALPHA = (1 << 0)
} VGImageChannel;

11.3 Color Combination
Color channel values may be combined using the vgColorMatrix function,

which computes output colors as linear combinations of input colors.

vgColorMatrix

The vgColorMatrix function computes a linear combination of color and alpha
values (Rsrc, Gsrc, Bsrc, αsrc) from the normalized source image src at each pixel:

or:

Rdst = m00 Rsrc + m01 Gsrc + m02 Bsrc + m03 αsrc + m04

Gdst = m10 Rsrc + m11 Gsrc + m12 Bsrc + m13 αsrc + m14

Bdst = m20 Rsrc + m21 Gsrc + m22 Bsrc + m23 αsrc + m24

αdst = m30 Rsrc + m31 Gsrc + m32 Bsrc + m33 αsrc + m34

The matrix entries are supplied in the matrix argument in the order { m00, m10,
m20, m30, m01, m11, m21, m31, m02, m12, m22, m32, m03, m13, m23, m33, m04, m14, m24, m34 }.

void vgColorMatrix(VGImage dst, VGImage src,
 const VGfloat * matrix)

133

[Rdst

Gdst

Bdst

α dst
] =[m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33
]⋅[R src

G src

B src

α src
] [m04

m14

m24

m34
]

OpenVG 1.0 Specification 11.3 – Color Combination

ERRORS

VG_BAD_HANDLE_ERROR

– if either dst or src is not a valid image handle, or is not shared with the
current context

VG_IMAGE_IN_USE_ERROR

– if either dst or src is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if src and dst overlap

– if matrix is NULL

– if matrix is not properly aligned

11.4 Convolution
The vgConvolve, vgSeparableConvolve, and vgGaussianBlur functions define

destination pixels based on a weighted average of neighboring source pixels, a
process known as convolution. The set of weights, along with their relative
locations, is known as the convolution kernel. In the discussion below, width and
height refer to the dimensions of the source image.

VG_MAX_KERNEL_SIZE

The VG_MAX_KERNEL_SIZE parameter contains the largest legal value of the
width and height parameters to the vgConvolve function. All
implementations must define VG_MAX_KERNEL_SIZE to be an integer no
smaller than 7. If there is no implementation-defined limit, a value of
VG_MAXINT may be returned. The value may be retrieved by calling vgGeti:
VGint maxKernelSize = vgGeti(VG_MAX_KERNEL_SIZE);

VG_MAX_SEPARABLE_KERNEL_SIZE

The VG_MAX_SEPARABLE_KERNEL_SIZE parameter contains the largest legal
value of the size parameter to the vgSeparableConvolve function. All
implementations must define VG_MAX_SEPARABLE_KERNEL_SIZE to be an
integer no smaller than 15. If there is no implementation-defined limit, a value of
VG_MAXINT may be returned. The value may be retrieved by calling vgGeti:
VGint maxSeparableKernelSize = vgGeti(VG_MAX_SEPARABLE_KERNEL_SIZE);

VG_MAX_GAUSSIAN_STD_DEVIATION

The VG_MAX_GAUSSIAN_STD_DEVIATION parameter contains the largest
legal value of the stdDeviationX and stdDeviationY parameters to the

134

OpenVG 1.0 Specification 11.4 – Convolution

vgGaussianBlur function. All implementations must define
VG_MAX_GAUSSIAN_STD_DEVIATION to be an integer no smaller than 128. If
there is no implementation-defined limit, a value of VG_MAXINT may be
returned. The value may be retrieved by calling vgGeti:
VGint maxGaussianStdDeviation = vgGeti(VG_MAX_GAUSSIAN_STD_DEVIATION);

vgConvolve

The vgConvolve function applies a user-supplied convolution kernel to a
normalized source image src. The dimensions of the kernel are given by
kernelWidth and kernelHeight; the kernel values are specified as
kernelWidth*kernelHeight VGshorts in column-major order. That is, the
kernel entry (i, j) is located at position i*kernelHeight + j in the input sequence.
The shiftX and shiftY parameters specify a translation between the source
and destination images. The result of the convolution is multiplied by a scale
factor, and a bias is added.

The output pixel (x, y) is defined as:

where w = kernelWidth, h = kernelHeight, ki,j is the kernel element at
position (i, j), s is the scale, b is the bias, and p(x, y) is the source pixel at (x, y),
or the result of source edge extension defined by tilingMode, which takes a
value from the VGTilingMode enumeration (see Section 9.4.1). Note that the
use of the kernel index (w–i–1, h–j–1) implies that the kernel is rotated 180
degrees relative to the source image in order to conform to the mathematical
definition of convolution. Figure 23 depicts the flipping of the kernel relative to
the image pixels for a 3x3 kernel.

The operation is applied to all channels (color and alpha) independently.
void vgConvolve(VGImage dst, VGImage src,
 VGint kernelWidth, VGint kernelHeight,
 VGint shiftX, VGint shiftY,
 const VGshort * kernel,
 VGfloat scale,
 VGfloat bias,
 VGTilingMode tilingMode)

135

s ∑0≤iw∑0≤ jh
kw−i−1 ,h− j−1 pxi – shiftX , y j – shiftY  b ,

OpenVG 1.0 Specification 11.4 – Convolution

Figure 23: Convolution With a Flipped Kernel

ERRORS

VG_BAD_HANDLE_ERROR

– if either dst or src is not a valid image handle, or is not shared with the
current context

VG_IMAGE_IN_USE_ERROR

– if either dst or src is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if src and dst overlap

– if kernelWidth or kernelHeight is less than or equal to 0 or greater than
VG_MAX_KERNEL_SIZE

– if kernel is NULL

– if kernel is not properly aligned

– if tilingMode is not one of the values from the VGTilingMode
enumeration

vgSeparableConvolve

The vgSeparableConvolve function applies a user-supplied separable
convolution kernel to a normalized source image src. A separable kernel is a

136

*

k20 k10 k00

k21 k11 k01

k22 k12 k02

px,y+2 px+1,y+2 px+2,y+

2
px+1,y+1 px+2,y+1

px+2,y

px,y+1

px,y px+1,y

OpenVG 1.0 Specification 11.4 – Convolution

two-dimensional kernel in which each entry kij is equal to a product kxi * kyj of
elements from two one-dimensional kernels, one horizontal and one vertical.

The lengths of the one-dimensional arrays kernelX and kernelY are given
by kernelWidth and kernelHeight, respectively; the kernel values are
specified as arrays of VGshorts. The shiftX and shiftY parameters specify a
translation between the source and destination images. The result of the
convolution is multiplied by a scale factor, and a bias is added.

The output pixel (x, y) is defined as:

where w = kernelWidth, h = kernelHeight, kxi is the one-dimensional
horizontal kernel element at position i, kyj is the one-dimensional vertical kernel
element at position j, s is the scale, b is the bias, and p(x, y) is the source pixel at
(x, y), or the result of source edge extension defined by tilingMode, which
takes a value from the VGTilingMode enumeration (see Section 9.4.1). Note that
the use of the kernel indices (w–i–1) and (h–j–1) implies that the kernel is rotated
180 degrees relative to the source image in order to conform to the mathematical
definition of convolution.

The operation is applied to all channels (color and alpha) independently.
void vgSeparableConvolve(VGImage dst, VGImage src,
 VGint kernelWidth, VGint kernelHeight,
 VGint shiftX, VGint shiftY,
 const VGshort * kernelX,
 const VGshort * kernelY,
 VGfloat scale,
 VGfloat bias,
 VGTilingMode tilingMode)

137

s ∑0≤iw∑0≤ jh
kxw−i−1 kyh− j−i  p xi – shiftX , y j – shiftY  b ,

OpenVG 1.0 Specification 11.4 – Convolution

ERRORS

VG_BAD_HANDLE_ERROR

– if either dst or src is not a valid image handle, or is not shared with the
current context

VG_IMAGE_IN_USE_ERROR

– if either dst or src is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if src and dst overlap

– if kernelWidth or kernelHeight is less than or equal to 0 or greater than
VG_MAX_SEPARABLE_KERNEL_SIZE

– if kernelX or kernelY is NULL

– if kernelX or kernelY is not properly aligned

– if tilingMode is not one of the values from the VGTilingMode
enumeration

vgGaussianBlur

The vgGaussianBlur function computes the convolution of a normalized
source image src with a separable kernel defined in each dimension by the
Gaussian function G(x, s):

where s is the standard deviation.

The two-dimensional kernel is defined by multiplying together two one-
dimensional kernels, one for each axis:

where sx and sy are the (positive) standard deviations in the horizontal and
vertical directions, given by the stdDeviationX and stdDeviationY
parameters respectively. This kernel has special properties that allow for very
efficient implementation; for example, the implementation may use multiple
passes with simple kernels to obtain the same overall result with higher
performance than direct convolution. If stdDeviationX and stdDeviationY
are equal, the kernel is rotationally symmetric.

138

k x , y =G x , s x∗G y , s y=
1

2 s x s y

e
− x2

2 sx
2

y2

2 s y
2

G x , s= 1

 2 s2
e
− x2

2 s2

OpenVG 1.0 Specification 11.4 – Convolution

Source pixels outside the source image bounds are defined by tilingMode,
which takes a value from the VGTilingMode enumeration (see Section 9.4.1)

The operation is applied to all channels (color and alpha) independently.
void vgGaussianBlur(VGImage dst, VGImage src,
 VGfloat stdDeviationX,
 VGfloat stdDeviationY,
 VGTilingMode tilingMode)

ERRORS

VG_BAD_HANDLE_ERROR

– if either dst or src is not a valid image handle, or is not shared with the
current context

VG_IMAGE_IN_USE_ERROR

– if either dst or src is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if src and dst overlap

– if stdDeviationX or stdDeviationY is less than or equal to 0 or greater
than VG_MAX_GAUSSIAN_STD_DEVIATION

– if tilingMode is not one of the values from the VGTilingMode
enumeration

11.5 Lookup Tables

vgLookup

The vgLookup function passes each image channel of the normalized source
image src through a separate lookup table.

Each channel of the normalized source pixel is used as an index into the
lookup table for that channel by multiplying the normalized value by 255 and
rounding to obtain an 8-bit integral value. Each LUT parameter should contain
256 VGubyte entries. The outputs of the lookup tables are concatenated to form
an RGBA_8888 pixel value, which is interpreted as lRGBA_8888,
lRGBA_8888_PRE, sRGBA_8888, or sRGBA_8888_PRE, depending on the
values of outputLinear and outputPremultiplied.

The resulting pixels are converted into the destination format using the normal
pixel format conversion rules.

139

OpenVG 1.0 Specification 11.5 – Lookup Tables

void vgLookup(VGImage dst, VGImage src,
 const VGubyte * redLUT,
 const VGubyte * greenLUT,
 const VGubyte * blueLUT,
 const VGubyte * alphaLUT,
 VGboolean outputLinear,
 VGboolean outputPremultiplied)

ERRORS

VG_BAD_HANDLE_ERROR

– if either dst or src is not a valid image handle, or is not shared with the
current context

VG_IMAGE_IN_USE_ERROR

– if either dst or src is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if src and dst overlap

– if any pointer parameter is NULL

vgLookupSingle

The vgLookupSingle function passes a single image channel of the normalized
source image src, selected by the sourceChannel parameter, through a
combined lookup table that produces whole pixel values. Each normalized
source channel value is multiplied by 255 and rounded to obtain an 8 bit integral
value.

The specified sourceChannel of the normalized source pixel is used as an
index into the lookup table. If the source image is in a single-channel grayscale
(VG_lL_8, VG_sL_8, or VG_BW_1) or alpha-only (VG_A_8) format, the
sourceChannel parameter is ignored and the single channel is used. The
lookupTable parameter should contain 256 4-byte aligned entries in an
RGBA_8888 pixel value, which is interpreted as lRGBA_8888,
lRGBA_8888_PRE, sRGBA_8888, or sRGBA_8888_PRE, depending on the
values of outputLinear and outputPremultiplied.

The resulting pixels are converted into the destination format using the normal
pixel format conversion rules.
void vgLookupSingle(VGImage dst, VGImage src,
 const VGuint * lookupTable,
 VGImageChannel sourceChannel,
 VGboolean outputLinear,
 VGboolean outputPremultiplied)

140

OpenVG 1.0 Specification 11.5 – Lookup Tables

ERRORS

VG_BAD_HANDLE_ERROR

– if either dst or src is not a valid image handle, or is not shared with the
current context

VG_IMAGE_IN_USE_ERROR

– if either dst or src is currently a rendering target

VG_ILLEGAL_ARGUMENT_ERROR

– if src and dst overlap

– if src is in an RGB pixel format and sourceChannel is not one of VG_RED,
VG_GREEN, VG_BLUE or VG_ALPHA from the VGImageChannel
enumeration

– if lookupTable is NULL

– if lookupTable is not properly aligned

141

OpenVG 1.0 Specification 12 – Blending

12 Blending
As drawing takes place, the painted pixels that result from the paint

generation (stage 6) or image interpolation (stage 7) stages of the rendering
pipeline are blended into the existing pixels of the drawing surface. Blending is
performed using a subset of the standard Porter-Duff blending rules [PORT84]
along with several additional rules.

The source pixels are converted into the destination color space prior to
blending.

12.1 Blending Equations
A blending mode defines an alpha blending function α(αsrc, αdst) and a color

blending function c(csrc, cdst, αsrc, αdst). Given a non-premultiplied source alpha and
color tuple (Rsrc, Gsrc, Bsrc, αsrc) and a non-premultiplied destination alpha and color
tuple (Rdst, Gdst, Bdst, αdst), blending replaces the destination with the blended tuple
(c(Rsrc, Rdst, αsrc, αdst), c(Gsrc,Gdst, αsrc, αdst), c(Bsrc, Bdst, αsrc, αdst), α(αsrc, αdst)).

If either the source or destination is stored in a premultiplied format (i.e.,
pixels are stored as tuples of the form (α*R, α*G, α*B, α)), the alpha value is
conceptually divided out prior to applying the blending equations described
above. If the destination is premultiplied, the destination alpha value is
multiplied into each color channel prior to storage. If the destination format does
not store alpha values, an alpha value of 1 is used in place of αdst.

12.2 Porter-Duff Blending
Porter-Duff blending defines an alpha value α(αsrc, αdst) = αsrc*Fsrc + αdst*Fdst and

color c´(c´src, c´dst, αsrc, αdst) = c´src*Fsrc + c´dst*Fdst, where Fsrc and Fdst are defined by the
blend mode and the source and destination alpha values according to Table 13
below and c´ = α*c is a premultiplied color value. For non-premultiplied colors,
we define the equivalent formula c(csrc, cdst, αsrc, αdst) = (αsrc*csrc*Fsrc +
αdst*cdst*Fdst)/α(αsrc, αdst) (taking the value to be 0 where division by 0 would occur).

Porter-Duff blending modes are derived from the assumption that each
additional primitive being drawn is uncorrelated with previous ones. That is, if a
previously drawn primitive p occupies a fraction fp of a pixel, and a new
primitive q occupies a fraction fq, Porter-Duff blending assumes that a fraction
fp*fq of the pixel will be occupied by both primitives, a fraction fp – fp*fq = fp (1 - fq)
will be occupied by p only, and a fraction fq – fp*fq = fq (1 – fp) will be occupied by q
only. A total fraction of fp + fq – fp*fq of the pixel is occupied by the union of the
primitives.

142

OpenVG 1.0 Specification 12.2 – Porter-Duff Blending

Blend Mode Fsrc Fdst

Src 1 0

Src over Dst 1 1 - αsrc

Dst over Src 1 - αdst 1
Src in Dst αdst 0
Dst in Src 0 αsrc

Table 13: Porter-Duff Blending Modes

12.3 Additional Blending Modes
A number of additional blending modes are available. These modes are a

subset of the SVG image blending modes. Note that the SVG “Normal” blending
mode is equivalent to the Porter-Duff “Src over Dst” mode described above. The
additional blend modes have the following effects:

• VG_BLEND_MULTIPLY – Multiply the source and destination colors
together, producing the effect of placing a transparent filter over a
background. A black source pixel forces the destination to black, while a white
source pixel leaves the destination unchanged. If all alpha values are 1, this
reduces to multiplying the source and destination color values.
• VG_BLEND_SCREEN – The opposite of multiplication, producing the effect
of projecting a slide over a background. A black source pixel leaves the
destination unchanged, while a white source pixel forces the destination to
white. If all alpha values are 1, this reduces to adding the source and
destination color values, and subtracting their product.
• VG_BLEND_DARKEN – Compute (Src over Dst) and (Dst over Src) and take
the smaller (darker) value for each channel. If all alpha values are 1, this
reduces to choosing the smaller value for each color channel.
• VG_BLEND_LIGHTEN – Compute (Src over Dst) and (Dst over Src) and take
the larger (lighter) value for each channel. If all alpha values are 1, this
reduces to choosing the larger value for each color channel.

The new destination alpha value for the blending modes defined in this
section is always equal to α(αsrc, αdst) = αsrc + αdst*(1 – αsrc), as for Porter-Duff “Src
over Dst” blending. The formulas for each additional blending mode are shown
in Table 14. The right-hand column contains the pre-multiplied output values,
that is, the products of the new color value c(csrc, cdst, αsrc, αdst) and alpha value
α(αsrc, αdst). The source and destination color values csrc and cdst are given in non-
premultiplied form.

143

OpenVG 1.0 Specification 12.3 – Additional Blending Modes

Blend Type c'(csrc, cdst, αsrc, αdst)
VG_BLEND_MULTIPLY αsrc*csrc *(1-αdst) + αdst*cdst*(1–αsrc) + αsrc*csrc*αdst*cdst

VG_BLEND_SCREEN αsrc*csrc + αdst*cdst - αsrc*csrc*αdst*cdst

VG_BLEND_DARKEN min(αsrc*csrc + αdst*cdst *(1–αsrc),
αdst*cdst + αsrc*csrc *(1-αdst))

VG_BLEND_LIGHTEN max(αsrc*csrc + αdst*cdst *(1–αsrc),
αdst*cdst + αsrc*csrc *(1-αdst))

Table 14: Additional Blending Equations

12.4 Additive Blending
The Porter-Duff assumption of uncorrelated alpha described above does not

hold for primitives that are known to be disjoint (for example, a set of triangles
with shared vertices and edges forming a mesh, or a series of text glyphs that
have been spaced according to known metrics). In these cases, we expect no
portion of the pixel to be occupied by both primitives and a total fraction of fp +
fq to be occupied by the union of the primitives. The additive blending rule may
be used in this case. It sets the final alpha value of the blended pixel to the
clamped sum (α αsrc, αdst) = min(αsrc+αdst, 1) and the color to c(csrc, cdst) = min((αsrc*csrc +
αdst*cdst)/min(αsrc + αdst, 1), 1). If all alpha values are 1, this reduces to adding the
values of each source color channel and clamping the result.

12.5 Setting the Blend Mode

VGBlendMode

The VGBlendMode enumeration defines the possible blending modes:
typedef enum {
 VG_BLEND_SRC = 0x2000,
 VG_BLEND_SRC_OVER = 0x2001,
 VG_BLEND_DST_OVER = 0x2002,
 VG_BLEND_SRC_IN = 0x2003,
 VG_BLEND_DST_IN = 0x2004,
 VG_BLEND_MULTIPLY = 0x2005,
 VG_BLEND_SCREEN = 0x2006,
 VG_BLEND_DARKEN = 0x2007,
 VG_BLEND_LIGHTEN = 0x2008,
 VG_BLEND_ADDITIVE = 0x2009
} VGBlendMode;

Use vgSeti with a parameter type of VG_BLEND_MODE to set the blend mode:
VGBlendMode mode;
vgSeti(VG_BLEND_MODE, mode);

144

OpenVG 1.0 Specification 13 – Querying Hardware Capabilities

13 Querying Hardware Capabilities
OpenVG implementations may vary considerably in their performance

characteristics. A simple hardware query mechanism is provided to allow
applications to make informed choices regarding data representations, in order
to maximize their chances of obtaining hardware-accelerated performance.
Currently, OpenVG provides hardware queries for image formats and path
datatypes.

VGHardwareQueryType

The VGHardwareQueryType enumeration defines the set of possible
hardware queries. Currently these are restricted to queries regarding image
formats and path datatypes.
typedef enum {
 VG_IMAGE_FORMAT_QUERY = 0x2100,
 VG_PATH_DATATYPE_QUERY = 0x2101
} VGHardwareQueryType;

VGHardwareQueryResult

The VGHardwareQueryResult enumeration defines the return values from a
hardware query, indicating whether or not the item being queried is hardware
accelerated.
typedef enum {
 VG_HARDWARE_ACCELERATED = 0x2200,
 VG_HARDWARE_UNACCELERATED = 0x2201
} VGHardwareQueryResult;

vgHardwareQuery

The vgHardwareQuery function returns a value indicating whether a given
setting of a property of a type given by key is generally accelerated in
hardware on the currently running OpenVG implementation.

The return value will be one of the values VG_HARDWARE_ACCELERATED or
VG_HARDWARE_UNACCELERATED, taken from the VGHardwareQueryResult
enumeration. The legal values for the setting parameter depend on the value of
the key parameter, as indicated by Table 15.

Value of key Allowable values for setting

VG_IMAGE_FORMAT_QUERY VGImageFormat (p. 109)
VG_PATH_DATATYPE_QUERY VGPathDatatype (p. 54)

Table 15: Query Key Enumeration Types

145

OpenVG 1.0 Specification 13 – Querying Hardware Capabilities

VGHardwareQueryResult vgHardwareQuery(VGHardwareQueryType key,
 VGint setting)

ERRORS

VG_ILLEGAL_ARGUMENT_ERROR

– if key is not one of the values from the VGHardwareQueryType
enumeration

– if setting is not one of the values from the enumeration associated with
key

146

OpenVG 1.0 Specification 14 – Extending the API

14 Extending the API
OpenVG is designed to be extended using an extension mechanism modeled

after that of OpenGL and OpenGL ES. An extension may define new state
elements, new datatypes, new values for existing parameter types, and new
functions. Use of these features may alter the operation of the rendering
pipeline. However, an extension must have no effect on programs that do not
enable any of its features.

14.1 Extension Naming Conventions
An OpenVG extension is named by a string of the form OVG_type_name, where

type is either the string EXT or a vendor-specific string and name is a name
assigned by the extension author. A letter X added to the end of type indicates
that the extension is experimental.

Values (e.g., enumerated values or preprocessor #defines) defined by an
extension carry the suffix _type. Functions and datatypes carry the suffix type
without a separating underscore.

The openvg.h header file will define a preprocessor macro with the name
OVG_type_name and a value of 1 for each supported extension.

14.2 The Extension Registry
Khronos, or its designee, will maintain a publicly-accessible registry of

extensions. This registry will contain, for each extension, at least the following
information:

• The name of the extension in the form OVG_type_name
• An email address of a contact person
• A list of dependencies on other extensions
• A statement on the IP status of the extension
• An overview of the scope and semantics of the extension
• New functions defined by the extension
• New datatypes defined by the extension
• New values to be added to existing enumerated datatypes
• Additions and changes to the OpenVG specification
• New errors generated by functions affected by the extension
• New state defined by the extension
• Authorship information and revision history

14.3 Using Extensions
Extensions may be detected statically, by means of preprocessor symbols, or

dynamically, by means of the vgGetString function. Extension functions may be

147

OpenVG 1.0 Specification 14.3 – Using Extensions

included in application code statically by placing appropriate “#ifdef” directives
around functions that require the presence of a particular extension, and may
also be accessed dynamically through function pointers returned by
eglGetProcAddress or by other platform-specific means.

14.3.1 Accessing Extensions Statically
The extensions defined by a given platform are defined in the openvg.h

header file, or in header files automatically included by openvg.h. In order to
write applications that run on platforms with and without a given extension,
conditional compilation based on the presence of the extension’s preprocessor
macro may be used:
#ifdef OVG_EXT_my_extension
 vgMyExtensionFuncEXT(...);
#endif

14.3.2 Accessing Extensions Dynamically
OpenVG contains a mechanism for applications to access information about

the runtime platform, and to access extensions that may not have been present
when the application was compiled.

VGStringID

typedef enum {
 VG_VENDOR = 0x2300,
 VG_RENDERER = 0x2301,
 VG_VERSION = 0x2302,
 VG_EXTENSIONS = 0x2303
} VGStringID;

vgGetString

The vgGetString function returns information about the OpenVG
implementation, including extension information. The values returned may vary
according to the display (e.g., the EGLDisplay when using EGL) associated with
the current context. If no context is current, vgGetString returns NULL.

The combination of VG_VENDOR and VG_RENDERER may be used together as a
platform identifier by applications that wish to recognize a particular platform
and adjust their algorithms based on prior knowledge of platform bugs and
performance characteristics .

If name is VG_VENDOR, the name of company responsible for this OpenVG
implementation is returned. This name does not change from release to release.

148

OpenVG 1.0 Specification 14.3.2 – Accessing Extensions Dynamically

If name is VG_RENDERER, the name of the renderer is returned. This name is
typically specific to a particular configuration of a hardware platform, and does
not change from release to release.

If name is VG_VERSION, the version number of the specification implemented
by the renderer is returned as a string in the form major_number.minor_number.
For this specification, “1.0” is returned.

If name is VG_EXTENSIONS, a space-separated list of supported extensions to
OpenVG is returned.

For other values of name, NULL is returned.
const VGubyte * vgGetString(VGStringID name)

eglGetProcAddress

Functions defined by an extension may be accessed by means of a function
pointer obtained from the EGL function eglGetProcAddress. If EGL is not
present, the platform may define an alternate method of obtaining extension
function pointers.

14.4 Creating Extensions
Any vendor may define a vendor-specific extension. Each vendor should

apply to Khronos to obtain a vendor string and any numerical token values
required by the extension.

An OpenVG extension may be deemed a shared extension if two or more
vendors agree in good faith to ship an extension, or the Khronos OpenVG
working group determines that it is in the best interest of its members that the
extension be shared. A shared extension may be adopted (with appropriate
naming changes) into a subsequent release of the OpenVG specification.

149

OpenVG 1.0 Specification 15 – API Conformance

15 API Conformance
All OpenVG implementations are required to pass a conformance test suite.

The exact details of the conformance testing process are available in a separate
document. This chapter outlines the OpenVG conformance test philosophy and
provides information that may be useful in order to ensure conformant
implementations.

15.1 Conformance Test Principles
The OpenVG specification attempts to strike a balance between the needs of

implementers and application developers. While application developers desire a
stable platform that delivers predictable results, they also wish to avoid reduced
performance due to an excessively strict API definition. By allowing some
flexibility in how the API is implemented, implementations may be optimized
for a wide variety of platforms with varying price, performance, and power
characteristics. The purpose of conformance testing is to ensure that
implementations with different internal approaches produce similar results.

15.1.1 Window System Independence
Because OpenVG does not mandate a specific window system or display

management API, the conformance test suite will isolate all display
dependencies in a module that may be customized for each platform. An EGL-
based implementation of this module will be provided, but implementers are
free to replace this implementation with one that is specific to their platform.

15.1.2 Antialiasing Algorithm Independence
It is anticipated that a wide variety of antialiasing approaches will be used in

the marketplace. Low-cost antialiasing remains a research topic, and new
algorithms continue to emerge. The conformance suite must allow for this
variation, while not allowing differences in antialiasing to cover up inadequacies
in other portions of the implementation such as matrix transformation or curve
subdivision.

15.1.3 On-Device and Off-Device Testing
Certain conformance tests require only a small memory footprint, and may be

run directly on the target device. Other tests operate by generating an image,
which must be copied off-device. A desktop tool is used to compare the
generated images against a set of reference images.

15.2 Types of Conformance Tests
Conformance tests fall into several classes, outlined below.

150

OpenVG 1.0 Specification 15.2.1 – Pipeline Tests

15.2.1 Pipeline Tests
A set of tests will be provided that attempt to isolate each pipeline stage by

means of suitable parameter settings. These tests will provide assurance that
each stage is functioning correctly.

15.2.2 Self-Consistency Tests
Certain portions of the API are required to produce exact results. For example,

setting and retrieving API state, image, paint, and path parameters, setting and
retrieving matrix values; error generation; and pixel copies are defined to have
exact results. The conformance suite will provide strict checking for these
behaviors.

15.2.3 Matrix Tests
The conformance suite will exercise various matrix operations and compare

the results against double-precision values. The comparison threshold will be set
to exclude implementations with insufficient internal precision.

15.2.4 Interior/Exterior Tests
Although antialiasing may have varying effects on shape boundaries, the

portions of the interior and exterior of shapes that are more than 1 ½ pixels from
a geometric boundary should not be affected by that boundary. If a shape is
drawn using color paint, a set of known interior and exterior pixels may be
tested for equality with the paint color.

15.2.5 Positional Invariance
Drawing should not depend on absolute screen coordinates, except for minor

differences due to spatially-variant sampling and dither patterns when copying
to the screen. The conformance suite will include tests that verify the positional
independence of drawing.

15.2.6 Image Comparison Tests
To allow for controlled variation, the conformance suite will provide a set of

rendering code fragments, along with reference images that have been generated
using a high-quality implementation. Implementation-generated images will be
compared to these reference images using a fuzzy comparison system. This
approach is intended to allow for small differences in the accuracy of geometry
and color processing and antialiasing, while rejecting larger differences that are
considered visually unacceptable. The comparison threshold will be determined
by generating images with a variety of acceptable and unacceptable differences
and comparing them against the reference image.

151

OpenVG 1.0 Specification 16 – The VGU Utility Library

16 The VGU Utility Library
For convenience, OpenVG provides an optional utility library known as VGU.

Applications may choose whether to link to VGU at compile time; the library is
not guaranteed to be present on the run-time platform. VGU is designed so it
may be implemented in a portable manner using only the public functionality
provided by the OpenVG library. VGU functions may alter the error state of the
OpenVG context in which they run (i.e., the value returned by vgGetError), but
do not otherwise alter the OpenVG state when they complete without
generating a VGU_OUT_OF_MEMORY_ERROR. VGU functions are defined in a
vgu.h header file.

VGU_VERSION_1_0

Each version of the VGU library will define constants indicating the set of
supported library versions. For the current version, the constant
VGU_VERSION_1_0 is defined. Future versions will continue to define the
constants for all previous versions with which they are backward compatible.
#define VGU_VERSION_1_0 1

VGUErrorCode

The VGUErrorCode enumeration contains constants specifying possible errors
generated by VGU functions. Any VGU function may return
VGU_OUT_OF_MEMORY_ERROR, in which case the function may have caused
changes to the state of OpenVG or to drawing surface pixels prior to failure.
typedef enum {
 VGU_NO_ERROR = 0,
 VGU_BAD_HANDLE_ERROR = 0xF000,
 VGU_ILLEGAL_ARGUMENT_ERROR = 0xF001,
 VGU_OUT_OF_MEMORY_ERROR = 0xF002,
 VGU_PATH_CAPABILITY_ERROR = 0xF003,
 VGU_BAD_WARP_ERROR = 0xF004
} VGUErrorCode;

16.1 Higher-level Geometric Primitives
The VGU library contains functions that allow applications to specify a number

of higher-level geometric primitives to be appended to a path. Each primitive is
immediately reduced to a series of line segments, Bézier curves, and arcs.
Coordinates may overflow silently if they fall outside the range defined by the
path datatype, scale, and bias.

152

OpenVG 1.0 Specification 16.1.1 – Lines

16.1.1 Lines

vguLine

vguLine appends a line segment to a path. This is equivalent to the following
pseudo-code:
LINE(x0, y0, x1, y1):

MOVE_TO_ABS x0, y0
LINE_TO_ABS x1, y1

VGUErrorCode vguLine(VGPath path,
 VGfloat x0, VGfloat y0,
 VGfloat x1, VGfloat y1)

ERRORS

VGU_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VGU_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path

16.1.2 Polylines and Polygons

vguPolygon

vguPolygon appends a polyline or polygon to a path. This is equivalent to the
following pseudo-code:
POLYGON(points, count):

MOVE_TO_ABS points[0], points[1]
for (i = 1; i < count; i++) {
 LINE_TO_ABS points[2*i], points[2*i + 1]
}
if (closed) CLOSE_PATH

There are 2*count coordinates in points.

VGUErrorCode vguPolygon(VGPath path,
 const VGfloat * points, VGint count,
 VGboolean closed)

153

OpenVG 1.0 Specification 16.1.2 – Polylines and Polygons

ERRORS

VGU_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VGU_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path

VGU_ILLEGAL_ARGUMENT_ERROR

– if points is NULL

– if points is not properly aligned

– if count is less than or equal to 0

16.1.3 Rectangles

vguRect

The vguRect function appends an axis-aligned rectangle with its lower-left
corner at (x, y) and a given width and height to a path. This is equivalent to
the following pseudo-code:
RECT(x, y, width, height):

MOVE_TO_ABS x, y
HLINE_TO_REL width
VLINE_TO_REL height
HLINE_TO_REL -width
CLOSE_PATH

VGUErrorCode vguRect(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height)

ERRORS

VGU_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VGU_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path

VGU_ILLEGAL_ARGUMENT_ERROR

– if width or height are less than or equal to 0

154

OpenVG 1.0 Specification 16.1.4 – Round-Cornered Rectangles

16.1.4 Round-Cornered Rectangles

vguRoundRect

The vguRoundRect function appends an axis-aligned round-cornered
rectangle with the lower-left corner of its rectangular bounding box at (x, y) and
a given width, height, arcWidth, and arcHeight to a path. This is
equivalent to the following pseudo-code:
ROUNDRECT(x, y, w, h, arcWidth, arcHeight):

MOVE_TO_ABS (x + arcWidth/2), y
HLINE_TO_REL width – arcWidth
SCCWARC_TO_REL arcWidth/2, arcHeight/2, 0, arcWidth/2, arcHeight/2
VLINE_TO_REL height – arcHeight
SCCWARC_TO_REL arcWidth/2, arcHeight/2, 0, -arcWidth/2, arcHeight/2
HLINE_TO_REL -(width – arcWidth)
SCCWARC_TO_REL arcWidth/2, arcHeight/2, 0, -arcWidth/2, -arcHeight/2
VLINE_TO_REL -(height – arcHeight)
SCCWARC_TO_REL arcWidth/2, arcHeight/2, 0, arcWidth/2, -arcHeight/2
CLOSE_PATH

If arcWidth is less than 0, it is clamped to 0. If arcWidth is greater than
width, its value is clamped to that of width. Similarly, arcHeight is clamped
to a value between 0 and height. The arcs are included even when arcWidth
and/or arcHeight is 0.

VGUErrorCode vguRoundRect(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height,
 VGfloat arcWidth, VGfloat arcHeight)

ERRORS

VGU_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VGU_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path

VGU_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

155

OpenVG 1.0 Specification 16.1.4 – Round-Cornered Rectangles

Figure 24: Round Rectangle Parameters

16.1.5 Ellipses

vguEllipse

vguEllipse appends an axis-aligned ellipse to a path. The center of the ellipse
is given by (cx, cy) and the dimensions of the axis-aligned rectangle enclosing
the ellipse are given by width and height. The ellipse begins at (cx + width/2,
cy) and is stroked as two equal counter-clockwise arcs. This is equivalent to the
following pseudo-code:
ELLIPSE(cx, cy, width, height):

MOVE_TO_ABS cx + width/2, cy
SCCWARC_TO_REL width/2, height/2, 0, -width, 0
SCCWARC_TO_REL width/2, height/2, 0, width, 0
CLOSE_PATH

VGUErrorCode vguEllipse(VGPath path,
 VGfloat cx, VGfloat cy,
 VGfloat width, VGfloat height)

156

(x, y)

(x+width, y+height)

arcWidth

arcHeight

OpenVG 1.0 Specification 16.1.5 – Ellipses

ERRORS

VGU_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VGU_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path

VGU_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

16.1.6 Arcs

VGUArcType

The VGUArcType enumeration defines three values to control the style of arcs
drawn by the vguArc function:

VGU_ARC_OPEN – arc segment only
VGU_ARC_CHORD – arc, plus line between arc endpoints
VGU_ARC_PIE – arc, plus lines from each endpoint to the ellipse center.

Figure 25: VGUArcType Values

vguArc

vguArc appends an elliptical arc to a path, possibly along with one or two line
segments, according to the arcType parameter. The startAngle and
angleExtent parameters are given in degrees, proceeding counter-clockwise
from the positive X axis. The arc is defined on the unit circle, then scaled by the
width and height of the ellipse; thus, the starting point of the arc has coordinates

157

Arc Chord Pie

OpenVG 1.0 Specification 16.1.6 – Arcs

(x + cos(startAngle)*w/2, y + sin(startAngle)*h/2) and the ending point has
coordinates (x + cos(startAngle + angleExtent)*w/2, y + sin(startAngle +
angleExtent)*h/2).

If angleExtent is negative, the arc will proceed clockwise; if it is larger than
360 or smaller than -360, the arc will wrap around itself. The following pseudo-
code illustrates the arc path generation:
ARC(x, y, w, h, startAngle, angleExtent, arcType):

last = startAngle + angleExtent
MOVE_TO_ABS x+cos(startAngle)*w/2, y+sin(startAngle)*h/2
if (angleExtent > 0) {
 angle = startAngle + 180
 while (angle < last) {
 SCCWARC_TO_ABS w/2, h/2, 0, x+cos(angle)*w/2, y+sin(angle)*h/2
 angle += 180
 }
 SCCWARC_TO_ABS w/2, h/2, 0, x+cos(last)*w/2, y+sin(last)*h/2
} else {
 angle = startAngle – 180
 while (angle > last) {
 SCWARC_TO_ABS w/2, h/2, 0, x+cos(angle)*w/2, y+sin(angle)*h/2
 angle -= 180
 }
 SCWARC_TO_ABS w/2, h/2, 0, x+cos(last)*w/2, y+sin(last)*h/2
}

if arcType == VGU_ARC_PIE
 LINE_TO_ABS x, y
if arcType == VGU_ARC_PIE || arcType == VGU_ARC_CHORD
 CLOSE_PATH

VGUErrorCode vguArc(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height,
 VGfloat startAngle, VGfloat angleExtent,
 VGUArcType arcType)

158

OpenVG 1.0 Specification 16.1.6 – Arcs

ERRORS

VGU_BAD_HANDLE_ERROR

– if path is not a valid path handle, or is not shared with the current context

VGU_PATH_CAPABILITY_ERROR

– if VG_PATH_CAPABILITY_APPEND_TO is not enabled for path

VGU_ILLEGAL_ARGUMENT_ERROR

– if width or height is less than or equal to 0

– if arcType is not one of the values from the VGUArcType enumeration

Figure 26: vguArc Parameters

16.2 Image Warping
VGU provides three utility functions to compute 3x3 projective transform

matrices. The first two compute the transformation from an arbitrary
quadrilateral onto the unit square, and vice versa. The third computes the
transformation from an arbitrary quadrilateral to an arbitrary quadrilateral. The
output transformation is stored into matrix as 9 elements in the order { sx, shy,
w0, shx, sy, w1, tx, ty, w2 } (using the nomenclature of Section 6.3).

159

(x, y)

startAngle

angleExtent

he
ig

ht

width

unit circle

OpenVG 1.0 Specification 16.2 – Image Warping

In all cases, if there is no projective mapping that satisfies the given
constraints, or the mapping would be degenerate (i.e., non-invertible),
VGU_BAD_WARP_ERROR is returned and matrix is unchanged.

Formulas for computing projective warps may be found in [HECK89] and
[WOLB90].

vguComputeWarpQuadToSquare

The vguComputeWarpQuadToSquare function sets the entries of matrix to a
projective transformation that maps the point (sx0, sy0) to (0, 0); (sx1, sy1) to
(1, 0); (sx2, sy2) to (0, 1); and (sx3, sy3) to (1, 1). If no non-degenerate matrix
satisfies the constraints, VGU_BAD_WARP_ERROR is returned and matrix is
unchanged.
VGUErrorCode vguComputeWarpQuadToSquare(VGfloat sx0, VGfloat sy0,
 VGfloat sx1, VGfloat sy1,
 VGfloat sx2, VGfloat sy2,
 VGfloat sx3, VGfloat sy3,
 VGfloat * matrix)

ERRORS

VGU_ILLEGAL_ARGUMENT_ERROR

– if matrix is NULL

– if matrix is not properly aligned

VGU_BAD_WARP_ERROR

– if no non-degenerate transformation satisfies the constraints

vguComputeWarpSquareToQuad

The vguComputeWarpSquareToQuad function sets the entries of matrix to a
projective transformation that maps the point (0, 0) to (dx0, dy0); (1, 0) to (dx1,
dy1); (0, 1) to (dx2, dy2); and (1, 1) to (dx3, dy3). If no non-degenerate matrix
satisfies the constraints, VGU_BAD_WARP_ERROR is returned and matrix is
unchanged.
VGUErrorCode vguComputeWarpSquareToQuad(VGfloat dx0, VGfloat dy0,
 VGfloat dx1, VGfloat dy1,
 VGfloat dx2, VGfloat dy2,
 VGfloat dx3, VGfloat dy3,
 VGfloat * matrix)

160

OpenVG 1.0 Specification 16.2 – Image Warping

ERRORS

VGU_ILLEGAL_ARGUMENT_ERROR

– if matrix is NULL

– if matrix is not properly aligned

VGU_BAD_WARP_ERROR

– if no non-degenerate transformation satisfies the constraints

vguComputeWarpQuadToQuad

The vguComputeWarpQuadToQuad function sets the entries of matrix to a
projective transformation that maps the point (sx0, sy0) to (dx0, dy0); (sx1, sy1) to
(dx1, dy1); (sx2, sy2) to (dx2, dy2); and (sx3, sy3) to (dx3, dy3). If no non-degenerate
matrix satisfies the constraints, VGU_BAD_WARP_ERROR is returned and matrix
is unchanged.
VGUErrorCode vguComputeWarpQuadToQuad(VGfloat dx0, VGfloat dy0,
 VGfloat dx1, VGfloat dy1,
 VGfloat dx2, VGfloat dy2,
 VGfloat dx3, VGfloat dy3,
 VGfloat sx0, VGfloat sy0,
 VGfloat sx1, VGfloat sy1,
 VGfloat sx2, VGfloat sy2,
 VGfloat sx3, VGfloat sy3,
 VGfloat * matrix)

ERRORS

VGU_ILLEGAL_ARGUMENT_ERROR

– if matrix is NULL

– if matrix is not properly aligned

VGU_BAD_WARP_ERROR

– if no non-degenerate transformation satisfies the constraints

161

OpenVG 1.0 Specification 17 – Appendix A: Mathematics of Ellipses

17 Appendix A: Mathematics of Ellipses
The following sections are informative only. It contains mathematics

pertaining to the representation of ellipses that may be of use to implementers.
Some of the material is adapted from [SVGF04].

17.1 The Center Parameterization
A common parameterization of an ellipse is in terms of the ellipse center point

(cx, cy), horizontal and vertical radii rh and rv, rotation angle , and starting and
ending angles θ1 and θ2 between 0 and 360 degrees. The parameters are listed in
Table 16.

The elliptical arc may be evaluated in terms of an angular parameter θ that
ranges from θ1 to θ2:

An ellipse in the center parameterization may be viewed as a unit circle,
parameterized as (x, y) = (cos(θ), sin(θ)) that has been placed through an affine
transformation consisting of a rotation and a non-uniform scale:

(cx, cy) The center point of the ellipse

rh, rv The radii of the unrotated ellipse

The counter-clockwise angle of the
ellipse relative to the x axis, measured
prior to scaling by (rh, rv)

θ1 Angle of initial point (as measured on
the unscaled circle)

θ2 Angle of final point (as measured on
the unscaled circle)

Table 16: Center Ellipse Parameters

162

f cx , cy , rh , rv , ,=[cos −sin
sin cos]⋅[rh cos

rv sin] [cx
cy]

[x
y
1] =[rh cos -rv sin cx

rhsin rv cos cy
0 0 1]⋅[cos 

sin 
1]

OpenVG 1.0 Specification 17.2 – The Endpoint Parameterization

17.2 The Endpoint Parameterization
OpenVG paths use the endpoint parameterization of elliptical arcs as defined

in SVG. An elliptical arc segment is defined in terms of its endpoints (x0, y0), (x1,
y1), radii rh and rv, rotation angle , large arc flag fA, and sweep flag fS. These
parameters are listed in Table 17.

(x0, y0) The initial endpoint of the arc

(x1, y1) The final endpoint of the arc

rh, rv The radii of the unrotated ellipse

rot The counter-clockwise angle of the
ellipse relative to the x axis, measured
prior to scaling by (rh, rv)

fA Large arc flag: 1 if more than 180
degrees of the arc is to be traversed (as
measured on the unscaled circle), 0
otherwise

fS Sweep flag: 1 if the arc is to be
traversed in the counter-clockwise
direction, 0 otherwise

Table 17: Endpoint Ellipse Parameters

17.3 Converting from Center to Endpoint Parameterization
Conversion from a center parameterization to an endpoint parameterization

simply requires evaluation the initial and final endpoints of the arc, and
determining the values of the large arc and sweep flags:

163

[x1

y1
] = f cx , cy , rh , rv , ,1

[x2

y2] = f cx , cy , rh , rv , ,2

f A={ 1 if ∣2−1∣180degrees
0 otherwise

f S={ 1 if 2−10
0 otherwise

OpenVG 1.0 Specification 17.4 – Converting from Endpoint to Center Parameterization

17.4 Converting from Endpoint to Center Parameterization
Given an endpoint representation of an ellipse as the set of parameters (x0, y0),

(x1, y1), rh, rv, , fS, and fA, we wish to determine the center point (cx, cy) and the
initial and final angles θ1 and θ2.

An ellipse with center point (cx, cy), radii rh and rv, and rotation angle rot
satisfies the implicit equation (x´)2 + (y´)2 = 1, where x´ = ((x – cx)*cos(rot) + (y –
cy)*sin(rot))/rh and y´ = (-(x – cx)*sin(rot) + (y – cy)*cos(rot))/rv. The transformation
from (x, y) to (x´, y´) simply maps the desired ellipse into a unit circle centered at
the origin.

To determine the center points of the pair of ellipses with common radii and
rotation angle that pass through the two given points (x0, y0) and (x1, y1), the
plane is first transformed into a suitably scaled and rotated coordinate system
such that the equation of each ellipse becomes (x´ – cx´)2 + (y´ – cy´)2 = 1. Then the
problem is reduced to finding the centers (cx0´, cy0´) and (cx1´, cy1´) of the two unit
circles whose circumferences pass through two given points. Finally, the center
points are placed through an inverse transformation to obtain solutions in the
original coordinate system.

The center points of the two unit circles that pass through points (x0, y0) and
(x1, y1) are given by (xm ± ∆y*d, ym ∓ ∆x*d), where xm = (x0 + x1)/2, ym = (y0 + y1)/2,
∆x = (x0 – x1) , ∆y = (y0 – y1), and d = √(1/(∆x2 + ∆y2) – ¼). If d is infinite or
imaginary, no solution exists due to the input points being coincident or too far
apart, respectively.

The angles θ1 and θ2 may be found by finding the slope of the endpoints on
the circle and computing arctangents.

164

OpenVG 1.0 Specification 17.4 – Converting from Endpoint to Center Parameterization

The following code illustrates the process of computing the ellipse centers. The
findUnitCircles function is called by findEllipses following inverse
transformation of the original ellipse parameters.

#include <math.h>

#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif

/* Given: Points (x0, y0) and (x1, y1)
 * Return: TRUE if a solution exists, FALSE otherwise
 * Circle centers are written to (cx0, cy0) and (cx1, cy1)
 */
static VGboolean
findUnitCircles(double x0, double y0, double x1, double y1,
 double *cx0, double *cy0,
 double *cx1, double *cy1)
{
 /* Compute differences and averages */
 double dx = x0 – x1;
 double dy = y0 – y1;
 double xm = (x0 + x1)/2;
 double ym = (y0 + y1)/2;
 double dsq, disc, s, sdx, sdy;

 /* Solve for intersecting unit circles */
 dsq = dx*dx + dy*dy;
 if (dsq == 0.0) return VG_FALSE; /* Points are coincident */
 disc = 1.0/dsq – 1.0/4.0;
 if (disc < 0.0) return VG_FALSE; /* Points are too far apart */
 s = sqrt(disc);
 sdx = s*dx;
 sdy = s*dy;

 *cx0 = xm + sdy;
 *cy0 = ym – sdx;
 *cx1 = xm – sdy;
 *cy1 = ym + sdx;
 return VG_TRUE;
}

165

OpenVG 1.0 Specification 17.4 – Converting from Endpoint to Center Parameterization

/* Given: Ellipse parameters rh, rv, rot (in degrees),
 * endpoints (x0, y0) and (x1, y1)
 * Return: TRUE if a solution exists, FALSE otherwise
 * Ellipse centers are written to (cx0, cy0) and (cx1, cy1)
 */

VGboolean
findEllipses(double rh, double rv, double rot,
 double x0, double y0, double x1, double y1,
 double *cx0, double *cy0, double *cx1, double *cy1)
{
 double COS, SIN, x0p, y0p, x1p, y1p, pcx0, pcy0, pcx1, pcy1;

 /* Convert rotation angle from degrees to radians */
 rot *= M_PI/180.0;

 /* Pre-compute rotation matrix entries */
 COS = cos(rot); SIN = sin(rot);

 /* Transform (x0, y0) and (x1, y1) into unit space */
 /* using (inverse) rotate, followed by (inverse) scale */

 x0p = (x0*COS + y0*SIN)/rh;
 y0p = (-x0*SIN + y0*COS)/rv;
 x1p = (x1*COS + y1*SIN)/rh;
 y1p = (-x1*SIN + y1*COS)/rv;

 if (!findUnitCircles(x0p, y0p, x1p, y1p,
 &pcx0, &pcy0, &pcx1, &pcy1)) {
 return VG_FALSE;
 }

 /* Transform back to original coordinate space */
 /* using (forward) scale followed by (forward) rotate */

 pcx0 *= rh; pcy0 *= rv;
 pcx1 *= rh; pcy1 *= rv;

 *cx0 = pcx0*COS – pcy0*SIN;
 *cy0 = pcx0*SIN + pcy0*COS;
 *cx1 = pcx1*COS – pcy1*SIN;
 *cy1 = pcx1*SIN + pcy1*COS;

 return VG_TRUE;
}

166

OpenVG 1.0 Specification 17.5 – Implicit Representation of an Ellipse

17.5 Implicit Representation of an Ellipse
An ellipse (or any conic section) may be written in the implicit form:

This equation describes an ellipse (or circle) if B2 – 4 A C < 0 (and certain other
degeneracies do not occur). The center of the ellipse is located at:

The ellipse may be re-centered about (0, 0) by substituting x ← x + cx, y ← y + cy
to obtain an implicit equation with D = E = 0:

For a centered ellipse, the constant term must be equal to -1 since the entire
formula has the form of (x´)2 + (y´)2 – 1 where x´ and y´ contain no constant terms.
Thus in order to determine the radius and axes of a centered ellipse we only
need to be concerned with equations of the form:

The angle of rotation is given by:

Applying an inverse rotation by substituting x ← x cos(-θ) + y sin(-θ) and
y ← y cos(-θ) − x sin(-θ), we obtain a further simplification to an unrotated form:

167

A x2B x yC y2D xE yF=0

cx , cy=
1

B2−4 A C
2C D−B E ,2 A E−B D

={
0 , if B=0

4

, if B≠0 and A=C

1
2

tan−1 B
A−C  , otherwise

A x2B x yC y2 A E2C D2−B D E

B2−4 AC
F =0

A x2B x yC y2−1=0

OpenVG 1.0 Specification 17.5 – Implicit Representation of an Ellipse

where:

The radii of the centered, unrotated ellipse are given by:

17.6 Transformation of Ellipses
As previously noted, an ellipse may be viewed as the result of a scale, rotation,

and translation applied to the unit circle:

The resulting ellipse satisfies an implicit equation generated by placing each
point on the ellipse through an affine transformation M that is the inverse of the
transformation above. The resulting points lie on the unit circle, and therefore
satisfy the implicit equation x2 + y2 = 1.

168

[x
y
1] =[rh cos -rv sin cx

rhsin rv cos cy
0 0 1]⋅[cos 

sin 
1]

A' x2C ' y2−1=0

A'={
A , if B=0

A
B
2

, if B≠0and A=C

1
2

 ACK  A−C  , otherwise

C '={
C , if B=0

A−
B
2

, if B≠0and A=C

1
2

 AC−K  A−C  , otherwise

where K=  1 B2

A−C 2

rh=
1

 A'
 rv=

1

 C '

OpenVG 1.0 Specification 17.6 – Transformation of Ellipses

If M is defined as:

then the implicit equation for the ellipse is:

which may be written in standard form as:

where:

The center, rotation angle, and radii of the ellipse may be determined using the
formulas from the previous section.

In practice, it may be simpler to represent a transformed ellipse as the affine
transformation mapping an arc of the unit circle into it. The ellipse may be
rendered by concatenating its transform with the current transform and
rendering the circular arc. It may be transformed by simply concatenating the
transforms.

169

m00 xm01 ym02
2m10 xm11 ym12

2−1=0

A=m00
2 m10

2

B=2m00 m01m10m11
C=m01

2 m11
2

D=2m00 m02m10m12
E=2m01m02m11 m12
F=m02

2 m12
2 −1

M=[m00 m01 m02

m10 m11 m12

0 0 1]=[rhcos  -rv sin  cx
rhsin  rv cos  cy

0 0 1]
−1

A x2B x yC y2D xE yF=0

OpenVG 1.0 Specification 18 – Appendix B: Header Files

18 Appendix B: Header Files
This section defines minimal C language header files for the type definitions

and functions of OpenVG and the VGU utility library. The actual header files
provided by a platform vendor may differ from those shown here.

openvg.h

/**
 * *
 * Sample implementation of openvg.h, version 1.0.1 *
 * *
 * Copyright © 2005-2007 The Khronos Group *
 * *
 **/

#ifndef _OPENVG_H
#define _OPENVG_H

#ifdef __cplusplus
extern "C" {
#endif

#include <khronos_types.h>

#define OPENVG_VERSION_1_0 1

typedef khronos_float VGfloat;
typedef khronos_int8_t VGbyte;
typedef khronos_uint8_t VGubyte;
typedef khronos_int16_t VGshort;
typedef khronos_int32_t VGint;
typedef khronos_uint32_t VGuint;
typedef khronos_uint32_t VGbitfield;

typedef enum {
 VG_FALSE = 0,
 VG_TRUE = 1
} VGboolean;

#define VG_MAXSHORT ((VGshort)((~((unsigned)0)) >> 1))
#define VG_MAXINT ((VGint)((~((unsigned)0)) >> 1))

typedef VGuint VGHandle;

#define VG_INVALID_HANDLE ((VGHandle)0)

typedef enum {
 VG_NO_ERROR = 0,
 VG_BAD_HANDLE_ERROR = 0x1000,
 VG_ILLEGAL_ARGUMENT_ERROR = 0x1001,
 VG_OUT_OF_MEMORY_ERROR = 0x1002,
 VG_PATH_CAPABILITY_ERROR = 0x1003,
 VG_UNSUPPORTED_IMAGE_FORMAT_ERROR = 0x1004,
 VG_UNSUPPORTED_PATH_FORMAT_ERROR = 0x1005,

170

OpenVG 1.0 Specification 18 – Appendix B: Header Files

 VG_IMAGE_IN_USE_ERROR = 0x1006,
 VG_NO_CONTEXT_ERROR = 0x1007
} VGErrorCode;

typedef enum {
 /* Mode settings */
 VG_MATRIX_MODE = 0x1100,
 VG_FILL_RULE = 0x1101,
 VG_IMAGE_QUALITY = 0x1102,
 VG_RENDERING_QUALITY = 0x1103,
 VG_BLEND_MODE = 0x1104,
 VG_IMAGE_MODE = 0x1105,

 /* Scissoring rectangles */
 VG_SCISSOR_RECTS = 0x1106,

 /* Stroke parameters */
 VG_STROKE_LINE_WIDTH = 0x1110,
 VG_STROKE_CAP_STYLE = 0x1111,
 VG_STROKE_JOIN_STYLE = 0x1112,
 VG_STROKE_MITER_LIMIT = 0x1113,
 VG_STROKE_DASH_PATTERN = 0x1114,
 VG_STROKE_DASH_PHASE = 0x1115,
 VG_STROKE_DASH_PHASE_RESET = 0x1116,

 /* Edge fill color for VG_TILE_FILL tiling mode */
 VG_TILE_FILL_COLOR = 0x1120,

 /* Color for vgClear */
 VG_CLEAR_COLOR = 0x1121,

 /* Enable/disable alpha masking and scissoring */
 VG_MASKING = 0x1130,
 VG_SCISSORING = 0x1131,

 /* Pixel layout information */
 VG_PIXEL_LAYOUT = 0x1140,
 VG_SCREEN_LAYOUT = 0x1141,

 /* Source format selection for image filters */
 VG_FILTER_FORMAT_LINEAR = 0x1150,
 VG_FILTER_FORMAT_PREMULTIPLIED = 0x1151,

 /* Destination write enable mask for image filters */
 VG_FILTER_CHANNEL_MASK = 0x1152,

 /* Implementation limits (read-only) */
 VG_MAX_SCISSOR_RECTS = 0x1160,
 VG_MAX_DASH_COUNT = 0x1161,
 VG_MAX_KERNEL_SIZE = 0x1162,
 VG_MAX_SEPARABLE_KERNEL_SIZE = 0x1163,
 VG_MAX_COLOR_RAMP_STOPS = 0x1164,
 VG_MAX_IMAGE_WIDTH = 0x1165,
 VG_MAX_IMAGE_HEIGHT = 0x1166,
 VG_MAX_IMAGE_PIXELS = 0x1167,
 VG_MAX_IMAGE_BYTES = 0x1168,

171

OpenVG 1.0 Specification 18 – Appendix B: Header Files

 VG_MAX_FLOAT = 0x1169,
 VG_MAX_GAUSSIAN_STD_DEVIATION = 0x116A
} VGParamType;

typedef enum {
 VG_RENDERING_QUALITY_NONANTIALIASED = 0x1200,
 VG_RENDERING_QUALITY_FASTER = 0x1201,
 VG_RENDERING_QUALITY_BETTER = 0x1202 /* Default */
} VGRenderingQuality;

typedef enum {
 VG_PIXEL_LAYOUT_UNKNOWN = 0x1300,
 VG_PIXEL_LAYOUT_RGB_VERTICAL = 0x1301,
 VG_PIXEL_LAYOUT_BGR_VERTICAL = 0x1302,
 VG_PIXEL_LAYOUT_RGB_HORIZONTAL = 0x1303,
 VG_PIXEL_LAYOUT_BGR_HORIZONTAL = 0x1304
} VGPixelLayout;

typedef enum {
 VG_MATRIX_PATH_USER_TO_SURFACE = 0x1400,
 VG_MATRIX_IMAGE_USER_TO_SURFACE = 0x1401,
 VG_MATRIX_FILL_PAINT_TO_USER = 0x1402,
 VG_MATRIX_STROKE_PAINT_TO_USER = 0x1403
} VGMatrixMode;

typedef enum {
 VG_CLEAR_MASK = 0x1500,
 VG_FILL_MASK = 0x1501,
 VG_SET_MASK = 0x1502,
 VG_UNION_MASK = 0x1503,
 VG_INTERSECT_MASK = 0x1504,
 VG_SUBTRACT_MASK = 0x1505
} VGMaskOperation;

#define VG_PATH_FORMAT_STANDARD 0

typedef enum {
 VG_PATH_DATATYPE_S_8 = 0,
 VG_PATH_DATATYPE_S_16 = 1,
 VG_PATH_DATATYPE_S_32 = 2,
 VG_PATH_DATATYPE_F = 3
} VGPathDatatype;

typedef enum {
 VG_ABSOLUTE = 0,
 VG_RELATIVE = 1
} VGPathAbsRel;

typedef enum {
 VG_CLOSE_PATH = (0 << 1),
 VG_MOVE_TO = (1 << 1),
 VG_LINE_TO = (2 << 1),
 VG_HLINE_TO = (3 << 1),
 VG_VLINE_TO = (4 << 1),
 VG_QUAD_TO = (5 << 1),
 VG_CUBIC_TO = (6 << 1),

172

OpenVG 1.0 Specification 18 – Appendix B: Header Files

 VG_SQUAD_TO = (7 << 1),
 VG_SCUBIC_TO = (8 << 1),
 VG_SCCWARC_TO = (9 << 1),
 VG_SCWARC_TO = (10 << 1),
 VG_LCCWARC_TO = (11 << 1),
 VG_LCWARC_TO = (12 << 1)
} VGPathSegment;

typedef enum {
 VG_MOVE_TO_ABS = VG_MOVE_TO | VG_ABSOLUTE,
 VG_MOVE_TO_REL = VG_MOVE_TO | VG_RELATIVE,
 VG_LINE_TO_ABS = VG_LINE_TO | VG_ABSOLUTE,
 VG_LINE_TO_REL = VG_LINE_TO | VG_RELATIVE,
 VG_HLINE_TO_ABS = VG_HLINE_TO | VG_ABSOLUTE,
 VG_HLINE_TO_REL = VG_HLINE_TO | VG_RELATIVE,
 VG_VLINE_TO_ABS = VG_VLINE_TO | VG_ABSOLUTE,
 VG_VLINE_TO_REL = VG_VLINE_TO | VG_RELATIVE,
 VG_QUAD_TO_ABS = VG_QUAD_TO | VG_ABSOLUTE,
 VG_QUAD_TO_REL = VG_QUAD_TO | VG_RELATIVE,
 VG_CUBIC_TO_ABS = VG_CUBIC_TO | VG_ABSOLUTE,
 VG_CUBIC_TO_REL = VG_CUBIC_TO | VG_RELATIVE,
 VG_SQUAD_TO_ABS = VG_SQUAD_TO | VG_ABSOLUTE,
 VG_SQUAD_TO_REL = VG_SQUAD_TO | VG_RELATIVE,
 VG_SCUBIC_TO_ABS = VG_SCUBIC_TO | VG_ABSOLUTE,
 VG_SCUBIC_TO_REL = VG_SCUBIC_TO | VG_RELATIVE,
 VG_SCCWARC_TO_ABS = VG_SCCWARC_TO | VG_ABSOLUTE,
 VG_SCCWARC_TO_REL = VG_SCCWARC_TO | VG_RELATIVE,
 VG_SCWARC_TO_ABS = VG_SCWARC_TO | VG_ABSOLUTE,
 VG_SCWARC_TO_REL = VG_SCWARC_TO | VG_RELATIVE,
 VG_LCCWARC_TO_ABS = VG_LCCWARC_TO | VG_ABSOLUTE,
 VG_LCCWARC_TO_REL = VG_LCCWARC_TO | VG_RELATIVE,
 VG_LCWARC_TO_ABS = VG_LCWARC_TO | VG_ABSOLUTE,
 VG_LCWARC_TO_REL = VG_LCWARC_TO | VG_RELATIVE
} VGPathCommand;

typedef VGHandle VGPath;

typedef enum {
 VG_PATH_CAPABILITY_APPEND_FROM = (1 << 0),
 VG_PATH_CAPABILITY_APPEND_TO = (1 << 1),
 VG_PATH_CAPABILITY_MODIFY = (1 << 2),
 VG_PATH_CAPABILITY_TRANSFORM_FROM = (1 << 3),
 VG_PATH_CAPABILITY_TRANSFORM_TO = (1 << 4),
 VG_PATH_CAPABILITY_INTERPOLATE_FROM = (1 << 5),
 VG_PATH_CAPABILITY_INTERPOLATE_TO = (1 << 6),
 VG_PATH_CAPABILITY_PATH_LENGTH = (1 << 7),
 VG_PATH_CAPABILITY_POINT_ALONG_PATH = (1 << 8),
 VG_PATH_CAPABILITY_TANGENT_ALONG_PATH = (1 << 9),
 VG_PATH_CAPABILITY_PATH_BOUNDS = (1 << 10),
 VG_PATH_CAPABILITY_PATH_TRANSFORMED_BOUNDS = (1 << 11),
 VG_PATH_CAPABILITY_ALL = (1 << 12) - 1
} VGPathCapabilities;

typedef enum {
 VG_PATH_FORMAT = 0x1600,
 VG_PATH_DATATYPE = 0x1601,

173

OpenVG 1.0 Specification 18 – Appendix B: Header Files

 VG_PATH_SCALE = 0x1602,
 VG_PATH_BIAS = 0x1603,
 VG_PATH_NUM_SEGMENTS = 0x1604,
 VG_PATH_NUM_COORDS = 0x1605
} VGPathParamType;

typedef enum {
 VG_CAP_BUTT = 0x1700,
 VG_CAP_ROUND = 0x1701,
 VG_CAP_SQUARE = 0x1702
} VGCapStyle;

typedef enum {
 VG_JOIN_MITER = 0x1800,
 VG_JOIN_ROUND = 0x1801,
 VG_JOIN_BEVEL = 0x1802
} VGJoinStyle;

typedef enum {
 VG_EVEN_ODD = 0x1900,
 VG_NON_ZERO = 0x1901
} VGFillRule;

typedef enum {
 VG_STROKE_PATH = (1 << 0),
 VG_FILL_PATH = (1 << 1)
} VGPaintMode;

typedef VGHandle VGPaint;

typedef enum {
 /* Color paint parameters */
 VG_PAINT_TYPE = 0x1A00,
 VG_PAINT_COLOR = 0x1A01,
 VG_PAINT_COLOR_RAMP_SPREAD_MODE = 0x1A02,
 VG_PAINT_COLOR_RAMP_PREMULTIPLIED = 0x1A07,
 VG_PAINT_COLOR_RAMP_STOPS = 0x1A03,

 /* Linear gradient paint parameters */
 VG_PAINT_LINEAR_GRADIENT = 0x1A04,

 /* Radial gradient paint parameters */
 VG_PAINT_RADIAL_GRADIENT = 0x1A05,

 /* Pattern paint parameters */
 VG_PAINT_PATTERN_TILING_MODE = 0x1A06
} VGPaintParamType;

typedef enum {
 VG_PAINT_TYPE_COLOR = 0x1B00,
 VG_PAINT_TYPE_LINEAR_GRADIENT = 0x1B01,
 VG_PAINT_TYPE_RADIAL_GRADIENT = 0x1B02,
 VG_PAINT_TYPE_PATTERN = 0x1B03
} VGPaintType;

typedef enum {

174

OpenVG 1.0 Specification 18 – Appendix B: Header Files

 VG_COLOR_RAMP_SPREAD_PAD = 0x1C00,
 VG_COLOR_RAMP_SPREAD_REPEAT = 0x1C01,
 VG_COLOR_RAMP_SPREAD_REFLECT = 0x1C02
} VGColorRampSpreadMode;

typedef enum {
 VG_TILE_FILL = 0x1D00,
 VG_TILE_PAD = 0x1D01,
 VG_TILE_REPEAT = 0x1D02,
 VG_TILE_REFLECT = 0x1D03
} VGTilingMode;

typedef enum {
 /* RGB{A,X} channel ordering */
 VG_sRGBX_8888 = 0,
 VG_sRGBA_8888 = 1,
 VG_sRGBA_8888_PRE = 2,
 VG_sRGB_565 = 3,
 VG_sRGBA_5551 = 4,
 VG_sRGBA_4444 = 5,
 VG_sL_8 = 6,
 VG_lRGBX_8888 = 7,
 VG_lRGBA_8888 = 8,
 VG_lRGBA_8888_PRE = 9,
 VG_lL_8 = 10,
 VG_A_8 = 11,
 VG_BW_1 = 12,

 /* {A,X}RGB channel ordering */
 VG_sXRGB_8888 = 0 | (1 << 6),
 VG_sARGB_8888 = 1 | (1 << 6),
 VG_sARGB_8888_PRE = 2 | (1 << 6),
 VG_sARGB_1555 = 4 | (1 << 6),
 VG_sARGB_4444 = 5 | (1 << 6),
 VG_lXRGB_8888 = 7 | (1 << 6),
 VG_lARGB_8888 = 8 | (1 << 6),
 VG_lARGB_8888_PRE = 9 | (1 << 6),

 /* BGR{A,X} channel ordering */
 VG_sBGRX_8888 = 0 | (1 << 7),
 VG_sBGRA_8888 = 1 | (1 << 7),
 VG_sBGRA_8888_PRE = 2 | (1 << 7),
 VG_sBGR_565 = 3 | (1 << 7),
 VG_sBGRA_5551 = 4 | (1 << 7),
 VG_sBGRA_4444 = 5 | (1 << 7),
 VG_lBGRX_8888 = 7 | (1 << 7),
 VG_lBGRA_8888 = 8 | (1 << 7),
 VG_lBGRA_8888_PRE = 9 | (1 << 7),

 /* {A,X}BGR channel ordering */

175

OpenVG 1.0 Specification 18 – Appendix B: Header Files

 VG_sXBGR_8888 = 0 | (1 << 6) | (1 << 7),
 VG_sABGR_8888 = 1 | (1 << 6) | (1 << 7),
 VG_sABGR_8888_PRE = 2 | (1 << 6) | (1 << 7),
 VG_sABGR_1555 = 4 | (1 << 6) | (1 << 7),
 VG_sABGR_4444 = 5 | (1 << 6) | (1 << 7),
 VG_lXBGR_8888 = 7 | (1 << 6) | (1 << 7),
 VG_lABGR_8888 = 8 | (1 << 6) | (1 << 7),
 VG_lABGR_8888_PRE = 9 | (1 << 6) | (1 << 7)
} VGImageFormat;

typedef VGHandle VGImage;

typedef enum {
 VG_IMAGE_QUALITY_NONANTIALIASED = (1 << 0),
 VG_IMAGE_QUALITY_FASTER = (1 << 1),
 VG_IMAGE_QUALITY_BETTER = (1 << 2)
} VGImageQuality;

typedef enum {
 VG_IMAGE_FORMAT = 0x1E00,
 VG_IMAGE_WIDTH = 0x1E01,
 VG_IMAGE_HEIGHT = 0x1E02
} VGImageParamType;

typedef enum {
 VG_DRAW_IMAGE_NORMAL = 0x1F00,
 VG_DRAW_IMAGE_MULTIPLY = 0x1F01,
 VG_DRAW_IMAGE_STENCIL = 0x1F02
} VGImageMode;

typedef enum {
 VG_RED = (1 << 3),
 VG_GREEN = (1 << 2),
 VG_BLUE = (1 << 1),
 VG_ALPHA = (1 << 0)
} VGImageChannel;

typedef enum {
 VG_BLEND_SRC = 0x2000,
 VG_BLEND_SRC_OVER = 0x2001,
 VG_BLEND_DST_OVER = 0x2002,
 VG_BLEND_SRC_IN = 0x2003,
 VG_BLEND_DST_IN = 0x2004,
 VG_BLEND_MULTIPLY = 0x2005,
 VG_BLEND_SCREEN = 0x2006,
 VG_BLEND_DARKEN = 0x2007,
 VG_BLEND_LIGHTEN = 0x2008,
 VG_BLEND_ADDITIVE = 0x2009
} VGBlendMode;

typedef enum {
 VG_IMAGE_FORMAT_QUERY = 0x2100,
 VG_PATH_DATATYPE_QUERY = 0x2101
} VGHardwareQueryType;

typedef enum {

176

OpenVG 1.0 Specification 18 – Appendix B: Header Files

 VG_HARDWARE_ACCELERATED = 0x2200,
 VG_HARDWARE_UNACCELERATED = 0x2201
} VGHardwareQueryResult;

typedef enum {
 VG_VENDOR = 0x2300,
 VG_RENDERER = 0x2301,
 VG_VERSION = 0x2302,
 VG_EXTENSIONS = 0x2303
} VGStringID;

/* Function Prototypes */

#ifndef VG_API_CALL
#define VG_API_CALL extern
#endif

VG_API_CALL VGErrorCode vgGetError(void);

VG_API_CALL void vgFlush(void);
VG_API_CALL void vgFinish(void);

/* Getters and Setters */
VG_API_CALL void vgSetf (VGParamType type, VGfloat value);
VG_API_CALL void vgSeti (VGParamType type, VGint value);
VG_API_CALL void vgSetfv(VGParamType type, VGint count,
 const VGfloat * values);
VG_API_CALL void vgSetiv(VGParamType type, VGint count,
 const VGint * values);

VG_API_CALL VGfloat vgGetf(VGParamType type);
VG_API_CALL VGint vgGeti(VGParamType type);
VG_API_CALL VGint vgGetVectorSize(VGParamType type);
VG_API_CALL void vgGetfv(VGParamType type, VGint count, VGfloat * values);
VG_API_CALL void vgGetiv(VGParamType type, VGint count, VGint * values);

VG_API_CALL void vgSetParameterf(VGHandle object,
 VGint paramType,
 VGfloat value);
VG_API_CALL void vgSetParameteri(VGHandle object,
 VGint paramType,
 VGint value);
VG_API_CALL void vgSetParameterfv(VGHandle object,
 VGint paramType,
 VGint count, const VGfloat * values);
VG_API_CALL void vgSetParameteriv(VGHandle object,
 VGint paramType,
 VGint count, const VGint * values);

VG_API_CALL VGfloat vgGetParameterf(VGHandle object,
 VGint paramType);
VG_API_CALL VGint vgGetParameteri(VGHandle object,
 VGint paramType);
VG_API_CALL VGint vgGetParameterVectorSize(VGHandle object,
 VGint paramType);
VG_API_CALL void vgGetParameterfv(VGHandle object,

177

OpenVG 1.0 Specification 18 – Appendix B: Header Files

 VGint paramType,
 VGint count, VGfloat * values);
VG_API_CALL void vgGetParameteriv(VGHandle object,
 VGint paramType,
 VGint count, VGint * values);

/* Matrix Manipulation */
VG_API_CALL void vgLoadIdentity(void);
VG_API_CALL void vgLoadMatrix(const VGfloat * m);
VG_API_CALL void vgGetMatrix(VGfloat * m);
VG_API_CALL void vgMultMatrix(const VGfloat * m);
VG_API_CALL void vgTranslate(VGfloat tx, VGfloat ty);
VG_API_CALL void vgScale(VGfloat sx, VGfloat sy);
VG_API_CALL void vgShear(VGfloat shx, VGfloat shy);
VG_API_CALL void vgRotate(VGfloat angle);

/* Masking and Clearing */
VG_API_CALL void vgMask(VGImage mask, VGMaskOperation operation,
 VGint x, VGint y, VGint width, VGint height);
VG_API_CALL void vgClear(VGint x, VGint y, VGint width, VGint height);

/* Paths */
VG_API_CALL VGPath vgCreatePath(VGint pathFormat,
 VGPathDatatype datatype,
 VGfloat scale, VGfloat bias,
 VGint segmentCapacityHint,
 VGint coordCapacityHint,
 VGbitfield capabilities);
VG_API_CALL void vgClearPath(VGPath path, VGbitfield capabilities);
VG_API_CALL void vgDestroyPath(VGPath path);
VG_API_CALL void vgRemovePathCapabilities(VGPath path,
 VGbitfield capabilities);
VG_API_CALL VGbitfield vgGetPathCapabilities(VGPath path);
VG_API_CALL void vgAppendPath(VGPath dstPath, VGPath srcPath);
VG_API_CALL void vgAppendPathData(VGPath dstPath,
 VGint numSegments,
 const VGubyte * pathSegments,
 const void * pathData);
VG_API_CALL void vgModifyPathCoords(VGPath dstPath, VGint startIndex,
 VGint numSegments,
 const void * pathData);
VG_API_CALL void vgTransformPath(VGPath dstPath, VGPath srcPath);
VG_API_CALL VGboolean vgInterpolatePath(VGPath dstPath,
 VGPath startPath,
 VGPath endPath,
 VGfloat amount);
VG_API_CALL VGfloat vgPathLength(VGPath path,
 VGint startSegment, VGint numSegments);
VG_API_CALL void vgPointAlongPath(VGPath path,
 VGint startSegment, VGint numSegments,
 VGfloat distance,
 VGfloat * x, VGfloat * y,
 VGfloat * tangentX, VGfloat * tangentY);
VG_API_CALL void vgPathBounds(VGPath path,
 VGfloat * minX, VGfloat * minY,
 VGfloat * width, VGfloat * height);

178

OpenVG 1.0 Specification 18 – Appendix B: Header Files

VG_API_CALL void vgPathTransformedBounds(VGPath path,
 VGfloat * minX, VGfloat * minY,
 VGfloat * width, VGfloat * height);
VG_API_CALL void vgDrawPath(VGPath path, VGbitfield paintModes);

/* Paint */
VG_API_CALL VGPaint vgCreatePaint(void);
VG_API_CALL void vgDestroyPaint(VGPaint paint);
VG_API_CALL void vgSetPaint(VGPaint paint, VGbitfield paintModes);
VG_API_CALL VGPaint vgGetPaint(VGPaintMode paintMode);
VG_API_CALL void vgSetColor(VGPaint paint, VGuint rgba);
VG_API_CALL VGuint vgGetColor(VGPaint paint);
VG_API_CALL void vgPaintPattern(VGPaint paint, VGImage pattern);

/* Images */
VG_API_CALL VGImage vgCreateImage(VGImageFormat format,
 VGint width, VGint height,
 VGbitfield allowedQuality);
VG_API_CALL void vgDestroyImage(VGImage image);
VG_API_CALL void vgClearImage(VGImage image,
 VGint x, VGint y, VGint width, VGint height);
VG_API_CALL void vgImageSubData(VGImage image,
 const void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint x, VGint y, VGint width, VGint height);
VG_API_CALL void vgGetImageSubData(VGImage image,
 void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint x, VGint y,
 VGint width, VGint height);
VG_API_CALL VGImage vgChildImage(VGImage parent,
 VGint x, VGint y, VGint width, VGint height);
VG_API_CALL VGImage vgGetParent(VGImage image);
VG_API_CALL void vgCopyImage(VGImage dst, VGint dx, VGint dy,
 VGImage src, VGint sx, VGint sy,
 VGint width, VGint height,
 VGboolean dither);
VG_API_CALL void vgDrawImage(VGImage image);
VG_API_CALL void vgSetPixels(VGint dx, VGint dy,
 VGImage src, VGint sx, VGint sy,
 VGint width, VGint height);
VG_API_CALL void vgWritePixels(const void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint dx, VGint dy,
 VGint width, VGint height);
VG_API_CALL void vgGetPixels(VGImage dst, VGint dx, VGint dy,
 VGint sx, VGint sy,
 VGint width, VGint height);
VG_API_CALL void vgReadPixels(void * data, VGint dataStride,
 VGImageFormat dataFormat,
 VGint sx, VGint sy,
 VGint width, VGint height);
VG_API_CALL void vgCopyPixels(VGint dx, VGint dy,
 VGint sx, VGint sy,
 VGint width, VGint height);

179

OpenVG 1.0 Specification 18 – Appendix B: Header Files

/* Image Filters */
VG_API_CALL void vgColorMatrix(VGImage dst, VGImage src,
 const VGfloat * matrix);
VG_API_CALL void vgConvolve(VGImage dst, VGImage src,
 VGint kernelWidth, VGint kernelHeight,
 VGint shiftX, VGint shiftY,
 const VGshort * kernel,
 VGfloat scale,
 VGfloat bias,
 VGTilingMode tilingMode);
VG_API_CALL void vgSeparableConvolve(VGImage dst, VGImage src,
 VGint kernelWidth,
 VGint kernelHeight,
 VGint shiftX, VGint shiftY,
 const VGshort * kernelX,
 const VGshort * kernelY,
 VGfloat scale,
 VGfloat bias,
 VGTilingMode tilingMode);
VG_API_CALL void vgGaussianBlur(VGImage dst, VGImage src,
 VGfloat stdDeviationX,
 VGfloat stdDeviationY,
 VGTilingMode tilingMode);
VG_API_CALL void vgLookup(VGImage dst, VGImage src,
 const VGubyte * redLUT,
 const VGubyte * greenLUT,
 const VGubyte * blueLUT,
 const VGubyte * alphaLUT,
 VGboolean outputLinear,
 VGboolean outputPremultiplied);
VG_API_CALL void vgLookupSingle(VGImage dst, VGImage src,
 const VGuint * lookupTable,
 VGImageChannel sourceChannel,
 VGboolean outputLinear,
 VGboolean outputPremultiplied);

/* Hardware Queries */
VG_API_CALL VGHardwareQueryResult vgHardwareQuery(VGHardwareQueryType key,
 VGint setting);

/* Renderer and Extension Information */
VG_API_CALL const VGubyte * vgGetString(VGStringID name);

#ifdef __cplusplus
} /* extern "C" */
#endif

#endif /* _OPENVG_H */

180

OpenVG 1.0 Specification 18 – Appendix B: Header Files

vgu.h

/**
 * *
 * Sample implementation of vgu.h, version 1.0.1 *
 * *
 * Copyright © 2005-2007 The Khronos Group *
 * *
 **/

#ifndef _VGU_H
#define _VGU_H

#ifdef __cplusplus
extern "C" {
#endif

#include <vg/openvg.h>

#define VGU_VERSION_1_0 1

#ifndef VGU_API_CALL
#define VGU_API_CALL extern
#endif

typedef enum {
 VGU_NO_ERROR = 0,
 VGU_BAD_HANDLE_ERROR = 0xF000,
 VGU_ILLEGAL_ARGUMENT_ERROR = 0xF001,
 VGU_OUT_OF_MEMORY_ERROR = 0xF002,
 VGU_PATH_CAPABILITY_ERROR = 0xF003,
 VGU_BAD_WARP_ERROR = 0xF004
} VGUErrorCode;

typedef enum {
 VGU_ARC_OPEN = 0xF100,
 VGU_ARC_CHORD = 0xF101,
 VGU_ARC_PIE = 0xF102
} VGUArcType;

VGU_API_CALL VGUErrorCode vguLine(VGPath path,
 VGfloat x0, VGfloat y0,
 VGfloat x1, VGfloat y1);

VGU_API_CALL VGUErrorCode vguPolygon(VGPath path,
 const VGfloat * points, VGint count,
 VGboolean closed);

VGU_API_CALL VGUErrorCode vguRect(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height);

VGU_API_CALL VGUErrorCode vguRoundRect(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height,
 VGfloat arcWidth, VGfloat arcHeight);

181

OpenVG 1.0 Specification 18 – Appendix B: Header Files

VGU_API_CALL VGUErrorCode vguEllipse(VGPath path,
 VGfloat cx, VGfloat cy,
 VGfloat width, VGfloat height);

VGU_API_CALL VGUErrorCode vguArc(VGPath path,
 VGfloat x, VGfloat y,
 VGfloat width, VGfloat height,
 VGfloat startAngle, VGfloat angleExtent,
 VGUArcType arcType);

VGU_API_CALL VGUErrorCode vguComputeWarpQuadToSquare(VGfloat sx0, VGfloat sy0,
 VGfloat sx1, VGfloat sy1,
 VGfloat sx2, VGfloat sy2,
 VGfloat sx3, VGfloat sy3,
 VGfloat * matrix);

VGU_API_CALL VGUErrorCode vguComputeWarpSquareToQuad(VGfloat dx0, VGfloat dy0,
 VGfloat dx1, VGfloat dy1,
 VGfloat dx2, VGfloat dy2,
 VGfloat dx3, VGfloat dy3,
 VGfloat * matrix);

VGU_API_CALL VGUErrorCode vguComputeWarpQuadToQuad(VGfloat dx0, VGfloat dy0,
 VGfloat dx1, VGfloat dy1,
 VGfloat dx2, VGfloat dy2,
 VGfloat dx3, VGfloat dy3,
 VGfloat sx0, VGfloat sy0,
 VGfloat sx1, VGfloat sy1,
 VGfloat sx2, VGfloat sy2,
 VGfloat sx3, VGfloat sy3,
 VGfloat * matrix);

#ifdef __cplusplus
} /* extern "C" */
#endif

#endif /* #ifndef _VGU_H */

182

OpenVG 1.0 Specification 19 – Bibliography

19 Bibliography
ADOB99 Adobe Systems Incorporated: PostScript Language Reference Manual

(third edition), Addison-Wesley, Reading, MA, 1999.

ADOB06a Adobe Systems Incorporated: PDF Reference (sixth edition):
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference.pdf

ADOB06b Macromedia, Inc., Macromedia Flash Developer Center:
http://www.adobe.com/devnet/flash

FvDFH95 Foley J., A. van Dam, S. Feiner and J. Hughes, Computer Graphics:
Principles and Practice (second edition), Addison-Wesley, Reading, MA, 1995.

HECK89 Heckbert, Paul, Fundamentals of Texture Mapping and Image Warping,
Master’s thesis, UCB/CSD 89/516, CS Division, U.C. Berkeley, June 1989.

ITU90 Recommendation ITU-R BT.709, Basic Parameter Values for the HDTV
Standard for the Studio and for International Programme Exchange (1990), ITU,
Geneva, Switzerland.

PORT84 Porter, T. and T. Duff, “Compositing Digital Images,” Computer
Graphics 18(3):253-259 (proc. SIGGRAPH 1984), July 1984.

POYN03 Poynton, Charles, Digital Video and HDTV Algorithms and Interfaces,
Morgan Kaufmann, San Francisco, 2003.

sRGB99 IEC 61966-2-1, Multimedia systems and equipment — Colour
measurement and management — Part 2-1: Default RGB colour space — sRGB:
http://www.w3.org/Graphics/Color/sRGB.html

SUN04 Sun Microsystems, Inc., Java 2D API Home Page:
http://java.sun.com/products/java-media/2D

SVGF05 W3C Recommendation, Scalable Vector Graphics (SVG) Full 1.2
Specification: http://www.w3.org/TR/SVG12

SVGT06 W3C Recommendation, Scalable Vector Graphics (SVG) Tiny 1.2
Specification: http://www.w3.org/TR/SVGMobile12

WOLB90 Wolberg, G., Digital Image Warping, IEEE Computer Society Press,
Washington, D.C., 1990.

WYSZ00 Wyszecki, G. and W. S. Stiles, Color Science: Concepts and
Methods, Quantitative Data and Formulae, Wiley-Interscience, New York, 2000.

183

http://www.w3.org/TR/SVGMobile12/
http://www.w3.org/TR/SVG12
http://java.sun.com/products/java-media/2D/
http://www.w3.org/Graphics/Color/sRGB.html
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference.pdf

OpenVG 1.0 Specification 20 – Document History

20 Document History
Version 1.0 ratified August 2005

Version 1.0.1 ratified January 2007

Changes from version 1.0 (by section number):

• 3.2 – clarification: VGboolean is an enumeration
• 3.4.1 – provide further explanation of linear pixel formats
• 5.2 – new behavior: restrict values of count parameter in vgGet/Set*v,

vgGet/SetParameter*v; describe error behavior of getters
• 5.2.1 – change default value of VG_FILTER_FORMAT_LINEAR and
VG_RENDERING_QUALITY; add VG_SCREEN_LAYOUT parameter; add
VG_STROKE_DASH_PHASE_RESET parameter

• 6.2 – define behavior of VG_SCREEN_LAYOUT parameter
• 8.3.4-5 – clarify join behavior for smooth segments following line segments
• 8.4 – change behavior of elliptical arcs with one radius equal to 0
• 8.5 – typo: VG_PATH_FORMAT_STANDARD is passed to vgCreatePath, not

vgAppendPathData
• 8.5.2 – clarification: conversion of path segments from relative to absolute form

takes place during rendering
• 8.6.7-8 – new behavior: vgTransformPath and vgInterpolatePath promote HLINE

and VLINE segments to general (2-coordinate) form; the parameterization of transformed
elliptical arc segments is undefined

• 8.6.11 – clarification: normalization of tangents; approximate computation of path
length

• 8.7.1 – clarification: implicit closure takes place during rendering
• 8.7.3 – clarification: definition and illustration of the miter length
• 8.7.4 – clarification: stroke generation takes place in user coordinates.
• 8.7.4-5 – Add new behavior controlled by VG_STROKE_DASH_PHASE_RESET
• 9 – paint coordinates must be evaluated within 1/8 of a pixel; clarify source of

user transform Tu
• 9.3.3 – add VG_PAINT_COLOR_RAMP_PREMULTIPLIED flag to control whether

gradient colors are interpolated in premultiplied form
• 9.3.3 – new behavior: count must be a multiple of 5 in vgSetParameter for color

ramp stops (see 5.2); simplify description of rules for repeat and reflect pad modes
• 10.2 – add new values to VGImageFormat enumeration
• 10.5 – clarification: vgImageSubData clamps premultiplied color values to their

corresponding alpha values
• 10.8 – clarify behavior of VG_DRAW_IMAGE_NORMAL when the source has an

alpha channel; new behavior: when a projective transformation is enabled, vgDrawImage
always uses VG_DRAW_IMAGE_NORMAL mode; clarify behavior when a linear source
image is used in VG_DRAW_IMAGE_MULTIPLY mode

• 10.9.1 – clarification: vgWritePixels clamps premultiplied color values to their
corresponding alpha values

• 12.4 – clarification: input color values are clamped at 1
• 14.3.2 – clarify display dependency of vgGetString; vgGetString(VG_VERSION)

returns the specification version.

184

OpenVG 1.0 Specification 20 – Document History

• 16.1.6 – typo: error in vguArc pseudo-code
• 18 – remove enumerated values VG_PATH_DATATYPE_INVALID and
VG_IMAGE_FORMAT_INVALID

21 Acknowledgments
This specification was developed by the Khronos OpenVG working group:
• Andrzej Mamona, AMD, Chair
• Daniel Rice, Google, Specification Editor
• Koichi Mori (森 浩一), Nokia, Past Chair
• Neil Trevett, NVIDIA, Past Chair
• Gary Pallett, NVIDIA
• Mike Agar, ALT Software
• Espen Åmodt, ARM
• Frode Heggelund, ARM
• Borgar Ljosland, ARM
• Ed Plowman, ARM
• TK Chan (陳鼎鍵), AMD
• Chris Grimm, AMD
• Marko Laiho, AMD
• Petri Nordlund, AMD
• Kimihiko Sato, AMD
• Robert Simpson, AMD
• Mika Tuomi, AMD
• Keisuke Kiri (桐井 敬祐), DMP
• Eisaku Oobuchi (大渕 栄作), DMP
• Jacob Ström, Ericsson
• Claude Knaus, Esmertec
• Kimball, ETRI
• Kwang-Ho Yang (양 광호), ETRI
• Brian Murray, Freescale
• Yoshikazu Saka (坂 義和), Fujitsu
• Tero Sarkkinen, Futuremark
• Mark Callow, HI Corporation
• Naoya Yamamoto (山本 直也), HI Corporation
• Antti Hätälä, Hybrid Graphics
• Harri Holopainen, Hybrid Graphics
• Petri Kero, Hybrid Graphics
• Ville Miettinen, Hybrid Graphics
• Kalle Raita, Hybrid Graphics
• Jussi Räsänen, Hybrid Graphics
• Christofer Åkersten, Ikivo
• Ola Andersson, Ikivo
• Ben Bowman, Imagination Technologies
• Simon Fenney, Imagination Technologies
• Mohit Mehta, Imagination Technologies
• Alex Walters, Imagination Technologies
• Randy Xu, Intel
• Hang-Shin Cho (조 항신), LG Electronics

• Woo-Seon Kim (김 우섭), LG Electronics
• Yong-Moo Kim (김 용무), LG Electronics
• Masaki Hamada (濱田雅樹), Mitsubishi Electric
• Hiroyasu Negishi (根岸博康), Mitsubishi Electric
• Vladimir Levantovsky, Monotype Imaging
• Chris Tremblay, Motorola
• Hwanyong Lee (이 환용), HUONE
• Junyoung Lee (이 준영), HUONE
• Hyunchan Sung(성 현찬), HUONE
• Tomi Aarnio, Nokia
• Tolga Çapın, Nokia
• Suresh Chitturi, Nokia
• Sila Kayo, Nokia
• Clay Montgomery, Nokia
• Tero Pihlajakoski, Nokia
• Kari Pulli, Nokia
• Jani Vaarala, Nokia
• Rakesh Jain, NVIDIA
• Tom McReynolds, NVIDIA
• Chris Wynn, NVIDIA
• Mathias Agopian, PalmSource
• Toshiki Hijjri (樋尻 利紀), Panasonic
• Andy Methley, Panasonic
• Angus Dorbie, Qualcomm
• Keechang Lee (이 기창), Samsung
• Jitaek Lim (임 지택), Samsung
• Jon Leech, SGI
• Thomas Tannert, SGI
• Rémi Arnaud, SONY
• Axel Mamode, SONY
• Chris Campbell, Sun Microsystems
• Jerry Evans, Sun Microsystems
• Sean Ellis, Superscape
• Robert Palmer, Symbian
• Bill Pinnell, Symbian
• Lane Roberts, Symbian
• Jay Abbott, Tao Group
• Bryce Johnstone, Texas Instruments
• Tom Olson, Texas Instruments
• San-Soo Kim (김 산수), Wow4M
• Sung-Jae Kim (김 성재), Wow4M

185

OpenVG 1.0 Specification 21 – Acknowledgments

Special thanks to Jussi Räsänen of Hybrid Graphics; Petri Nordlund, Robert Simpson,
and Mika Tuomi of AMD (formerly Bitboys); and Tuomas Lukka, Jarno Paananen, and
Sami Tammilehto of the former Bitboys Technology Research Group for creating the
reference implementations; and to those who contributed to the conformance test suite:
Hwanyong Lee, Junyoung Lee, and Hyunchan Sung of HUONE; TK Chan, Robert
Simpson, Valtteri Rantala, Sami Tammilehto, Mika Tuomi, and Miikka Kangasluoma of
AMD; and Jussi Räsänen and Kalle Raita of Hybrid Graphics.

Thanks are also due to the external reviewers who helped to improve the specification.

22 Indices

Index of Tables

Table 1: Naming and Typographical Conventions..3
Table 2: Pixel Format Conversions...12
Table 3: State Elements of a Context...17
Table 4: Default Parameter Values for a Context...26
Table 5: VGMaskOperation Equations..43
Table 6: Client-Side Path Segment Commands..53
Table 7: Client-Side Path Coordinate Datatypes..54
Table 8: VGPathParamType Datatypes...63
Table 9: Corresponding Angles and Miter Limits...82
Table 10: VGPaintParamType Defaults...93
Table 11: Symbols Used in Image Format Names...110
Table 12: Image Format Pixel Sizes..111
Table 13: Porter-Duff Blending Modes..141
Table 14: Additional Blending Equations...142
Table 15: Query Key Enumeration Types...143
Table 16: Center Ellipse Parameters...160
Table 17: Endpoint Ellipse Parameters..161

Index of Figures

Figure 1: The OpenVG Pipeline..4
Figure 2: VGPixelLayout Values...32
Figure 3: Coordinates, Transformation, Clipping, and Scissoring...........................34
Figure 4: Smooth Curve Construction...48
Figure 5: Elliptical Arcs...50
Figure 6: Segment Reference Points...51
Figure 7: Segment Type Marker Layout..54
Figure 8: Even/Odd Fill Rule..76

186

OpenVG 1.0 Specification 22 – Indices

Figure 9: Creating Holes with Subpaths...77
Figure 10: Implicit Closure of Filled Paths..78
Figure 11: Stroked Paths Have No Implicit Closure...78
Figure 12: Each Stroke Applies a Single Layer of Paint..79
Figure 13: End Cap Styles...80
Figure 14: End Cap Styles with Additional Geometry Highlighted.......................80
Figure 15: Line Join Styles..81
Figure 16: Line Join Styles with Additional Geometry Highlighted.......................81
Figure 17: Dash Pattern and Phase Example..83
Figure 18: Radial Gradient Function..98
Figure 19: Color Ramp Pad Modes...101
Figure 20: Linear Gradients..103
Figure 21: Centered and Non-Centered Radial Gradients......................................104
Figure 22: Color Ramp used for Gradient Examples..104
Figure 23: Convolution With a Flipped Kernel..134
Figure 24: Round Rectangle Parameters...154
Figure 25: VGUArcType Values..155
Figure 26: vguArc Parameters...157

Alphabetical Index
Affine transformations....................34, 35, 162, 168, 169
Alpha masks..6, 19, 41-43
Color paint..94, 151
Double-buffered rendering....................................19, 21
EGL..2, 16, 18-20, 42, 148-150
EGL_OPENVG_API..19
EGL_OPENVG_BIT..2, 19
EGL_OPENVG_IMAGE...20
eglBindAPI...2, 19
EGLBoolean..19-21
EGLClientBuffer..20
EGLConfig...2, 18-20, 42
EGLContext..19, 20
eglCreateContext...2, 19
eglCreatePbufferFromClientBuffer.........................2, 20
eglCreateWindowSurface...................................2, 19, 20
eglDestroyContext...2, 20
EGLDisplay...19-21, 148
EGLenum..19, 20
eglGetCurrentContext...2, 20
EGLint...19, 20
eglMakeCurrent...2, 20
EGLSurface..19-21
eglSwapBuffers..2, 21
Ellipses....7, 8, 46, 49, 51, 58, 71, 156, 157, 162-169, 184,

186
Endianness..53, 112
Fill rule..5, 76, 77, 79, 88
Flash...1, 183
Gradient paint..........................4, 90, 93, 98, 99, 124, 174
Handles....16, 28, 29, 44, 58, 60, 62, 64-71, 73-75, 88, 90-
92, 95, 106, 115-123, 126, 128, 134, 136, 138-141, 153-
155, 157, 159
Image warping...7, 160, 161, 182
Java2D...1
khronos_float...8, 170
khronos_int16_t...7, 170
khronos_int32_t...8, 170
khronos_int8_t...7, 170
khronos_types.h...7, 8, 170
khronos_uint32_t...8, 170
khronos_uint8_t...7, 170
NativeWindowType...20
OpenGL...2, 10, 16, 33, 36, 147
OPENVG_VERSION_1_0...................................1, 7, 170
openvg.h..7, 147, 148, 170, 181
Pattern paint.....6, 16, 24, 80, 82-84, 86, 89, 90, 105, 106,
108, 115, 124, 125, 179
PostScript..1, 183
Premultiplied alpha.....9, 12, 13, 23, 45, 90, 94, 95, 100-

187

OpenVG 1.0 Specification 22 – Indices

103, 106, 107, 111, 112, 118, 123, 126, 131, 132, 142,
143, 171, 184
Scaling.........................11, 13, 34, 35, 79, 86, 87, 162, 163
Scissoring..................6, 17, 23, 41, 45, 123, 127, 128, 171
Shearing...34, 35, 79, 86, 87
Single-buffered rendering..19
Smooth segments...48, 53, 184
Stops...100-104, 184
Surface coordinates...........................5, 33-35, 86-90, 122
SVG..1, 53, 86, 143, 163, 183
Tiling of images........5, 14, 22, 26, 93, 106-108, 135-139,
171, 175, 180
Transformations.....5, 6, 16, 17, 30, 32-36, 38-40, 68, 74,
79, 86, 87, 90, 122-125, 150, 159-162, 164, 165, 168, 169,
184
Translation......................33-35, 39, 40, 86, 135, 137, 168
User coordinates......................................5, 33, 70, 79, 80
VG_A_8...110, 112, 113, 140, 175
VG_ABSOLUTE.......................................54, 55, 172, 173
VG_ALPHA....................................26, 132, 133, 141, 176
VG_BAD_HANDLE_ERROR..18, 28, 29, 44, 62, 64-68,
70, 71, 73-75, 88, 91, 92, 95, 106, 116-123, 126, 128, 134,
136, 138-141, 170
VG_BLEND_ADDITIVE....................................144, 176
VG_BLEND_DARKEN...............................143, 144, 176
VG_BLEND_DST_IN..144, 176
VG_BLEND_DST_OVER...................................144, 176
VG_BLEND_LIGHTEN..............................143, 144, 176
VG_BLEND_MODE......................3, 22, 24, 26, 144, 171
VG_BLEND_MULTIPLY............................143, 144, 176
VG_BLEND_SCREEN................................143, 144, 176
VG_BLEND_SRC.....................................24, 26, 144, 176
VG_BLEND_SRC_IN..144, 176
VG_BLEND_SRC_OVER........................24, 26, 144, 176
VG_BLUE..26, 133, 141, 176
VG_BW_1.....110, 112, 113, 118, 119, 126, 128, 132, 140,
175
VG_CAP_BUTT...26, 82, 85, 174
VG_CAP_ROUND..82, 85, 174
VG_CAP_SQUARE...................................82, 85, 89, 174
VG_CLEAR_COLOR........................22, 26, 45, 117, 171
VG_CLEAR_MASK...42-44, 172
VG_CLOSE_PATH. 51, 52, 54, 55, 66, 69, 70, 78, 83, 84,
153-156, 158, 172
VG_COLOR_RAMP_SPREAD_PAD.........93, 101, 175
VG_COLOR_RAMP_SPREAD_REFLECT......101, 175
VG_COLOR_RAMP_SPREAD_REPEAT........101, 175
VG_CUBIC_TO......................51, 52, 55, 69, 83, 172, 173
VG_DRAW_IMAGE_MULTIPLY.6, 122, 124, 176, 184
VG_DRAW_IMAGE_NORMAL.....6, 26, 122-124, 176,
184
VG_DRAW_IMAGE_STENCIL.............6, 122, 124, 176

VG_EVEN_ODD..26, 87, 174
VG_EXTENSIONS.......................................148, 149, 177
VG_FALSE....8, 26, 41, 42, 45, 69, 84, 131, 165, 166, 170
VG_FILL_MASK..43, 44, 172
VG_FILL_PATH................................88, 89, 91, 124, 174
VG_FILL_RULE...................................22, 26, 87, 88, 171
VG_FILTER_CHANNEL_MASK..........23, 26, 132, 171
VG_FILTER_FORMAT_LINEAR..23, 26, 131, 171, 184
VG_FILTER_FORMAT_PREMULTIPLIED.....23, 131,
132, 171
VG_GREEN..26, 133, 141, 176
VG_HARDWARE_ACCELERATED................145, 177
VG_HARDWARE_UNACCELERATED.........145, 177
VG_HLINE_TO............52, 53, 55, 68, 154, 155, 172, 173
VG_ILLEGAL_ARGUMENT_ERROR....18, 24, 25, 28,
29, 37, 38, 44, 45, 61, 66, 67, 71, 73-75, 88, 92, 115, 117-
120, 122, 126-130, 134, 136, 138-141, 146, 170
VG_IMAGE_FORMAT.......................116, 145, 176, 185
VG_IMAGE_FORMAT_INVALID...........................185
VG_IMAGE_FORMAT_QUERY.......................145, 176
VG_IMAGE_HEIGHT................................116, 117, 176
VG_IMAGE_IN_USE_ERROR.......16, 18, 44, 106, 117-
123, 126, 128, 134, 136, 138-141, 171
VG_IMAGE_MODE.........................22, 26, 122-124, 171
VG_IMAGE_QUALITY..22, 26, 106, 113-115, 123, 171,
176
VG_IMAGE_QUALITY_BETTER.....106, 113, 114, 176
VG_IMAGE_QUALITY_FASTER......26, 106, 113, 114,
176
VG_IMAGE_QUALITY_NONANTIALIASED.....106,
113-115, 176
VG_IMAGE_WIDTH..116, 176
VG_INTERSECT_MASK......................................43, 172
VG_INVALID_HANDLE........2, 15, 44, 60, 91-93, 106,
115, 170
VG_JOIN_BEVEL..85, 174
VG_JOIN_MITER......................................26, 85, 89, 174
VG_JOIN_ROUND...85, 174
VG_LCCWARC_TO..52, 55, 173
VG_LCWARC_TO..52, 55, 173
VG_LINE_TO.51, 52, 55, 68-70, 72, 78, 83, 84, 153, 158,
172, 173
VG_lL_8..110, 113, 132, 140, 175
VG_lRGBA_8888..................110, 112, 113, 118, 126, 175
VG_lRGBA_8888_PRE........110, 112, 113, 118, 126, 175
VG_lRGBX_8888..................................110, 112, 113, 175
VG_MASKING...23, 26, 42, 171
VG_MATRIX_FILL_PAINT_TO_USER..27, 36, 87, 88,
90, 172
VG_MATRIX_IMAGE_USER_TO_SURFACE. .27, 36-
38, 172
VG_MATRIX_MODE................................22, 26, 36, 171

188

OpenVG 1.0 Specification 22 – Indices

VG_MATRIX_PATH_USER_TO_SURFACE.....27, 36,
87-89, 172
VG_MATRIX_STROKE_PAINT_TO_USER.27, 36, 89,
90, 172
VG_MAX_COLOR_RAMP_STOPS..5, 23, 27, 101-103,
171
VG_MAX_DASH_COUNT............4, 23, 27, 85, 86, 171
VG_MAX_FLOAT...................................1, 9, 23, 27, 172
VG_MAX_IMAGE_BYTES.........5, 23, 27, 114, 115, 171
VG_MAX_IMAGE_HEIGHT.....5, 23, 27, 114, 115, 171
VG_MAX_IMAGE_PIXELS.......5, 23, 27, 114, 115, 171
VG_MAX_IMAGE_WIDTH......5, 23, 27, 114, 115, 171
VG_MAX_KERNEL_SIZE..........6, 23, 27, 134, 136, 171
VG_MAX_SCISSOR_RECTS................3, 23, 27, 41, 171
VG_MAX_SEPARABLE_KERNEL_SIZE.......6, 23, 27,
134, 138, 171
VG_MAXINT. . .1, 9, 41, 85, 101, 114, 115, 134, 135, 170
VG_MAXSHORT...1, 9, 170
VG_MOVE_TO. .51-53, 55, 70, 72, 78, 83, 153-156, 158,
172, 173
VG_NO_ERROR..18, 170
VG_NON_ZERO...87, 174
VG_OUT_OF_MEMORY_ERROR................17, 18, 170
VG_PAINT_COLOR..........93-95, 97, 101-103, 174, 184
VG_PAINT_COLOR_RAMP_SPREAD_MODE.....93,
102, 103, 174
VG_PAINT_COLOR_RAMP_STOPS.93, 102, 103, 174
VG_PAINT_LINEAR_GRADIENT..............93, 98, 174
VG_PAINT_PATTERN_TILING_MODE..93, 108, 174
VG_PAINT_RADIAL_GRADIENT......93, 99, 100, 174
VG_PAINT_TYPE..............93, 94, 98-100, 106, 108, 174
VG_PAINT_TYPE_COLOR...................93, 94, 106, 174
VG_PAINT_TYPE_LINEAR_GRADIENT. .94, 98, 174
VG_PAINT_TYPE_PATTERN............94, 106, 108, 174
VG_PAINT_TYPE_RADIAL_GRADIENT.94, 99, 100,
174
VG_PATH_BIAS..63, 64, 174
VG_PATH_CAPABILITY_ALL....................59, 60, 173
VG_PATH_CAPABILITY_APPEND_FROM.....59, 60,
65, 173
VG_PATH_CAPABILITY_APPEND_TO.....59, 60, 65,
66, 153-155, 157, 159, 173
VG_PATH_CAPABILITY_ERROR.....18, 65-68, 70, 71,
73-75, 170
VG_PATH_CAPABILITY_INTERPOLATE_FROM....
59, 60, 70, 173
VG_PATH_CAPABILITY_INTERPOLATE_TO.....59,
60, 70, 173
VG_PATH_CAPABILITY_MODIFY......59, 60, 67, 173
VG_PATH_CAPABILITY_PATH_BOUNDS.....59, 60,
74, 173
VG_PATH_CAPABILITY_PATH_LENGTH.....59, 60,

70, 71, 173
VG_PATH_CAPABILITY_PATH_TRANSFORMED_
BOUNDS...59, 60, 75, 173
VG_PATH_CAPABILITY_POINT_ALONG_PATH...
59, 60, 72, 73, 173
VG_PATH_CAPABILITY_TANGENT_ALONG_PA
TH..59, 60, 72, 73, 173
VG_PATH_CAPABILITY_TRANSFORM_FROM..59,
60, 68, 173
VG_PATH_CAPABILITY_TRANSFORM_TO. .59, 60,
68, 173
VG_PATH_DATATYPE......53, 54, 63, 66, 67, 145, 172,
173, 176, 185
VG_PATH_DATATYPE_F...................................54, 172
VG_PATH_DATATYPE_INVALID.........................185
VG_PATH_DATATYPE_QUERY.....................145, 176
VG_PATH_DATATYPE_S_16.............................54, 172
VG_PATH_DATATYPE_S_32.............................54, 172
VG_PATH_DATATYPE_S_8...............................54, 172
VG_PATH_FORMAT......3, 50, 60, 63, 66, 172, 173, 184
VG_PATH_FORMAT_STANDARD.......3, 50, 60, 172,
184
VG_PATH_NUM_COORDS..........................63, 64, 174
VG_PATH_NUM_SEGMENTS.....................63, 64, 174
VG_PATH_SCALE..63, 174
VG_PIXEL_LAYOUT........................23, 26, 32, 171, 172
VG_PIXEL_LAYOUT_BGR_HORIZONTAL....32, 172
VG_PIXEL_LAYOUT_BGR_VERTICAL...........32, 172
VG_PIXEL_LAYOUT_RGB_HORIZONTAL....32, 172
VG_PIXEL_LAYOUT_RGB_VERTICAL...........32, 172
VG_PIXEL_LAYOUT_UNKNOWN.............26, 32, 172
VG_QUAD_TO............................52, 55, 69, 83, 172, 173
VG_RED..26, 133, 141, 176
VG_RELATIVE..................................54, 55, 66, 172, 173
VG_RENDERER..148, 149, 177
VG_RENDERING_QUALITY. 22, 26, 31, 171, 172, 184
VG_RENDERING_QUALITY_BETTER......26, 31, 172
VG_RENDERING_QUALITY_FASTER............31, 172
VG_RENDERING_QUALITY_NONANTIALIASED.
31, 172
VG_RGBA_s8888_PRE.......110, 112, 113, 118, 126, 175
VG_SCCWARC_TO................52, 55, 155, 156, 158, 173
VG_SCISSOR_RECTS................................22, 26, 41, 171
VG_SCISSORING................................23, 26, 41, 45, 171
VG_SCUBIC_TO..52, 55, 69, 173
VG_SCWARC_TO...................................52, 55, 158, 173
VG_SET_MASK...43, 172
VG_sL_8................................110, 112, 113, 132, 140, 175
VG_SQUAD_TO..52, 55, 173
VG_sRGB_565......................................110, 112, 113, 175
VG_sRGBA_4444...110, 113, 175
VG_sRGBA_5551...110, 113, 175

189

OpenVG 1.0 Specification 22 – Indices

VG_sRGBA_8888.................110, 112, 113, 118, 126, 175
VG_sRGBX_8888.................................110, 112, 113, 175
VG_STROKE_CAP_STYLE................22, 26, 85, 89, 171
VG_STROKE_DASH_PATTERN. 22, 24, 26, 85, 86, 89,
171
VG_STROKE_DASH_PHASE....22, 26, 86, 89, 171, 184
VG_STROKE_JOIN_STYLE...............22, 26, 85, 89, 171
VG_STROKE_LINE_WIDTH.............22, 26, 84, 89, 171
VG_STROKE_MITER_LIMIT............22, 26, 85, 89, 171
VG_STROKE_PATH..................................87-89, 91, 174
VG_SUBTRACT_MASK.......................................43, 172
VG_TILE_FILL...........................22, 26, 93, 107, 171, 175
VG_TILE_FILL_COLOR.........................22, 26, 107, 171
VG_TILE_PAD...107, 175
VG_TILE_REFLECT..107, 175
VG_TILE_REPEAT..107, 175
VG_TRUE...8, 41, 42, 69, 89, 93, 101, 121, 131, 165, 166,
170
VG_UNION_MASK..43, 172
VG_UNSUPPORTED_IMAGE_FORMAT_ERROR.....
18, 115, 118, 119, 127, 129, 170
VG_UNSUPPORTED_PATH_FORMAT_ERROR. .18,
61, 170
VG_VENDOR..148, 177
VG_VERSION......................................148, 149, 177, 184
vgAppendPath.......................................4, 58, 59, 65, 178
vgAppendPathData.......................4, 58, 59, 66, 178, 184
VGbitfield...1, 8, 26, 61, 62, 64, 65, 88, 91, 115, 170, 178,
179
VGBlendMode......................................6, 14, 26, 144, 176
VGboolean.....1, 8, 14, 26, 70, 86, 93, 102, 103, 121, 140,
153, 165, 166, 170, 178-181, 184
VGbyte...1, 7, 170
VGCapStyle..................................3, 4, 14, 26, 84, 85, 174
vgChildImage.............................6, 16, 115, 120, 123, 179
vgClear..3, 22, 44, 45, 171, 178
vgClearImage...5, 117, 179
vgClearPath..3, 57, 60, 62, 178
vgColorMatrix..6, 133, 180
VGColorRampSpreadMode.......5, 14, 93, 101-103, 175
vgConvolve..6, 134, 135, 180
vgCopyImage...6, 121, 179
vgCopyPixels...6, 130, 179
vgCreateImage.................5, 114, 115, 123, 127, 129, 179
vgCreatePaint...4, 91, 179
vgCreatePath.............................3, 50, 57, 59-61, 178, 184
vgDestroyImage...............5, 115, 116, 120, 127, 129, 179
vgDestroyPaint..5, 91, 179
vgDestroyPath..................................3, 57, 59, 60, 62, 178
vgDrawImage...................5, 6, 35, 90, 122-124, 179, 184
vgDrawPath................................4, 5, 80, 87-90, 123, 179
VGErrorCode..2, 14, 18, 171, 177

VGFillRule..4, 14, 26, 87, 88, 174
vgFinish...2, 21, 90, 177
VGfloat.....1, 3, 8, 18, 23-27, 29, 37-40, 45, 61, 63, 64, 70,
73-75, 84-87, 89, 93-95, 97, 98, 100, 103, 133, 135, 137,
139, 153-156, 158, 160, 161, 170, 177-182
vgFlush..2, 21, 177
vgGaussianBlur........................6, 134, 135, 138, 139, 180
vgGet.....2, 9, 22, 23, 25, 27, 32, 41, 85, 86, 101, 114, 115,
134, 135, 177, 184
vgGetColor...5, 95, 179
vgGetError..2, 17, 18, 152, 177
vgGetImageSubData...............................5, 119, 129, 179
vgGetMatrix...2, 38, 178
vgGetPaint..5, 88, 92, 179
vgGetParameter......2, 22, 23, 27, 28, 58, 62, 92, 103, 116
vgGetParameterf..................................28, 29, 63, 64, 177
vgGetParameterfv......................................28, 29, 97, 177
vgGetParameteri......28, 29, 63, 64, 66, 67, 116, 117, 177
vgGetParameteriv..28, 29, 178
vgGetParameterVectorSize........................2, 28, 29, 177
vgGetParent..6, 121, 179
vgGetPathCapabilities..........................4, 58, 64, 65, 178
vgGetPixels...6, 127-129, 179
vgGetString.......................................7, 147-149, 180, 184
vgGetVectorSize..2, 25, 177
VGHandle.....2, 15, 22, 27-29, 58, 91, 113, 170, 173, 174,
176-178
vgHardwareQuery..................................6, 145, 146, 180
VGHardwareQueryResult........6, 14, 145, 146, 177, 180
VGHardwareQueryType..........6, 14, 145, 146, 176, 180
VGImage.....5, 15, 19, 20, 27, 44, 106, 108, 113, 115-121,
123, 126-129, 133, 135, 137, 139, 140, 176, 178-180
VGImageChannel......6, 14, 132, 133, 140, 141, 176, 180
VGImageFormat.5, 14, 109, 111, 115-119, 126-129, 145,
176, 179, 184
VGImageMode.....................................6, 14, 26, 122, 176
VGImageParamType.................................5, 14, 116, 176
VGImageQuality..........................5, 14, 26, 113-115, 176
vgImageSubData......................5, 117-119, 127, 179, 184
VGint..1, 8, 9, 24-27, 29, 41, 44, 45, 57, 61, 63, 64, 66, 67,
70, 73, 85, 86, 101, 114-121, 126-130, 134, 135, 137, 146,
153, 170, 177-181
vgInterpolatePath.....................4, 58, 59, 67-70, 178, 184
VGJoinStyle...4, 14, 26, 85, 174
vgLoadIdentity.......................................2, 36, 37, 87, 178
vgLoadMatrix.....................................2, 3, 36, 37, 87, 178
vgLookup..6, 139, 140, 180
vgLookupSingle...6, 140, 180
vgMask...3, 42-44, 178
VGMaskOperation.................3, 14, 42-44, 172, 178, 186
VGMatrixMode......................................2, 14, 26, 36, 172
vgModifyPathCoords...........................4, 58, 59, 67, 178

190

OpenVG 1.0 Specification 22 – Indices

vgMultMatrix...2, 36, 38, 87, 178
VGPaint...4, 15, 27, 90-92, 94, 95, 98, 100, 103, 106, 108,
116, 124, 174, 179
VGPaintMode...........................4, 14, 88, 91, 92, 174, 179
VGPaintParamType......................5, 14, 92, 93, 174, 186
vgPaintPattern...5, 106, 108, 179
VGPaintType..5, 14, 93, 94, 174
VGParamType.................................2, 14, 22-25, 172, 177
VGPath.......3, 15, 19, 27, 50, 58, 60-68, 70, 73-75, 87-89,
153-156, 158, 173, 178, 179, 181, 182
VGPathAbsRel.................................3, 14, 54, 55, 57, 172
vgPathBounds..................................4, 58, 59, 73, 74, 178
VGPathCapabilities.............3, 14, 59, 60, 62, 64, 65, 173
VGPathCommand.................................3, 14, 55, 66, 173
VGPathDatatype. .3, 14, 54, 57, 60, 61, 63, 145, 172, 178
vgPathLength....................................4, 58-60, 70, 72, 178
VGPathParamType........................3, 14, 62, 63, 174, 186
VGPathSegment...............................3, 14, 54, 55, 57, 173
vgPathTransformedBounds..................4, 59, 73-75, 179
VGPixelLayout.........................2, 14, 26, 31, 32, 172, 186
vgPointAlongPath................4, 58-60, 71-73, 82, 84, 178
vgReadPixels..6, 128, 129, 179
vgRemovePathCapabilities..................4, 58, 64, 65, 178
VGRenderingQuality..................................2, 14, 31, 172
vgRotate..3, 36, 40, 178
vgScale...3, 36, 39, 178
vgSeparableConvolve.....................6, 134, 136, 137, 180
vgSet.......2, 3, 22-25, 27, 31, 32, 36, 41, 42, 45, 80, 84-89,
114, 122, 144, 177
vgSetColor..5, 94, 95, 179
vgSetPaint...5, 88, 91, 93, 179
vgSetParameter.............2, 22-24, 27, 28, 90, 92, 102, 184
vgSetParameterf...27, 28, 177
vgSetParameterfv...........27, 28, 94, 95, 98-100, 103, 177
vgSetParameteri............27, 28, 94, 98-100, 103, 108, 177
vgSetParameteriv...27, 28, 177

vgSetPixels..6, 125-127, 179
vgShear..3, 36, 39, 178
VGshort.....................................1, 7, 9, 135, 137, 170, 180
VGStringID.................................7, 14, 148, 149, 177, 180
VGTilingMode......5, 14, 93, 106-108, 135-139, 175, 180
vgTransformPath...............4, 58, 59, 67, 68, 87, 178, 184
vgTranslate...2, 36, 39, 178
VGU_ARC_CHORD...............................3, 157, 158, 181
VGU_ARC_OPEN...157, 181
VGU_ARC_PIE..157, 158, 181
VGU_BAD_HANDLE_ERROR. 152-155, 157, 159, 181
VGU_BAD_WARP_ERROR..............152, 160, 161, 181
VGU_ILLEGAL_ARGUMENT_ERROR.152, 154, 155,
157, 159-161, 181
VGU_NO_ERROR...152, 181
VGU_OUT_OF_MEMORY_ERROR................152, 181
VGU_PATH_CAPABILITY_ERROR.......152-155, 157,
159, 181
VGU_VERSION_1_0.......................................7, 152, 181
vgu.h..7, 152, 181
vguArc.................................7, 58, 157-159, 182, 185, 187
VGUArcType......................7, 14, 157-159, 181, 182, 187
VGubyte.............1, 7, 57, 66, 139, 140, 149, 170, 178, 180
vguComputeWarpQuadToQuad..................7, 161, 182
vguComputeWarpQuadToSquare................7, 160, 182
vguComputeWarpSquareToQuad................7, 160, 182
vguEllipse...7, 58, 156, 182
VGUErrorCode...7, 14, 152-156, 158, 160, 161, 181, 182
VGuint...............................1, 8, 15, 95, 140, 170, 179, 180
vguLine...7, 58, 153, 181
vguPolygon..7, 58, 153, 181
vguRect...7, 58, 154, 181
vguRoundRect.......................................3, 7, 58, 155, 181
vgWritePixels...................................6, 126, 127, 179, 184
VLINE_TO....................52, 53, 55, 68, 154, 155, 172, 173

191

	1 Introduction
	1.1 Feature Set
	1.2 Target Applications
	SVG Viewers
	Portable Mapping Applications
	E-book Readers
	Games
	Scalable User Interfaces
	Low-Level Graphics Device Interface

	1.3 Target Devices
	1.4 Design Philosophy
	1.5 Naming and Typographical Conventions
	1.6 Library Naming

	2 The OpenVG Pipeline
	2.1 Stage 1: Path, Transformation, Stroke, and Paint
	2.2 Stage 2: Stroked Path Generation
	2.3 Stage 3: Transformation
	2.4 Stage 4: Rasterization
	2.5 Stage 5: Clipping and Masking
	2.6 Stage 6: Paint Generation
	2.7 Stage 7: Image Interpolation
	2.8 Stage 8: Blending and Antialiasing

	3 Constants, Functions and Data Types
	3.1 Versioning
	OPENVG_VERSION_1_0

	3.2 Primitive Data Types
	VGbyte
	VGubyte
	VGshort
	VGint
	VGuint
	VGbitfield
	VGboolean
	VGfloat

	3.3 Floating-Point and Integer Representations
	VG_MAXSHORT
	VG_MAXINT
	VG_MAX_FLOAT

	3.4 Colors
	3.4.1 Linear and Non-Linear Color Representations
	3.4.2 Color Space Definitions
	3.4.3 Premultiplied Alpha
	3.4.4 Color Format Conversion

	3.5 Enumerated Data Types
	3.6 Handle-based Data Types
	VGHandle
	VG_INVALID_HANDLE

	4 The Drawing Context
	4.1 Errors
	VGErrorCode
	vgGetError

	4.2 Manipulating the Context Using EGL
	4.2.1 EGLConfig Attributes
	EGL_OPENVG_BIT
	EGL_ALPHA_MASK_SIZE

	4.2.2 EGL Functions
	eglBindAPI
	eglCreateContext
	eglCreateWindowSurface
	eglCreatePbufferFromClientBuffer
	eglMakeCurrent
	eglGetCurrentContext
	eglDestroyContext
	eglSwapBuffers

	4.3 Forcing Drawing to Complete
	vgFlush
	vgFinish

	5 Setting API Parameters
	5.1 Context Parameter Types
	VGParamType

	5.2 Setting and Querying Context Parameter Values
	vgSet
	vgGet and vgGetVectorSize
	5.2.1 Default Context Parameter Values

	5.3 Setting and Querying Object Parameter Values
	vgSetParameter
	vgGetParameter and vgGetParameterVectorSize

	6 Rendering Quality and Antialiasing
	6.1 Rendering Quality
	VGRenderingQuality

	6.2 Additional Quality Settings
	VGPixelLayout

	6.3 Coordinate Systems and Transformations
	6.4 Coordinate Systems
	6.5 Transformations
	6.5.1 Homogeneous Coordinates
	6.5.2 Affine Transformations
	6.5.3 Projective (Perspective) Transformations

	6.6 Matrix Manipulation
	VGMatrixMode
	vgLoadIdentity
	vgLoadMatrix
	vgGetMatrix
	vgMultMatrix
	vgTranslate
	vgScale
	vgShear
	vgRotate

	7 Scissoring, Masking, and Clearing
	7.1 Scissoring
	VG_MAX_SCISSOR_RECTS
	Specifying Scissoring Rectangles

	7.2 Alpha Masking
	VGMaskOperation
	vgMask

	7.3 Fast Clearing
	vgClear

	8 Paths
	8.1 Moves
	8.2 Straight Line Segments
	8.3 Bézier Curves
	8.3.1 Quadratic Bézier Curves
	8.3.2 Cubic Bézier Curves
	8.3.3 G1 Smooth Segments
	8.3.4 C1 Smooth Segments
	8.3.5 C2 Smooth Segments
	8.3.6 Converting Segments From Quadratic to Cubic Form

	8.4 Elliptical Arcs
	8.5 The Standard Path Format
	VG_PATH_FORMAT_STANDARD
	8.5.1 Path Segment Command Side Effects
	8.5.2 Segment Commands
	8.5.3 Coordinate Data Formats
	VGPathDatatype

	8.5.4 Segment Type Marker Definitions
	VGPathAbsRel
	VGPathSegment
	VGPathCommand

	8.5.5 Client-Side Path Example

	8.6 Path Operations
	8.6.1 Storage of Paths
	VGPath

	8.6.2 Creating and Destroying Paths
	VGPathCapabilities
	vgCreatePath
	vgClearPath
	vgDestroyPath

	8.6.3 Path Queries
	VGPathParamType
	Path Format
	Path Datatype
	Path Scale
	Path Bias
	Number of Segments
	Number of Coordinates

	8.6.4 Querying and Modifying Path Capabilities
	vgGetPathCapabilities
	vgRemovePathCapabilities

	8.6.5 Copying Data Between Paths
	vgAppendPath

	8.6.6 Appending Client-Side Data to a Path
	vgAppendPathData

	8.6.7 Modifying Path Data
	vgModifyPathCoords

	8.6.8 Transforming a Path
	vgTransformPath

	8.6.9 Interpolating Between Paths
	vgInterpolatePath

	8.6.10 Length of a Path
	vgPathLength

	8.6.11 Position and Tangent Along a Path
	The Tangents of a Path Segment
	vgPointAlongPath

	8.6.12 Querying the Bounding Box of a Path
	vgPathBounds
	vgPathTransformedBounds

	8.7 Interpretation of Paths
	8.7.1 Filling Paths
	Creating Holes in Paths
	Implicit Closure of Filled Subpaths

	8.7.2 Stroking Paths
	8.7.3 Stroke Parameters
	End Cap Styles
	Line Join Styles
	Miter Length
	Dashing

	8.7.4 Stroke Generation
	8.7.5 Setting Stroke Parameters
	VGCapStyle
	VGJoinStyle
	VG_MAX_DASH_COUNT
	Setting the Dash Pattern

	8.7.6 Non-Scaling Strokes

	8.8 Filling or Stroking a Path
	VGFillRule
	VGPaintMode
	vgDrawPath
	Filling a Path
	Stroking a Path
	Filling and Stroking a Path

	9 Paint
	9.1 Paint Definitions
	VGPaint
	9.1.1 Creating and Destroying Paint Objects
	vgCreatePaint
	vgDestroyPaint

	9.1.2 Setting the Current Paint
	vgSetPaint
	vgGetPaint

	9.1.3 Setting Paint Parameters
	VGPaintParamType
	VGPaintType

	9.2 Color Paint
	Setting Color Paint Parameters
	vgSetColor
	vgGetColor

	9.3 Gradient Paint
	9.3.1 Linear Gradients
	Setting Linear Gradient Parameters

	9.3.2 Radial Gradients
	Setting Radial Gradient Parameters

	9.3.3 Color Ramps
	VG_MAX_COLOR_RAMP_STOPS
	VGColorRampSpreadMode
	Setting Color Ramp Parameters
	Formal Definition of Spread Modes

	9.3.4 Gradient Examples

	9.4 Pattern Paint
	vgPaintPattern
	9.4.1 Pattern Tiling
	VGTilingMode
	Setting the Pattern Tiling Mode

	10 Images
	10.1 Image Coordinate Systems
	10.2 Image Formats
	VGImageFormat

	10.3 Creating and Destroying Images
	VGImage
	VGImageQuality
	VG_MAX_IMAGE_WIDTH
	VG_MAX_IMAGE_HEIGHT
	VG_MAX_IMAGE_PIXELS
	VG_MAX_IMAGE_BYTES
	vgCreateImage
	vgDestroyImage

	10.4 Querying Images
	VGImageParamType
	Image Format
	Image Width
	Image Height

	10.5 Reading and Writing Image Pixels
	vgClearImage
	vgImageSubData
	vgGetImageSubData

	10.6 Child Images
	vgChildImage
	vgGetParent

	10.7 Copying Pixels Between Images
	vgCopyImage

	10.8 Drawing Images to the Drawing Surface
	VGImageMode
	vgDrawImage
	VG_DRAW_IMAGE_NORMAL
	VG_DRAW_IMAGE_MULTIPLY
	VG_DRAW_IMAGE_STENCIL

	10.9 Reading and Writing Drawing Surface Pixels
	10.9.1 Writing Drawing Surface Pixels
	vgSetPixels
	vgWritePixels

	10.9.2 Reading Drawing Surface Pixels
	vgGetPixels
	vgReadPixels

	10.10 Copying Portions of the Drawing Surface
	vgCopyPixels

	11 Image Filters
	11.1 Format Normalization
	11.2 Channel Masks
	VGImageChannel

	11.3 Color Combination
	vgColorMatrix

	11.4 Convolution
	VG_MAX_KERNEL_SIZE
	VG_MAX_SEPARABLE_KERNEL_SIZE
	VG_MAX_GAUSSIAN_STD_DEVIATION
	vgConvolve
	vgSeparableConvolve
	vgGaussianBlur

	11.5 Lookup Tables
	vgLookup
	vgLookupSingle

	12 Blending
	12.1 Blending Equations
	12.2 Porter-Duff Blending
	12.3 Additional Blending Modes
	12.4 Additive Blending
	12.5 Setting the Blend Mode
	VGBlendMode

	13 Querying Hardware Capabilities
	VGHardwareQueryType
	VGHardwareQueryResult
	vgHardwareQuery

	14 Extending the API
	14.1 Extension Naming Conventions
	14.2 The Extension Registry
	14.3 Using Extensions
	14.3.1 Accessing Extensions Statically
	14.3.2 Accessing Extensions Dynamically
	VGStringID
	vgGetString
	eglGetProcAddress

	14.4 Creating Extensions

	15 API Conformance
	15.1 Conformance Test Principles
	15.1.1 Window System Independence
	15.1.2 Antialiasing Algorithm Independence
	15.1.3 On-Device and Off-Device Testing

	15.2 Types of Conformance Tests
	15.2.1 Pipeline Tests
	15.2.2 Self-Consistency Tests
	15.2.3 Matrix Tests
	15.2.4 Interior/Exterior Tests
	15.2.5 Positional Invariance
	15.2.6 Image Comparison Tests

	16 The VGU Utility Library
	VGU_VERSION_1_0
	VGUErrorCode
	16.1 Higher-level Geometric Primitives
	16.1.1 Lines
	vguLine

	16.1.2 Polylines and Polygons
	vguPolygon

	16.1.3 Rectangles
	vguRect

	16.1.4 Round-Cornered Rectangles
	vguRoundRect

	16.1.5 Ellipses
	vguEllipse

	16.1.6 Arcs
	VGUArcType
	vguArc

	16.2 Image Warping
	vguComputeWarpQuadToSquare
	vguComputeWarpSquareToQuad
	vguComputeWarpQuadToQuad

	17 Appendix A: Mathematics of Ellipses
	17.1 The Center Parameterization
	17.2 The Endpoint Parameterization
	17.3 Converting from Center to Endpoint Parameterization
	17.4 Converting from Endpoint to Center Parameterization
	17.5 Implicit Representation of an Ellipse
	17.6 Transformation of Ellipses

	18 Appendix B: Header Files
	openvg.h
	vgu.h

	19 Bibliography
	20 Document History
	21 Acknowledgments
	22 Indices
	Index of Tables
	Index of Figures
	Alphabetical Index

