OpenVG Specification

Version 1.0.1

Version 1.0 - August 1, 2005
Amended January 26, 2007

Editor: Daniel Rice, Google, Inc.
rice@google.com

mailto:rice@google.com

|
I/ Py A g V74
e e I s st s s B o il o ® 7,
[———— -y AT
2 =3
33 — gL S— o
9)) T—] o7
Oy [T
-
P Feo.____| S

For Ilise - DSR
Copyright © 2005-2007 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material
proprietary to the Khronos Group, Inc. It or any components may not be
reproduced, republished, distributed, transmitted, displayed, broadcast or
otherwise exploited in any manner without the express prior written permission
of Khronos Group. You may use this specification for implementing the
functionality therein, without altering or removing any trademark, copyright or
other notice from the specification, but the receipt or possession of this
specification does not convey any rights to reproduce, disclose, or distribute its
contents, or to manufacture, use, or sell anything that it may describe, in whole or
in part.

Khronos Group grants express permission to any current Promoter, Contributor
or Adopter member of Khronos to copy and redistribute UNMODIFIED versions
of this specification in any fashion, provided that NO CHARGE is made for the
specification and the latest available update of the specification for any version of
the API is used whenever possible. Such distributed specification may be re-
formatted AS LONG AS the contents of the specification are not changed in any
way. The specification may be incorporated into a product that is sold as long as
such product includes significant independent work developed by the seller. A
link to the current version of this specification on the Khronos Group web-site
should be included whenever possible with specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or
warranties, express or implied, regarding this specification, including, without
limitation, any implied warranties of merchantability or fitness for a particular
purpose or non-infringement of any intellectual property.

Khronos Group makes no, and expressly disclaims any, warranties, express or
implied regarding the correctness, accuracy, completeness, timeliness, and
reliability of the specification. Under no circumstances will the Khronos Group,
or any of its Promoters, Contributors or Members or their respective partners,
officers, directors, employees, agents or representatives be liable for any
damages, whether direct, indirect, special or consequential damages for lost
revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Khronos and OpenVG are trademarks of The Khronos Group Inc. OpenGL is a
registered trademark, and OpenGL ES is a trademark, of Silicon Graphics, Inc.

Table of Contents

LU L2100 [T3 1T o N
I B oY= LU (ST 1) SO
1.2 Target APPICALIONS.t e e e e e et e et e e e e e e s e et e e e e e e e e e eannrnnneees

SVIG VIBWETS. ... ouvvieieeeeeeeteeeeeeeeeeee e ettt eeae e e eeaeeeeetaeesesaeessaaessnseessesaessssesssnsesesnseesessssesaseeessssnnnrnnes
Portable Mapping APDPLCALIONS.......c..ccueeuievreereeteeteeeteeteeeteeteeeteeeeereeeeeseeeseereesseesseseessesseessesseens
E-DOOK REAETS.......oeieiiieiiicieeeeee ettt ettt ettt et et s eaaesaae s saseeaeesnssenneesnaeenteesnneennn

I o] =T VA A = T 01T PPN
2 The OPeNV G PIDEIINE.oooiiieieeeeeeeeeeee aaaaaaaaaaaaeeeeeeeeeeeeeeeeseeaesssanes .
2.1 Stage 1: Path, Transformation, Stroke, and Paint.................couuuueiiiiiiiiiiieeiceeeeeee e

2.2 Stage 2: Stroked Path GENEratioN.............ccieiiiiiiei it e e e e enraeeeee e e e
2.3 Stage 3: TranSfOrMEHION.ieiieeeeee et e e et e e e e e e e et e e e e s e e s enae s

2.4 Stage 4: RASIEIZALION.oiei i e e
2.5 Stage 5: Clipping @nd MaSKING.oeeeueeeeee ettt e e e e e e e e e e e e e e e e e e eenaes

2.6 Stage 6: Paint GENEIatioN..............uviiiiiieei it e e e e e e e e e e e meananenes
S =0 [N [0 =T (<3 101 (=10 010) =11 10) o WP
2.8 Stage 8: Blending and AntialiaSing.............uueeeiieeiiiiiiiiiiieieeie e e e e eeccee e e e e e e e e e e e
3 Constants, Functions and Data TYPES.........cccuuiiiiiiieee et e e et r e e e e e e e e s e neeneenes

B Tt Y= <o) 1112 T PRI
OPENVG VERSION T 0.eeuiieiieiieieeeeeeeteeeeee ettt eeesatesaesaesassnsessssnsesssessesssensesnsessnssessnssessns

VI GUIINL. ..ottt e ettt e e e e s eaaa e e e e e esaaaeeeeesesaaateeesesnsseeeesssnsaaeeeseeeeeesesesennree
VGDIIELA.ccvieeveeteeeeeteeteeteete ettt ettt ettt e ebe v eteeaaeeseeaseerseseensenseensenteenseeteenreeenn

Y@ oYoTe) (=T= 1 o VTR
VIGHLOAL ..ottt ettt ettt ettt ettt et e e tteeteeateete et e eaeebeeasebeetbetreeereeeenreeeanaee s

3.3 Floating-Point and Integer Representations...............ooui it
VG MAXSHORTccutectieiecteeteete ettt eete et ete et ete et e eteeeaeeteeeseetseseessessessaeseensesssensessseeesseesnreeens

VG IMAXINT ...ttt ettt et et eete ettt e et e te e eeteeaseeteenseeseesseasenssensesssensesssenseaseenseeseenssensesenn

VG MAX FLOAT ..ottt ettt ettt e e ae ettt e st et s et e etsentesasensesaeesesnnesseennenean

B O] [0 = T
3.4.1 Linear and Non-Linear Color Representations.............cccceeeeiiiiiiiiiiieee e
3.4.2 Color Space DefiNItiONS...........ueiiiiieiiiiiciieeiee e e e e e 10
3.4.3 Premultiplied AlPNa.eeeeieee e aa e 12
3.4.4 Color Format CONVEISION.........ccoeeiiiiieeee et e e e e e e e e 13

3.5 ENUMeErated Data TYPES. . .uuuuuuururieiiiiieiieee et esee aaaeaeae e et e e e e eeeessbaeaaeeaaaaaeeeaens 14
3.6 Handle-based Data TYPES.......cccuuueeeeeeeeeeieecititeeeeee e e e eeeeeeeeeeeeeeeeseesassseeeseseeessessssssseeeeessesmdlD

VGHANALC. ..ottt e e eaae e s e e e e esateseeaaeeseaseesasteeseseeesseessassaaeeeeeeens 15

VG INVALID HANDLE. ..ottt ettt ettt eseesaseaeesaeessenssesseessessenssenseseeneessnens 15

4 The Drawing CONEXL........oo ettt e e e e e e e ettt e e e e e e e e e e e e neeeeeeaaeeeesammmnnennes 16
g I (o) TN 17
NV GEITOTC O ...ttt ettt e e e e e ettt e e eaa e e s enateesaeeessaaeesanaeeesbeeesaraeesenseeeess 18
VEGOEETTOT. ... s 18

4.2 Manipulating the Context USING EGL............ccuiiiiiiiiie e e e e e e e e e 18
4.2.1 EGLCONSIG AHFDULES.ceeiiieeeeeeeeeeeee e e e e e e e e e e e e e e e e e e O
EGL OPENVG BIT.....oooouioiioiieeeeteeeeeteeeeeteeteete et eveetseaeenaseneesaseneesssensesssensenssensesnseesnseeenn 19

EGL ALPHA MASK SIZE......oootioteetieeeeteeeeee et et et eeae et eeteetsesveeseesseetseeseesseeseenseeseenseeseenn 19

4.2.2 EGL FUNGLONS.cuutiiiiii ittt e e e et e e e e e et e e e e e e s e e e aaa e e s saaaeeeseannns 19
EZIBINAAPL ..ottt 19
ELICTEALECONEOXEveeuveeveeie ettt ettt eete ettt ettt et e ete e e eteeeeeseeseeseeseesseseessenseessenseensenseenseeean 19
eZlCreateWINAOWSUILACE.c.viicveieeieeeie ettt ettt ettt eat e ete e e eaaas e e e e enaaeeas 19
eglCreatePbufferFromClHentBULfer..........cocooiiiiiieciiirieeeeeceeeteetece ettt 20
CZIMAKECUITEINE.eiveeeeeieiie ettt ettt et e et e et e teeeaeeesteseneeesseeesaeeesesensesnseeeseenseeeseeennneens 20
EZ1GEECUTITENECONEEXEc.viiieieieie ettt ettt ettt e e saeesaaeeteesaaeeteesaaeesnaaeeesennaneeas 20
EZIDESIIOVCONEEXE. ..uvevieeiirieeiietecteett ettt ettt et eete et e e te et e beeaseeteeaseeseesseeseenseeseeeaseeeenseeenreeens 20
EZISWAPBULLETS. ...ttt 21

4.3 Forcing Drawing to COMPIELE.........oooiiiieiiiiieiie et eeeeeeeeeeee 21
VEEIUSIL ... 21
VGEINTSN. ..o s 21

5 Setting AP Parameters.........ooo oottt e e e e e 22
5.1 Context Parameter TYDPES.........ueieiiiiiie e e iiiiee ettt e ettt e ettt e e e s sttt e e e e st e e e e sntee e e e anneeeeeannseeeen 22
VGParamTVYPe.......covvviuiiiiiiciiiicicc s 22

5.2 Setting and Querying Context Parameter ValUEs................eiiiiiiiiiieeeieeeeeeeee e 23
FZSL. et s 24
VEGet aNd VEGEEVECLOTSIZE.cueeviceeeeeieeeeeteeeeeteeeeeteee ettt ettt estsertesteeneeeeaaeeeeaeeeeaeeeennes 25

5.2.1 Default Context Parameter ValUES................cooooviiiiiiiieeieeeeeeeeeeeevv e 25
5.3 Setting and Querying Object Parameter ValUES...............eiiiiiiieeieeieeeeeeeeee e 27
VESetParamMeter.......cccooiiiiiiiiii s 27
veGetParameter and veGetParameterVectorSize..........ooveveveeveeieeeveeeeeenreceeereeveevee e 28

6 Renderi uality and ANi@lIaSiNg.........oiieueniiiiie e 30
6.1 Rendering QUANILY...........c.uuveeeeeee et e e e e e e e e e e e e e e e e et r e e e e e e e e e nnr e s 31
VGRENAETNGQUALIEYcvveeviieeieeieeeecteeteete ettt ettt ettt ereeete et e eteeseesasensesteenseetsenseessenseessensees 31

6.2 Additional Quality SEtINGS........c.uueiiiiieiee e aaae s 31
VGPIXEILAYOUL......vvvvriiieieieieieteieieteteieteterete et sesete bbbt st se e be bbb e se s bbb sesesaesesseneenene 31

6.3 Coordinate Systems and Transformations.............oooo e 32
6.4 CoOrdiNale SYSLEIMS........ooiiiiiiieieieeeeeeeee aeaeaaaeaeeesemeeeeeseseasanns 33
6.5 TranSfOrMELIONS.oeiiiiiiiiiiiiieie e e e e e e s e e e e e e e e e e e e e eaeeaaaaaaaaaaaeeeeeeeeeeeeeeeeresseseseseresenn 33
6.5.1 HOMOQgENEOUS COOIINGEES.uuvuvrieiiiiriiiiiiieeeeeeeeeeeeeee e e e e e e e e e e e e e e e e e e aebaabeaeaeeeeeeeeeeees 33
6.5.2 Affine TransfOrMations.coooeiieiiiee e et e e e eee e e e eeees 34
6.5.3 Projective (Perspective) Transformations..............cooeeeiiiiiciiiiiiieie e 35
6.6 MatriX ManipUIGLioN.uuuuuicceee e eer e e e e e e e e e e aeraaaa 36
Y@1Y P21 5 54\ (Y [TSRO 36
VELOAAIAENEILY ... 37
VZLOAAMALLIX. ... e 37
VEGOMATTIX.oviiiiiiiiic 38
VEMUIMAETIX. ..ottt 38
VETTANSIALE. ...ttt ettt ettt ettt bbbttt n st n e 39

ii

VOO ...ttt e 39
VGROEALE. ..ot 40

7 Scissoring, Masking, and ClEaAING.cceeiuurriiiiiee e e e e ieictitee et e e e e e e ee e re e e e e e e e s e s sanraaeseeeeeeeeaeaaeas 41
IS Tt 51 T PSR 41
VG MAX SCISSOR RECTS.......cotieteetieeeeteeeeete et eete et esveeteenseessenseesseseesseeseensesnsesessesensees 41
Specifying ScissOring RECIANGIES.ccueirieeueirieeeieieeteeteeeteeeeeteeeeeteeseeeseeeeeseeseeeneeeeeareesnaeeas 41

A 2\ o) 2= 1AY=L T PP 42
VGMaSKOPDEIATION.ccveereeerreerieeteeeteeeeeeeteeeteeeteeesseeeseeeseeeseeesseessseessesseeesseensessseeeseesseeennnes 42
VZIMASK. ...ttt a ettt 44

AR = TS O 1= T TP 45
VGCIRAT ...t 45

G 3 = 1111 1o
A IMOVES. ... e e e e e eeeeeeeeeeeeeaeaaaaaaaaaaaaaaaaaaaeareaeerarara—rra—————————_ 46
8.2 Straight LiNE SEOMENES.uuuiiitiiitiececeeeeee e ee e e et e et et e e e e e aeeseseeeaaaeeeeees 46
8.3 BEZIEI CUNVES.....oeiiieiiiiiititt et e e e et e e e e e e e et e e e eeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeesessasssssssssssssssssnsnsnnneenees 46
8.3.1 QuadratiC BEZIEIr CUIVES...........oooeiieeeeeieeeeeeeeeeete eneaaeeeeeans 46
8.3.2 CUDIC BEZIEr CUINVES.coeveiiieieeetett ees st ns 47
8.3.3 G1 SMOOth SEIMENES.....ceei i it e e e e e e e e e samme e e e e e 47
8.3.4 C1 SmOOth SEGMENLS.eeeiiiiieeiieee e e e e e e e e e e e eaaeas 48
8.3.5 C2 SMOOth SEGMENLS........ueiiiiiieeee e e e e e e e e e e aeeas 49
8.3.6 Converting Segments From Quadratic to CubiC FOrm...........ccccoovviieeiiiiiiee e 49
R [[To) (o= | I Y o TP PPUPUOUORPS 49
8.5 The Standard Path FOMMAL..........ccoooeeueiiieeieeee et e e e e e e s e e es 50
VG PATH FORMAT STANDARD......cteotieteeteeeeete ettt ettt easeeve e eaveeeerees 50

8.5.1 Path Segment Command Side Effects...........cccuvmiiiiiiiiiiiii e 51
8.5.2 Segment COMMEANGS.uiiiiiiaee ittt e e e et ee et e e e e e e e b eeeeeeaaeeeaaannnreeeeeeaaaeeeamm 52
8.5.3 Coordinate Data FOIMELS...........ccuuuuiiiiiiiiiiiee et e e e e e e e e e e e e e e eeeees 53
VGPatRDATALYIC. c..veeeveeeeeieeeeeeee et ettt et e e et e e e eeteeeneeeeteeenseeeaeeesssenseeenseeeensneeseennnes 54

8.5.4 Segment Type Marker DefinitionsS.............uuuueueiiieieieeeeeeeeeee e 54

VI GPARADSREL ...ttt ea e et e e e e et e e e e e eaeeeeaeeeaeeseaeesateseasesnesanns 55
VGPAtNSEEIMENL.uvivieeeeeveeeeeeteete ettt ettt ettt er e ete et e eteeneeeseeaeeasenteeasensesenaneeenteeeennes 55
VGPathCOMIMANG......couiiiiiiiieeee ettt et et e et et e et et e s eaeeeateseaeesatesasseeasesneaans 55

8.5.5 Client-Side Path EXAMPIE...........cceeueueiiieieiiiiiiiiiiieeeee s e s e e e s e s e e e s e e e e e e e e e e entaeseeeeeeaeees 57
8.6 Path OPEIatiONns..........uuuiiiiiiiii i e e e e e e e e e e et e e e e e e e e e s e nanreaeeeeaee s 58
8.6.1 Storage Of PathS..........uuiiiiiiii e e e e e e e e e .58
VIGPAR. ..ottt ettt et e ettt e et e e eae e et e et e e s b e eat e et e e et e ettt e e e eaaneeaeenns 59

8.6.2 Creating and Destroying Paths. ... e 59
VGPathCapabilities.ccveeuvieriierierieeiereeeeete ettt ettt eve e eeteeseeteeseereenseeseeeaseseeareeereeeennes 59
VECTeatePath......c.c.ouiiiiii s 60
VZCIEATPAtR. ...ttt 62
VEDESIOYPALN. ... 62

8.6.3 Path QUETIES.coeeiiiiiieeeeieeeet et e s emmt et e eeeaeaaeees 62
VGPathParamT Ve,coouviiuiiieeeeeeieeeteeeee et et et ete et eeeeeeteeeseeeeteseeeeesesenseeeseeenssesseeeneeeseennes 62

) S2=1d T 201 5 0 V= | SO 63

Path Datatype..........ccoiiiiiiiiiiiii s 63

Patl SCALE........oeieieceieeeeeeee ettt ettt ettt et et e e ae e et e et e e e e e aaaeeeeeenaes 63

Pt BIAS....cocueiiiieeeie ettt ettt e ettt e st e e s e at e e sttt e eeaaeeeeaaaaaeeeaeeas 63
NUMNDET Of SEEINIEIIES.eeeeevieeeeeee ettt ettt eeete e et e e s eee e e e st e seaeeeseateessseesensaeessrreeseeesenanns 64
NUMDbETr Of COOTAINALES.oiieeiiiie ettt ettt ettt s et e e e e eae e s e e et e e e e esaeeas 64

iii

8.6.4 Querying and Modifying Path Capabilities...............cccoeiriiiiiie e, 64

VEGEtPathCapabilities.ceooviiviiiiieeeeieeeeeeteeeeeete ettt ettt ettt eereesessreesaeeaeesaeensenseensesean 64
VERemMOVePathCapabilities..........coviivieeueieeieeteceeee ettt et etes et eeeeteeeaaee e e e eaaeeeeeenaneess 64
8.6.5 Copying Data Between Paths.............coeviiiiiiiiiiiieicce e eeereree e 65
VEAPPENAPAtN.......ooiiiiiiiiiii s 65
8.6.6 Appending Client-Side Data to @ Path............cccoviiiiiiiiiiee e 65
VEADPPENAPATNDIALA.cuvieviicieiciiccee ettt ettt eteeeae e eaeeeteeeareeeteeeneeeeennes 65
8.6.7 Modifying Path Data................oooiiiiiiieeeeeeeeeeee e e e 66
VEMOAIfYPAtNCOOTAS.ocvvieieeiiieeeeeeteeeeeteteete ettt ettt te e e e teenseeteenseerseneeereens 67
8.6.8 Transforminga Path..............uuuuuiiiiieiieiece e 68
VETTANSTOITNPALN......ocviivicieiiiceeceeceeee ettt ettt ettt ettt et ere e eae e et eeeraeeenrnes 68
8.6.9 Interpolating Between Paths...........cccooooii e 69
VEINEEIPOLAtEPAtN.......cveivictiee ettt ettt ettt ettt e earee et 69
8.6.10 Length of @ Path..........oooieee e e 70
VEPAthLENGEN.....oiiiiiiic ettt 70
8.6.11 Position and Tangent Along a Path............coooiiiiiiiiiiiee e 71
The Tangents of @ Path SEEIMENT.........cccueivviiiiiiiiiciieceeeeee ettt saeesae e s s 71
VEPOINEAIONZPALN. ..ottt e e e e te e et eeeeeenaaeeeeeennes 72
8.6.12 Querying the Bounding Boxof @ Path............ccooiiiiiiiiiiii e 73
VEPAthBOUNS........c.coiiiiiiiiiic s 74
vePathTransformedBOUNGS...........c.oovuiiiiiiiiecieciee ettt ettt e e e enaaee e e eennes 75
8.7 Interpretation of Paths............cooiiiiiiiii e 75
8.7.1 FilliNG PAthS........eveiiiiiiiiie ettt e et e e e et e e e s st e e e e s antaeeeeeneeemmnees 75
Creating Holes in PathiS........ccviiiviiiiieieeceeeeeeeee ettt ettt etes v eaeeeveeenneennee s 77
Implicit Closure of Filled SUDPAtRS........ccoviivieeeiieiiceece ettt 78
8.7.2 SIroKING PathS........uviiiiiiiiei e an 79
8.7.3 StrOKE PArameters.........ocouuniiieee et e e e e e e e e e a e 80
ENd CaP SEYLES.....voiiiieieiieicieicteteieietetetetete ettt ettt 80
Line JOIN SEYIES.....c.ouiuimiiiiiiiiiiiic e 81
MItEr LENGER. ...t 82
Dashing........cccouiuiiiiiiiiiiiiiiiii s 82
8.7.4 Stroke GENEIALION...........ooieeiiieeeeeeee eneieaeaaeeaeaeeeeees 83
8.7.5 Setting Stroke Parameters..........cooeeiiiiiiiiiiiiicee e 84
VGCAPSEYIE......oviiiiieieicieictete ettt ettt 84
VGJOINSLYIE. ...ttt bbbttt ettt b et en e 85
VG MAX DASH COUNToioteitieteeee ettt ettt eete e eveeveereeeeereeeseeseeseeseenseeeaneeeesseeeseseennes 85
Setting the Dash PatterI........cccvevuieiieiiiieeee ettt ettt eev et ere e eete e e ereeaseerseneeennees 86
8.7.6 NON-SCaAliNG SErOKES.ceiiieeiieiiiie e e e et e mneen e eeeeeeeeeeeeaeeaaeas 86
8.8 Filling or Stroking @ Path.............cooiiiiiiieeeeeeeee e e e e e e e e e e e eaeraaaas 87
VGEIIRUIE.ccvieveetieteeeee ettt ettt ettt ettt eveereeete et eebeeasesssensesbsenseetsenseessenseessenseas 87
VGPAINEMOAE.oiieiiiiiiceiieeeeeeeeeee ettt ettt eat et e et e e ae e sat s e et e saasesaeesabeeseesabeesaneeesenns 88
VEDIaWPaN ..o 88
FAlling @ Path.....c.cccuiiiiiiiicceceeecee et 88
Stroking a Path..........ccoiiiiiiiiiiiii e 89
Filling and StroKing @ Path..........c.cooviiiiiiiiiieiieieeceeeee ettt saesenae e s senaaeeeeenns 89

Lo = 10| S 90
9.1 Paint DEfiNITIONS.oooiiiiiiiiieeeeeeeee eaaaaaaaaaaaeeeeeeeeeeeeeeeeeeeeeas 90
NV GPAINL. ..ttt ettt et e st eeeat e e seaaeeesaaeeeenteeeeasteesaaeeeanteeeennteesnnnaaaaaaeeeeeeas 90
9.1.1 Creating and Destroying Paint ObJects..............oooiiiiiiiiiie e 91
VGCTEAtEPAINL. ...ttt 91

iv

VEDESIOYPAINE.vcviiiiiiiiiiiic s 91

9.1.2 Setting the Current PaiNt.............oooiiiiiiiiiiiiie e 91
VGSEPAINL.cviuiiiciiiiiicicc s 91
VEGEPATNL. ...t s 92

9.1.3 Setting Paint Parameters............coiiiiiiiiiiiiiiee ettt e s ee e e e e e e e e e 92
VGPaiNtParamT VIO,ccviiuieeiierieeeeeeie ettt eete et eteeeteeeeveeeteestveeetseesseeteeessenteesseeessesareeeenes 92
VGPAINETYPE. ...t e 94

L I O] o]l 2= 1 0| SEUU TS RURURRN 94
Setting Color Paint PATAmMELOTS.cccuieeveeeeieereeeeeeetee et eeteeeeeeeteeeieeeeteeeeveeeseeeeveeeseeeesneeeeeennns 94
VZSEECOIOT ...ttt ettt 94
VEGGEECOLOTttt ettt ettt ettt 95

9.3 Gradient PaNt...........ouuiiiiiiiiiiiie et et e e et et et et e e e e e e e e eeaea—aa—a—————————————— 96

L T Tt I I [1= Y= T €T =T 1<) a1 N 96
Setting Linear Gradient ParamieterS.........ccouiivuiiiieeeeiiiiieeiieeeie e eeeeeree e esseeseeesaeessessaeesseennes 97

9.3.2 Radial Gradi©NtS.uuuuuiieeieieieie e a e 97
Setting Radial Gradient Parami@ters..........ccvivviieeieeiiitieeeeeeteeeseeeereeeeeeeseeeeeesseeeeeessenneeesennns 98

1S IR 2R B O] [ll = 0 0] o 1= SO 99
VG MAX COLOR _RAMP _STOPS.......coeeeeeeeeteeeeeteeieeteecteeteeere e eereeeeeseeveeeerreesevaeesvee e 100
VGColorRampSpreadMOde............ooouviiiieeeiieiieceeeceeeeee ettt ettt et ere e ereeeae e s enaneeeens 100
Setting Color RAmMP ParametersS.........c.eecueeeueieerieeeeeiteecteeeeteeeteeeeteeeseeeereeeeseeseesseeeeseeesesenseeens 101
Formal Definition of Spread MOdES.............ooviiviiiieeiiiieeieecee et e e 102

9.3.4 Gradient EXAMPIES.uvuiiiiie ittt e e e e e e et 103

9.4 Pattern Paint...... oo s 104
VEPAINPATEIN. ... 105

S I = 1 (= T I 105
VGTINGIMOUE.ovviiiieiiiierieitieiettticiee ettt ettt ettt sttt ettt 105
Setting the Pattern Tiling IMOGE........c..cocueeeeieerieeieeeeeeeteeeeeeeetee et eeeeeeveeereeereeereeenaeeeeeenaeeeeens 107

O L087= o [T 108
10.1 Image Coordinate SYSIEMS........cccoiiiiiee it e et e e e stan e e e e e e enneeeas 108
10.2 IMAGE FOIMELS.uuiiiiiiiee e eie ittt e ettt e e e e e e et e e e e e e e e e s aaa b s s e eensssssssssenaneeeeeeeeaeas 108

VGIMAZEFOTIINALc.veeetiietieetee ettt ettt et et e vt e eeeeteeeteeeteeeaeseseeesesenseseseeenseesseeeseeenn 108

10.3 Creating and Destroying IMAGES.ccoeeeeeeeieieieieeeeeeee et 111
VGIMAGE. ...ttt s e 111
VGIMAZEOUALILY.....coviiueerieeiectieeeeteee ettt ettt ettt et et eteea e te e v e eteeseeseenseeseeseereeenteeeenreeens 111
VG MAX IMAGE WIDTH......ctiotietietieeeeteeeee ettt ettt eeve et eteeeeeseessseseenasensensesennnee s 112
VG MAX IMAGE HEIGHT........cotiotietieteeteeteeeeeeteeeee ettt ete v etseveevsesveeneeeenneseennee s 112
VG MAX IMAGE PIXELS.....cooooieteetieeeeteeeteeeeeteeeeere et eseeeveeveessesseseesssasenssessesseensensesens 112
VG MAX IMAGE BYTES......coui ottt ettt ettt eve et et eaeeveesaeeveeveeseeereeenesennnee s 112
VECreatelMAZE.c.cuoiiiiiiiiciccc s 113
VEDIESITOVIIMAZE.vveieeeie ettt e et e et e e et e e eaeeeeeaneeeerneeeeaeeeesnneeeeeeeens 113

10.4 QUEIYING IMAGES.....euruurieruiiriiiiiiiteieeaeaa e e eeeeeeeeeeeeeaeeeeaeaeaaaaaaaaeaeseeeeeeeeeeeeeersim———eraaaneaeens 114
VGIMAageParam VDOccoovieieeeeeeeeeeeeeee et eeeee e eeteeeeereeeeaeeeeeneeeenaneeeeneeeennnnneeeeens 114
Image FOTMALt.........cccooiviiiiiiiiiii e 114
Image Width.........ccccoiiiiiiii e 114
Image Helght......c.coiiiiicecc et 115

10.5 Reading and Writing IMage PIXEIS...........cooiiiiiiiiiieiiee e 115
VZCIATTIMAGE. ...ttt 115
VEIMAZESUDDIALA. .. .ccuviiiiicieecie ettt ettt e e et e e eete e eteeeereeeteeereeeaeeereaeenn 115
vgGetlmageSubDAta.c.ccccuiiiiiiic s 117

10.6 Child IMAGES.uuviriiiiieee ettt e e e e e e e e e e e e e e e e e et a e e e e eeeeesesaanrarereeaaeeeaan 118

VGCRIIAIMAGE. ... 118

VGGEPATEN. ...t s 119

10.7 Copying Pixels BetWeen IMAagES..........uueiiiiiaaiiiiiiiie it i et e e e e e e e eeeeeaeeas 119
VECOPYIMAGE. ...ttt 119

10.8 Drawing Images to the Drawing SUMACE.cc.eeeeiiiiiieeiiiiie e e 120
VGIMAZEMOE.omiiiiiiiiieieieicieteteie ettt 120
VEDIaWIMAZE. ... 120

VG DRAW IMAGE NORMAL ...ttt ettt ettt eere et eereeeeeseeveseteseenesennnee s 122

VG DRAW IMAGE MULTIPLY ...ototiotieiietieeteeeeeeee ettt eve e eve s eveeveereeveesenseeenneees 122

VG DRAW IMAGE STENCIL......ooieoiiiieeteeeeeteeeeeteeereereeere et eereeeeeseeeeeseesesssenseeseesnreeennnens 122

10.9 Reading and Writing Drawing Surface PiXEIS............ccieeeiieieieieieieiieieeeeeeeeeeeeeeeeeeeeeeeeeeee s 123
10.9.1 Writing Drawing SUrface PiXelS.............oooiiiiiiiiiiiieiieeeie e mm e 123
VZSEEPIXEIS. ...ttt 123
VGWITEEPIXELS. ... 124
10.9.2 Reading Drawing SUrface PiXeIS.........cocooieiiiiiiiiiiiiie e 125
VGGEOEPIXEIS.....ceiee e 125
VEREAAPIXEIS.......vviiiiieicicieiciceicee ettt 126

10.10 Copying Portions of the Drawing SUrface............c...eiiiiiiiaiiiie e 128
VECOPVPIXEIS. ... 128

I 0= o T (=TT USSP 129
11.1 Format NOrmalization.............ooooi i e e e e e e e e e eeaens 129
11.2 ChaANNEIIMASKS.eeeiieeeeeeee et e e et e e e e et e e e e e e e e et eeeeseeetaa s s eannss 130
VGIMAZECRANINEL.....c.viiiviiiiiieie ettt e et e et e eae e et e e saaeeteeesesenseeenesenteeeaneeenn 130

11.3 Color COMDINALION.ceueeieee ettt e e e e e e e e e e e e e et e e e e s s e eana s 131
VGCOIOTIMALTIX. ...ttt 131

S IS @70 o LY7o 1171 o 132
VG MAX KERNEL SIZE........ootioioiietieeeeeteeeteeeeete ettt eae et eaesnsentssnseseeneessnseesenseesnnens 132

VG MAX SEPARABLE KERNEL SIZE......ccioieoioiiiietieeeeereeereeeeereeeeeseeneeeseenseseensesesnees 132

VG MAX GAUSSIAN STD DEVIATION.oootictieeeetieeeeeteeeeeteeeeereeeaeeeesaseneesaeesneeesnnneas 132
VZCOMNVOIVE. ...ttt ettt bbb bbb bbb bbb s b senssaenens 133
VESePArablECONVOLVE.eeeviectieeeeeetee ettt ettt et et et et e eeveeeaeeebeeesseeseesteeeseeeseseseeeseeens 134
VZGAUSSIANBIUT.vviiiiiicieieieieie ettt ettt ettt 136

L R o T (U o T 1= o] =P 137
VZLOOKUD ..o 137
VELOOKUDSINEIE. ...ttt ettt ettt ettt e teenveete et e eaeenseereeesareeenaeeesaeeas 138

D228 = =T T 10 T S 140
12.1 Blending EQUATIONS.cooiiiiiitieiee ettt e e e e e e s e e e e e e e e e e e e e e e e e aaemn 140
12.2 Porter-DUff BIENAING.eeieeieeieeee et e et e e e e e e e e e ae e e e e e e e e es 140
12.3 Additional BIeNding IMOES...........eiiiiiiiiiiee et e e e e e e et e e e e e e esaemeeeaans 141
2 N (o 11 1Y =Y =1 1T 0 o T S 142
12.5 Setting the BIENd MOE..........ccoooiiiiiiiieeeeeeeeeeeeeeeee e e s a e e e e e aeeaeees 142
VGBIENAMOAE.oeeoeeeieeeee ettt e et e e et e e st eseeaaeeseaeesssteseseeessaeessssseessneeaeeeens 142

13 Querying Hardware Capabilities.............ueeeiieeiiiiiiiiiiiiie e r e e e nre e e e e e es 143
VGHardwareQUETVTVDE.ccouiieeeereeeieeeeteeetee et eeteeeeteeeeeesaeeeteseeseessesenseeesesenreeesseesssensreseeean 143
VGHardwareQuUerVRESULL..........c.oooviiiuiieieiiiieceeeeeeeeeee ettt et eae e v s e eaeesneessenaneeeean 143
VOHATAWATEQUETV.....cveeeeeeeetee ettt ettt e et eae e e vt e eseeeteeeteeeseeeteseseeesesenreeeseeenreean 143
=Y o [0 Tl R 145
14.1 Extension Naming CONVENLIONS..........c.ciiuiiieeiiiiieeeeiiieeeeeiieeeesenieeeeeeseeemm e e e snnbeeeeeeeeenneees 145
14.2 The EXteNSION REJISHIY. ...coiiii it e e e e e e eeeaeas 145
LG O L= g o [o (=] 0 T 1 S 146

vi

14.3.1 Accessing Extensions Statically.............ccoooiiiriii e 146

14.3.2 Accessing Extensions Dynamically............cccccoeeeiiiiieiie e 146
VGSINEGID......oviiieiiciicice ettt ettt 146
VEGOSIIING. ...t 146
CZIGEIPTOCAGATESS. ...ttt ettt ettt e eae e eeeteeeaeseteeeseseteeeaseenseesaseeeeeennes 147

14.4 Creating EXIENSIONS.uviiiiiiie et e e e e e s e e e e e e e aaaaaaaaeaeas 147
15 APL CONFOMMEANGE. ... et e e e e et e e e e et e s e eeeseaaseeeeenn 148
15.1 Conformance Test PriNCIPIES.cccooeeeiiiiiie e 148

15.1.1 Window System INdePENdENGE.ouviiiiiieeiiicieiee e 148

15.1.2 Antialiasing Algorithm INAEPENAENCE.uuveiiiiiiiiiicecree e e e 148

15.1.3 On-Device and Off-Device TeSHING.......uuuuruiiiiiieieieie e 148

15.2 Types of ConformanCe TESES........coviviiiiiiiiiiieieieete e e e e e e e e e e e e en e e e e eeaaaaeees 148

15.2.1 PIPEINE TESES. .. .uuuiiiiiiiieee ettt e e e e e e e e e e e e e st e e e e e e e e s e e e e s 149

15.2.2 Self-ConsSiSteNCY TESES. e e e e e e e e e e e e ns 149

T5.2.3 MALMX TESES....ceeveieieieiiiititttt et et e e et e aeaeeeeeeeeeeeeeeeeeeeeeeeeessmmmannns 149

15.2.4 Interior/EXErIOr TESES....cccie i s 149

15.2.5 POSitional INVAMANCE.cuviiiiiiiiiiiiccce et e e e e e e e e e e e e e e e e e ee et 149

15.2.6 Image CompariSON TESES.cooiiiiiiiiee et ee e e e e e 149

16 The VGU ULlity LIDIAIY........cooiiiiieieiiiiee ettt et e e et re e e e et ae e e st a e e 150
VGU VERSION T Queeeeieeieeieeeeeeeeteeeeete et eve et estesaseneeeasensesnsensssssensesssensssssnsesssnsesesnseens 150

Y@ B 2y o) 4 @Y (<3RS 150

16.1 Higher-level Geometric PrMItIVES.............coooiiiiiiiiieeeeeeeeeeeeeeeeeeee v mm e eeaeaaeees 150

TR 0t T V=T 151
VGULINIC. ...ttt 151

16.1.2 Polylines and POIYGORNS.ueiiiiiiiaaee et e e e e e e ee e e eeeeeeaeeas 151
VGUPOLYGOM. ..o 151

T16.1.3 RECIANGIES......ceeiieeiee ettt e e e e e et ee e es e e eeeeeeeeas 152
VGURECE. ... s 152

16.1.4 Round-Cornered RECIANGIES............oeeiiiiiiieeeiiiiie e eciiiee et et e e e e s sntraeeaeeeenes 153
VGUROUNARECE. ...ttt ettt 153

TB. 1.5 EllIPSES. ..eeeeeeiie ettt e e e e e e e e e e e e e e e e e et — e —————aaaaaans 154
VGUEIIPSE. ...ttt 154

TB.1.8 ATCS. ..o ——————————————————— e e e e —————ataa 155
VGUATCTYPE. ..ottt 155
VZUATC ..ottt b bbb bbb s 155

L2 07T TSI o 1 o R 157
veuComputeWarpQuUadTOSGUATE.........cc.eereeveerieereeeeeeee ettt et eeteereeereereeeaeeeesesenneeean 158
veuComputeWarpSquareToQUAad.ocueieueiiiiiiiieiiiceeeeeeeee et eaaae e 158
veuComputeWarpQuadToQUAd.........ccveeveerieeeieriericeeeereeeeete ettt ere e 159

17 Appendix A: Mathematics Of EllIPSES......uuuuuuuuieceeeeeece et e e eeeeaens 160

17.1 The Center Parameterization...............eueeieeiiiieeieie e 160

17.2 The Endpoint Parameterization..................eiiiiiiiieeie e 161

17.3 Converting from Center to Endpoint Parameterization..............ccccccooiiiiiiiiiiiiie e, 161

17.4 Converting from Endpoint to Center Parameterization...............cccccoiiiiiiiii, 162

17.5 Implicit Representation of an EIlPSE...........eoiiiiiiiiiiiiiiiie e 165

17.6 Transformation Of EIlPSES...........uuiiiiiiiei it nne e 166

18 AppendiX B: HEAAEI FilES........uuuiiiiiiiittee ettt e e e e e e e e e e e e e e e e e e eeeees 168
OPEINVE.N.ooiiiii e 168
VUL oo 179
(Rl 1T o] [ToTe =1 o] Y/ PP PREO PP 181

vii

20 DOCUMENT HISTONY. ...ttt ettt e e e e e e e e e e e e e e e e e s semeeeeeeeeas 182

21 ACKNOWIEAGMENES.iieiee et e e e e e e e e e e e e e e e e e e e aannan 183
J A [Lo [ToT= T 184
INAEX Of TADLES.ooieeeieieeeee ettt ettt et e et et e st e e et e et e eaeesatesaeesaaaeesseaaaeeesennes 184
INAEX Of FIGUTS.....ueieeeieeieceee ettt ettt ettt e e oot e e et e eseeeteeeseeeseeeseseseeeseseseeennes 185
AIPhabetical INAEX.......ccviivieiicriereeteeteeteeeteete et ettt et et eeaeete et e eteeeseeteeseeseeeseesseeseenseeseesnreeen 185

viii

OpenVG 1.0 Specification 1 - Introduction

1 Introduction

OpenVG is a new application programming interface (API) for hardware-
accelerated two-dimensional vector and raster graphics developed under the
auspices of the Khronos Group (www.khronos.org). It provides a device-
independent and vendor-neutral interface for sophisticated 2D graphical
applications, while allowing device manufacturers to provide hardware
acceleration where appropriate.

This document defines the C language binding to OpenVG. Other language
bindings may be defined by Khronos in the future. We use the term
“implementation” to refer to the software and/or hardware that implements
OpenVG functionality, and the term “application” to refer to any software that
makes use of OpenVG.

1.1 Feature Set

OpenVG provides a drawing model similar to those of existing two-
dimensional drawing APIs and formats, such as Adobe PostScript [ADOB99],
PDF [ADOBO6a], and (originally MacroMedia) Flash [ADOBO06b]; Sun
Microsystems Java2D [SUNO04]|; and SVG [SVGF05][SVGTO06]. It is specifically
intended to support all drawing features required by a SVG Tiny 1.2 renderer,
and additionally to support functions that may be of use for implementing an
SVG Basic renderer.

1.2 Target Applications

Several classes of target applications were used to define requirements for the
design of the OpenVG APIL.

SVG Viewers

OpenVG must provide the drawing functionality required for a high-
performance SVG document viewer that is conformant with version 1.2 of the
SVG Tiny profile. It does not need to provide a one-to-one mapping between
SVG syntactic features and API calls, but it must provide efficient ways of
implementing all SVG Tiny features.

Portable Mapping Applications

OpenVG can provide dynamic features for map display that would be difficult
or impossible to do with an SVG viewer alone, such as dynamic placement and
sizing of street names and markers, and efficient viewport culling.

OpenVG 1.0 Specification 1.2 - Target Applications

E-book Readers

The OpenVG API must provide fast rendering of readable text in Western,
Asian, and other scripts. It does not need to provide advanced text layout
features.

Games

The OpenVG API must be useful for defining sprites, backgrounds, and
textures for use in both 2D and 3D games. It must be able to provide two-
dimensional overlays (e.g., for maps or scores) on top of 3D content.

Scalable User Interfaces

OpenVG may be used to render scalable user interfaces, particularly for
applications that wish to present users with a unique look and feel that is
consistent across different screen resolutions.

Low-Level Graphics Device Interface

OpenVG may be used as a low-level graphics device interface. Other graphical
toolkits, such as windowing systems, may be implemented above OpenVG.

1.3 Target Devices

OpenVG is designed to run on devices ranging from wrist watches to full
microprocessor-based desktop and server machines. It should be possible to
implement OpenVG on any device that is capable enough to support OpenGL ES
1.1. Over time, it is expected that OpenGL ES hardware manufacturers will be
able to provide inexpensive incremental acceleration for OpenVG functionality.

Realistically, to obtain the full benefit of OpenVG, a device should provide a
display with at least 128 x 128 non-indexed RGB color pixels with 4 or more bits
per channel.

1.4 Design Philosophy

OpenVG is intended to provide a hardware abstraction layer that will allow
accelerated performance on a variety of application platforms. Functions that are
not expected to be amenable to hardware acceleration in the near future were
either not included, or included as part of the optional VGU utility library.

Where possible, the syntax of OpenVG is intended to be reminiscent of that of
OpenGL, in order to make learning OpenVG as easy as possible for OpenGL
developers. Most of the OpenVG state is encapsulated in a set of primitive-
valued variables that are manipulated using the vgSet and vgGet functions.
Extensions may add new state variables in order to add new features to the
pipeline without needing to add new functions.

OpenVG 1.0 Specification 1.4 - Design Philosophy

Paint, path, and image objects in OpenVG are referenced using opaque
handles. This allows implementations to store such objects using their own
preferred representation, in whatever form of memory they choose. This is
intended to simplify hardware design, and to minimize processing and bus
traffic for frequently-used objects.

1.5 Naming and Typographical Conventions

OpenVG uses a consistent set of conventions for API names and symbols. In
this document, additional typographic conventions are used to help indicate the
type of each symbol, as shown in Table 1 below.

Symbol Type Name/Case Type Style Example
API Function vgXxxYyy Boldface vgLoadMatrix
API Function
with Varying vgXxx{f,ifv,iv} Boldface vgSetfv
Parameter Types
Utility Function =~ vguXxxYyy Boldface vguRoundRect
Primitive .

Datatype VGxxx Typewriter VG | oat
Enumerated -

Datatype VGXxxYyy Typewriter ~ VGCapStyl e
Chumerated VG_XOOLYYY Typewriter VG BLEND MODE
Utility

Enumerated VGU_XXX_YYY Typewriter VAU ARC CHORD
Value

Function . ,

Argument xxxYyy Typewriter pai nt Mbde

Table 1: Naming and Typographical Conventions

1.6 Library Naming

The library name is defined as | i bOpenVGz where z is a platform-specific
library suffix (ie.,.a,.so,.lib,.dll,etc).

OpenVG 1.0 Specification 2 - The OpenVG Pipeline

2 The OpenVG Pipeline

This section defines the OpenVG pipeline mechanism by which primitives are
rendered. Implementations are not required to match the ideal pipeline stage-
for-stage; they may take any approach to rendering so long as the final results
match the results of the ideal pipeline within the tolerances defined by the
conformance testing process.

Figure 1 below provides an overview of the OpenVG pipeline, focusing on the
various steps involved in drawing a thick, dashed line into a scene using a radial
gradient paint.

—~
T

innnnn
7=
Y
Stagel:'
Path,

Transformation,
Stroke, and Paint

Stage 4:
Rasterization

Stroked Path
Generation

Stage 3:
Transformation

Stage 5: Stage 8:
Clipping and Stage 6: Stage 7: Blending and
Masking Paint Generation Image Interpolation Antialiasing

Figure 1: The OpenVG Pipeline

OpenVG 1.0 Specification 2.1 - Stage 1: Path, Transformation, Stroke, and Paint

2.1 Stage 1: Path, Transformation, Stroke, and Paint

The application defines the path to be drawn, and sets any transformation,
stroke, and paint parameters or leaves them at their default settings. When all
parameters have been set, the application initiates the rendering process by
calling vgDrawPath, indicating whether the path is to be filled, stroked, or both.
If the path is to be both filled and stroked, the remainder of the pipeline is
invoked twice in a serial fashion, first to fill and then to stroke the path.

If an image is being drawn (via the vgDrawImage function), the current path is
set to a rectangle bounding the image.

2.2 Stage 2: Stroked Path Generation

If the path is to be stroked, the stroke parameters are applied in the user
coordinate system to generate a new path that describes the stroked geometry.
This path is then substituted for the original path in the remainder of the
pipeline, and the fill rule is set to non-zero.

2.3 Stage 3: Transformation

The current path-user-to-surface transformation is applied to the geometry of
the current path, producing drawing surface coordinates. For an image, the
outline of the image is transformed using the image-user-to-surface
transformation. Non-uniform transformations may result in skewed stroke
outlines.

2.4 Stage 4: Rasterization

A coverage value is computed at pixels affected by the current path using a
tiltering process, and saved for use in the antialiasing step.

Conceptually, a set of sample positions are evaluated for inclusion within the
path. At each pixel center that is no more than 1%2 pixels away from some
portion of the path geometry, a reconstruction filter is applied to the binary
inclusion values at nearby sample points to obtain a filtered coverage value for
the pixel. If only a single sample per pixel is evaluated, the sample position must
be coincident with the pixel center.

Note that for a box filter (a filter that gives equal positive weight to all samples
within a rectangle centered on the pixel center, and zero weight elsewhere), this
tiltering process amounts to estimating the area of the intersection of the path
geometry with the filter rectangle.

If antialiasing is disabled, only pixel centers are used as sample points and the
reconstruction filter has value 1 at the pixel center and 0 elsewhere.

In the case where a sample point lies exactly on the boundary of a path, the
implementation must enforce a consistent “tie-breaking” rule. For any two paths

OpenVG 1.0 Specification 2.4 - Stage 4: Rasterization

that share a common boundary segment, but whose interiors lie on opposite
sides of the segment, a sample point that lies exactly on the boundary must be
considered to be included in exactly one of the two paths. If the interiors of the
two paths lie on the same side of the common segment, the sample point must
belong to both paths, or neither path. Note that the common boundary segment
must be specified in exactly the same manner (i.e., with bit-for-bit identical
control point values, scale and bias, and transformation matrix settings) for both
paths in order for this guarantee to hold.

2.5 Stage 5: Clipping and Masking

Pixels not lying within the bounds of the drawing surface, and (if scissoring is
enabled) within the union of the current set of scissor rectangles are assigned a
coverage value of 0.

An application-specified alpha mask image is used to modify the coverage
values generated by the previous stage. Each coverage value is multiplied by the
mask value for the corresponding pixel to obtain a masked coverage value. If the
resulting coverage value is zero, the remainder of the pipeline is skipped.

2.6 Stage 6: Paint Generation

At each pixel of the drawing surface, the relevant current paint (depending on
whether the original path was to be filled or stroked) is used to define a color
and an alpha value. For gradient and pattern paints, the paint-to-user
transformation is concatenated with the path-user-to-surface transformation to
define the paint transformation that will geometrically transform the paint. Paint
generation may be skipped for operations that do not utilize paint values.

2.7 Stage 7: Image Interpolation

If an image is being drawn, an image color and alpha value is computed at
each pixel by interpolating image values using the inverse of the current image-
user-to-surface transformation. The results are combined with the paint color
and alpha values according to the current image drawing mode. If image
drawing is not taking place, the results from the preceding stage are passed
through unchanged.

2.8 Stage 8: Blending and Antialiasing

At each pixel, the source color and alpha values from the preceding stage are
converted into the destination color space and blended with the corresponding
destination color and alpha values according to the current blending rule. A
special blending rule is used when drawing an image using the “stencil” image
drawing mode. The computed coverage value from stage 5 is used to interpolate
between the blended result and the previously assigned color at the pixel
(preferably in a linear color space) to produce an antialiased result.

OpenVG 1.0 Specification 3 - Constants, Functions and Data Types

3 Constants, Functions and Data Types

OpenVG type definitions and function prototypes are found in an openvg. h
header file, located in a vg subdirectory of a platform-specific header file
location. OpenVG makes use of 8-, 16-, and 32-bit data types. A 64-bit data type is
not required. If the khronos_t ypes. h header file is provided, the primitive
data types will be compatible across all Khronos APIs on the same platform.

3.1 Versioning

The openvg. h header file defines constants indicating the version of the
specification. Future versions will continue to define the constants for all
previous versions with which they are backward compatible.
OPENVG_VERSION_1_0

For the current specification, the constant OPENVG_VERSI ON_1_0 is defined.
The version may be queried at runtime using the vgGetString function (see
Section 14.3.2).

#def i ne OPENVG VERSI ON_1_0 1]

3.2 Primitive Data Types

OpenVG defines a number of primitive data types by means of C t ypedef s. The
actual data types used are platform-specific.

VGbyte

VQoyt e defines an 8-bit two’s complement signed integer, which may contain
values between -128 and 127, inclusive. If khronos_types. h is defined,
VG&oyt e will be defined as khronos_int8_t.

VGubyte

VQubyt e defines an 8-bit unsigned integer, which may contain values between
0 and 255, inclusive. If khr onos_t ypes. h is defined, VGubyt e will be defined
askhronos_uint8_t.

VGshort

VGshort defines a 16-bit two’s complement signed integer, which may
contain values between -32768 and 32767, inclusive. If khr onos_t ypes. h is
defined, VGshort will be defined as khronos_int16 t.

OpenVG 1.0 Specification 3.2 — Primitive Data Types

VGint

VG nt defines a 32-bit two’s complement signed integer. If
khronos_t ypes. his defined, VG nt will be defined as khr onos_i nt 32_t.

VGuint

VQui nt defines a 32-bit unsigned integer. Overflow behavior is undefined. If
khronos_t ypes. his defined, V@i nt will be defined as khr onos_ui nt 32_t.

VGbitfield

VGoi tfi el d defines a 32-bit unsigned integer value, used for parameters that
may combine a number of independent single-bit values. A V&bi t fi el d must
be able to hold at least 32 bits. If khr onos_t ypes. h is defined, VGhitfield
will be defined as khr onos_ui nt 32_t.

VGboolean

VCGbool ean is an enumeration that only takes on the values of VG_FALSE (0)
or VG_TRUE (1). Any non-zero value used as a V@&ool ean will be interpreted as
VG TRUE.

typedef enum {
VG FALSE = 0,
VG_TRUE 1
} VGbool ean;

VGfloat

VG | oat defines a 32-bit IEEE 754 floating-point value. If khr onos_t ypes. h
is defined, V& | oat will be defined as khr onos_fl oat t.

3.3 Floating-Point and Integer Representations

All floating-point values are specified in standard IEEE 754 format. However,
implementations may clamp extremely large or small values to a restricted
range, and internal processing may be performed with lesser precision. At least
16 bits of mantissa, 6 bits of exponent, and a sign bit must be present, allowing
values from * 2*' to be represented with a fractional precision of at least 1 in 2'°.

Path data (i.e., vertex and control point coordinates and ellipse parameters)
may be specified in one of four formats: 8-, 16-, or 32-bit signed integers, or
tloating-point. Floating-point scale and bias factors are used to map the incoming
integer and floating-point values into a desired range when path processing
occurs.

Handling of special values is as follows. Positive and negative 0 values must
be treated identically. Values of +Infinity, -Infinity, or NaN (not a number) yield
unspecified results. Optionally, incoming floating-point values of NaN may be

8

OpenVG 1.0 Specification 3.3 - Floating-Point and Integer Representations

treated as 0, and values of +Infinity and -Infinity may be clamped to the largest
and smallest available values within the implementation, respectively.
Denormalized numbers may be truncated to 0. Passing any arbitrary value as
input to any floating-point argument must not lead to OpenVG interruption or
termination.

VG_MAXSHORT

The macro VG _MAXSHORT contains the largest positive value that may be
represented by a VGshort. VG_MAXSHORT is defined to be equal to 2"°-1, or
32,767. The smallest negative value that may be represented by a VGshort is
given by (-VG_MAXSHORT - 1), or -32,768.

VG_MAXINT

The macro VG_MAXI NT contains the largest positive value that may be
represented by a VG nt. VG MAXI NT is defined to be equal to 2*'-1, or
2,147,483,647. The smallest negative value that may be represented by a VG nt is
given by (-VG_NMAXI NT - 1), or -2,147,483,648.

VG_MAX_FLOAT

The parameter VG_MAX_FLOAT contains the largest floating-point number that
will be accepted by an implementation. To query the parameter, use the vgGetf
function with a par anifype argument of VG_MAX_FLOAT (see Section 5.2). All
implementations must define VG_MAX_FLOAT to be at least 10%.

3.4 Colors

Colors in OpenVG other than those stored in image pixels (e.g., colors for
clearing, painting, and edge extension for convolution) are represented as non-
premultiplied (see Section 3.4.3) SRGBA [sRGB99] color values. Image pixels may
be defined in a number of color spaces, including sRGB, linear RGB, linear
grayscale (or luminance) and non-linearly coded, perceptually-uniform grayscale,
in premultiplied or non-premultiplied form. Color and alpha values lie in the
range [0,1] unless otherwise noted. If an alpha channel is present but has a bit
depth of zero, the alpha value of each pixel is taken to be 1.

Non-linear quantities are denoted using primed (") symbols below. [POYNO03]
contains an excellent discussion of the use of non-linear coding to achieve
perceptual uniformity.

3.4.1 Linear and Non-Linear Color Representations

In a linear color representation, the numeric values associated with a color
channel value measure the rate at which light is emitted by an object, multiplied
by some constant scale factor. Informally, it can be thought of as counting the
number of photons emitted in a given amount of time. Linear representations are

OpenVG 1.0 Specification 3.4.1 - Linear and Non-Linear Color Representations

useful for computation, since light values may be added together in a physically
meaningful way.

However, the human visual system responds non-linearly to the light power
(“intensity”) of an image. Accordingly, many common image coding standards
(e.., the EXIF JPEG format used by many digital still cameras and the MPEG
format used for video) utilize non-linear relationships between light power and
code values. This allows a larger number of distinguishable colors to be
represented in a given number of bits than is possible with a linear encoding.
Common display devices such as CRTs and LCDs also emit light whose power at
each pixel component is proportional to a non-linear power function (i.e., a
function of the form x” where a is constant) of the applied code value, whether
due to the properties of analog CRT electronics or to the deliberate application of
a non-linear transfer function elsewhere in the signal path. The exponent, or
gamma, of this power function is typically between 2.2 and 2.5. OpenVG makes
use of the non-linear sRGB color specification described below.

Because linear coding of intensity fails to optimize the number of
distinguishable values, 8-bit linear pixel formats suffer from poor contrast ratios
and banding artifacts; their use with photographic imagery is not recommended.
However, synthetic imagery generated by other APIs such as OpenGL ES that
make use of linear light may require the use of linear formats. 8-bit linear coding
is also appropriate for representing pseudo-images such as coverage masks that
are not based on perceptual light intensity.

Although computing directly with non-linear representations may lead to
significant errors compared with the results of first converting to a linear
representation, it is common industry practice in many imaging domains to do
so. Because the cost of performing linearization on pixel values to be
interpolated or blended is considered prohibitive for mobile devices in the near
tuture, OpenVG may perform these operations directly on non-linear code
values. A future version of this specification may introduce flags to force values
to be converted to a linear representation prior to interpolation and blending.

3.4.2 Color Space Definitions

The linear IRGB color space is defined in terms of the standard CIE XYZ color
space [WYSZ00], following ITU Rec. 709 [ITU90] using a D65 white point:

R = 3.240479 X - 1.537150 Y - 0.498535 Z

G =-0.969256 X + 1.875992 Y + 0.041556 Z
B = 0.055648 X - 0.204043 Y + 1.057311 Z

10

OpenVG 1.0 Specification 3.4.2 - Color Space Definitions

The sRGB color space defines values R’«gs, G'sres, B'srcp in terms of the linear
IRGB primaries by applying a gamma () mapping consisting of a linear segment
and an offset power function:

If x <£0.00304
Nx)=12.92 x
else
Yx) = 1.0556 x"** - 0.0556

The inverse mapping y’ is defined as:

If x <0.03928
yi(x)=x/12.92
else
yi(x) = [(x + 0.0556) / 1.0556]**

To convert from IRGB to sRGB, the gamma mapping is used:

Rrep = V(R)
G'srap = V(G) (1)
B'es = V(B)

To convert from sRGB to IRGB, the inverse gamma mapping is used:

R =Yy I(RlsRGB)
G = Y Gwen) (2)
B =Yy I(B "srGB)

Because the gamma function involves offset and scaling factors, it behaves
similarly to a pure power function with an exponent of 1/2.2 (or approximately
0.45) rather than the “advertised” exponent of 1/2.4, (or approximately 0.42).

11

OpenVG 1.0 Specification 3.4.2 - Color Space Definitions

The linear grayscale (luminance) color space (which we denote as IL) is related
to the linear IRGB color space by the equations:

L=02126 R +0.7152 G + 0.0722 B (3)
R=G=B=L 4)

The perceptually-uniform grayscale color space (which we denote as sL) is
related to the linear grayscale (luminance) color space by the gamma mapping;:

L"= L))
L=y'(L) (6)

Conversion from perceptually-uniform grayscale to sRGB is performed by
replication:

R'=G'=B=L)

The remaining conversions take place in multiple steps, as shown in Table 2
below. The source format is indicated by the left column, and the destination
format is indicated by the top row. The numbers indicate the equations from this
section that are to be applied, in left-to-right order.

Source/Dest IRGB sRGB IL sL
IRGB — 1 3 3,5
sRGB 2 - 2,3 2,3,5
IL 4 4,1 — 5
sL 7,2 7 6 —

Table 2: Pixel Format Conversions

3.4.3 Premultiplied Alpha

In premultiplied alpha (or simply premultiplied) formats, a pixel (R, G, B, a) is
represented as (a*R, a*G, a*B, a). Alpha is always coded linearly, regardless of the
color space. The terms associated and premultiplied are synonymous.

In OpenVG, color interpolation takes place in premultiplied format in order to
obtain correct results for translucent pixels.

12

OpenVG 1.0 Specification 3.4.4 — Color Format Conversion

3.4.4 Color Format Conversion

Color values are converted between different formats and bit depths as
follows. First, premultiplied color values are clamped to their corresponding
alpha values and non-zero alpha values are divided out to obtain a non-
premultiplied representation for the color.

If the source and destination color formats are of differing color spaces (i.e.,
linear RGB, sRGB, linear grayscale, perceptually-uniform grayscale), each source
channel is divided by the maximum channel value to produce a number between
0 and 1. The color space conversion is performed as described above. The
resulting values are then scaled by the maximum value for each destination
channel.

If the source and destination formats have the same color format, but differ in
the number of bits per color channel, the source value is multiplied by the
quotient (27 - 1)/(2° - 1) (where d is the number of bits in the destination and s is
the number of bits in the source) and rounded to the nearest integer.

The following approximation may be used in place of exact multiplication: If
the source channel has a greater number of bits than the destination, the most
significant bits are preserved and the least significant bits are discarded. If the
source channel has a lesser number of bits than the destination, the value is
shifted left and the most significant bits are replicated in the less significant bit
positions. For example, a 5-bit source value b4b3b2b1bo will be converted to an 8-
bit destination value b4b3b2b1b0b4b3b2. This rule apdprox1mates the correct result
since if 4 = k*s for some 1nteger k > 1 the quotient (2 1) will be an integer
of the form 200 + 203 +2°+ 1, and mu1t1p11cat10n of an s-bit value by this
value will be exactly equlvalent to bit replication. When the destination bit depth
is not an integer multiple of the source bit depth, this rule still provides greater
accuracy than other possible approximations such as padding the source with
zeros or with copies of the rightmost bit.

Note that converting from a lesser to a greater number of bits and back again
using either exact scaling or the approximation will result in an unchanged
value.

If the destination format has stored alpha, the previously saved alpha value is
stored into the destination. If the destination format has premultiplied alpha,
each color channel value is multiplied by the corresponding alpha value and the
resulting values are clamped between 0 and the corresponding alpha value.

13

OpenVG 1.0 Specification

3.5 Enumerated Data Types

3.5 - Enumerated Data Types

A number of data types are defined using the C enumkeyword. In all cases,
this specification assigns each enumerated constant a particular integer value.
Extensions to the specification wishing to add new enumerated values must
register with the Khronos Group to receive a unique value (see Section 14).

Applications making use of extensions should cast the extension-defined

integer value to the proper enumerated type.

The enumerated types (apart from VGool ean) defined by OpenVG are:

VGBI endMbde

VGCapStyl e

VGCol or RanpSpr eadMbde
VCEr r or Code

VGFi | | Rul e

VCGHar dwar eQuer yResul t
VGHar dwar eQuer yType
VG mageChannel

VG mageFor mat

VA mageMode

VAE magePar anilype

VA mageQual ity

VGJoi nStyl e
VGvaskOper at i on

VGWAt ri xMode

VGPai nt Mbde

VGPai nt Par amlype
VGPai nt Type

VG&Par amlype

VGPat hAbsRel

VGPat hCapabi lities
VGPat hConmand
VGPat hDat at ype
VGPat hPar anilype
VGPat hSegnent

VGPi xel Layout
VGRenderingQuality
VGStringl D

VGTi | i nghbde

The VGU utility library defines the enumerated types:

VGUAr cType

14

VGUEr r or Code

OpenVG 1.0 Specification 3.6 - Handle-based Data Types

3.6 Handle-based Data Types

Images, paint objects, and paths are accessed using opaque handles. The use of
handles allows these potentially large and complex objects to be stored under
API control. For example, they may be stored in special memory and/or
formatted in a way that is suitable for use by a hardware implementation.
Handles are created relative to the current context, and may only be used as
OpenVG function parameters when that context or one of its shared contexts is
current.

VGHandle

Handles make use of the VGHandl e data type. For reasons of binary
compatibility between different OpenVG implementations on a given platform, a
VCGHandl e is defined as a VQui nt .

typedef VGQuint VCGHandl e; '

Handles to distinct objects must compare as unequal using the C == (double
equals) operator.

The VGHandl e subtypes defined in the API are:
VG mage - a reference to image data (see Section 10)

VGPai nt - a reference to a paint specification (see Section 9)
VGPat h - a reference to path data (see Section 8)

VG_INVALID_HANDLE

The symbol VG_| NVALI D_HANDLE represents an invalid VGHandl e that is
used as an error return value from functions that return a VGHandl e.
VG | NVALI D_HANDLE is defined as (VGHandl €) 0.

#define VG | NVALI D_HANDLE ((VGHand! €) 0) '

15

OpenVG 1.0 Specification 4 — The Drawing Context

4 The Drawing Context

OpenVG functions that perform drawing, or that modify or query drawing
state make use of an implicit drawing context (or simply a context). A context is
created, attached to a drawing surface, and bound to a running application
thread outside the scope of the OpenVG API, for example by the Khronos EGL
APL OpenVG API calls are executed with respect to the context currently bound
to the thread in which they are executed. A call to any OpenVG API function
when no drawing context is bound to the current thread has no effect. The
drawing context currently bound to a running thread is referred to as the current
context.

When an image, paint, or path handle is defined, it is permanently attached to
the context that is current at that time. It is an error to use the handle as an
argument to any OpenVG function when a different context is active, unless that
context has been designated as a shared context of the original context by the API
responsible for context creation (usually EGL).

Images created by OpenVG may be used as the rendering target of a drawing
context. All drawing performed by any API that makes use of that context, such
as OpenVG or OpenGL ES, will use that image as the drawing surface.

Passing an image that is currently the rendering target of a drawing context to
any OpenVG function will result in a VG_| MAGE_I N_USE_ERROR. The image
may once again be used by OpenVG when it is no longer in use as a rendering
target.

An image that shares storage with any other image (via use of the
vgChildImage function), or that is set as a paint pattern image on a paint object,
may not be used as a rendering target. The image may once again be used as a
rendering target when all other images that share storage with it have been
destroyed and it is no longer set as a paint pattern image on any paint object.

It is possible to provide OpenVG on a platform without supporting EGL. In
this case, the host operating system must provide some alternative means of
creating a context and binding it to a drawing surface and a rendering thread.

The context is responsible for maintaining the API state, as shown in Table 3.

State Element Description
Drawing Surface Surface for drawing
Matrix Mode Transformation to be manipulated
Path user-to-surface Affine transformation for filled and
Transformation stroked geometry
Image user-to-surface Affine or projective transformation for
Transformation 1mages

16

OpenVG 1.0 Specification

State Element

Paint-to-user

4 — The Drawing Context

Description

Affine transformation for paint applied

Transformation to geometry

Fill Rule Rule for filling paths

Quality Settings {:;/i%i and rendering quality, pixel

Blend Mode Pixel blend function

Image Mode Image/paint combination function

Scissoring Current scissoring rectangles and
enable/disable

Stroke Stroke parameters

Tile fill color Color for FILL tiling mode

Clear color

Filter Parameters

Color for fast clear

Image filtering parameters

Paint Paint definitions
Mask Alpha stencil mask and enable/disable
Error Oldest unreported error code
Table 3: State Elements of a Context
4.1 Errors

Some OpenVG functions may encounter errors. Unless otherwise specified,
any value returned from a function following an error is undefined.

All OpenVG functions may signal VG_OUT_OF_MEMORY_ERROR. This allows
implementations to defer memory allocation until it is needed, rather than
requiring them to proactively allocate memory only in certain functions that are
allowed to generate an error. Such an error may occur midway through the
execution of an OpenVG function, in which case the function may have caused
changes to the state of OpenVG or to drawing surface pixels prior to failure.

When an OpenVG function encounters an error other than a
VG_QUT_OF_MEMORY_ERROR, the context state is not modified and no drawing
takes place.

An error condition within an OpenVG function must never result in process
termination, with the exception of illegal memory accesses taking place within
functions that accept an application-provided pointer. Applications should take
care to check return values where provided. Functions that do not provide
return values may still flag errors that may be retrieved using the vgGetError

17

OpenVG 1.0 Specification 4.1 - Errors

function described below. Errors are stored in the context in which the function
was called.

All pointer arguments must be aligned according to their datatype, e.g., a
V& [oat * argument must be a multiple of 4 bytes.
VGErrorCode

The error codes and their numerical values are defined by the VGEr r or Code
enumeration:

t ypedef enum {
VG_NO_ERRCR = 0,
VG_BAD HANDLE ERRCR = 0x1000,
VG | LLEGAL_ARGUMENT_ERROR = 0x1001,
VG_OUT_OF_MEMORY_ERROR = 0x1002,
VG _PATH_CAPABI LI TY_ERROR = 0x1003,
VG_UNSUPPCORTED | MAGE_FORMAT_ERROR = 0x1004,
VG_UNSUPPCORTED PATH FORMAT_ERROR = 0x1005,
VG_| MAGE_| N_USE_ERROR = 0x1006,
VG_NO_CONTEXT_ERRCR = 0x1007

} VGError Code;

vgGetError

vgGetError returns the oldest error code provided by an API call on the
current context since the previous call to vgGetError on that context (or since the
creation of the context). No error is indicated by a return value of 0
(VG_NO_ERROR). After the call, the error code is cleared to 0. The possible errors
that may be generated by each OpenVG function (apart from
VG_OUT_OF_MEMORY_ERRCR) are shown below the definition of the function.

If no context is current at the time vgGetError is called, the error code
VG_NO_CONTEXT_ERRCR is returned. Pending error codes on existing contexts
are not affected by the call.

‘VGError Code vgGet Error (voi d) I
4.2 Manipulating the Context Using EGL

Most OpenVG implementations are expected to make use of version 1.2 or
later of the EGL API to obtain drawing contexts. This section provides only a
partial, non-normative description of some aspects of the use of EGL that are
specific to OpenVG. Refer to the EGL 1.2 specification for more details.

4.2.1 EGLConfig Attributes

An EG.Conf i g describes the capabilities of a configuration. Each EGLConf i g
encapsulates a set of attributes and their values.

18

OpenVG 1.0 Specification 4.2.1 - EGLConfig Attributes

EGL_OPENVG_BIT

EGLConfigs that may be wused with OpenVG will have the bit
EG._OPENVG BI T set in their attribute EG._RENDERABLE_TYPE attribute.

EGL_ALPHA_MASK_SIZE

The EGL_ALPHA_MASK_SI ZE attribute contains the bit depth of the alpha
mask associated with a configuration. Alpha masking will take place in the
OpenVG pipeline only if the alpha mask bit depth for the drawing surface is
greater than zero.

4.2.2 EGL Functions
egl/BindAPI

EGL has a notion of the current rendering API. This setting acts as an implied
parameter to some EGL functions. To set OpenVG as the current rendering API
in EGL, it is necessary to call eglBindAPI with an api argument of
EGL_OPENVG_API :

EG_Bool ean egl Bi ndAPI (EGLenum api) I

eglCreateContext

Once eglBindAPI has been called to set OpenVG as the current rendering API,
an EGL context that is suitable for use with OpenVG may be obtained by calling
eglCreateContext. An existing OpenVG context may be passed in as the
shar e_cont ext parameter; any VGPat h and VA mage objects defined in
shar e_cont ext will be accessible from the new context, and vice versa. If no
sharing is desired, the value EGL_NO_CONTEXT should be used.

EG_Cont ext egl Creat eCont ext (EG.Di spl ay dpy,
EG.Config confi g,
EG_Cont ext share_cont ext,
const EG.int * attrib |ist)

eglCreateWindowSurface

Drawing takes place onto an EG.Sur f ace. An EG_Sur f ace may be created
from a platform native window using eglCreateWindowSurface. It is possible to
request single-buffered rendering, in which drawing takes place directly to the
visible window, wusing the attrib_list parameter to set the
EGL_RENDER BUFFER attribute to a value of EGL_SINGLE_BUFFER
Implementations that do not support single-buffered rendering may ignore this
setting. Applications should query the returned surface to determine if it is
single- or double-buffered.

19

OpenVG 1.0 Specification 4.2.2 - EGL Functions

EG.Sur face egl Creat eW ndowSur f ace(EGLDi spl ay dpy,

EG.Confi g confi g,

Nat i veW ndowType wi n,

const EGint *attrib list);

eglCreatePbufferFromClientBuffer

An EGLSurface that allows rendering into a VG mage (see Section 10) may be
created by binding the VG nmage to a Pbuffer (off-screen buffer). EGL defines the
function eglCreatePbufferFromClientBuffer, which may be used with a
buf t ype argument of EGL_OPENVG_| MAGE. The VA nmage to be targeted is cast
to the EGLC i ent Buf f er type and passed as the buf f er parameter.

If EGL is used with OpenVG, the version of EGL used must support the
creation of a Pbuffer from a VA mage either as part of its core functionality or by
means of an extension.

EG.Sur face egl Creat ePbuf fer FronCl i ent Buf f er (EGLDi spl ay dpy,

EG_enum buf t ype,

EG.C i ent Buf fer buffer,
EG.Confi g confi g,

const EG.int *attrib |ist)

eglMakeCurrent

The eglMakeCurrent function causes a given context to become current on the
running thread. Any context that is current on the thread prior to the call is
flushed and marked as no longer current.

EG.Bool ean egl MakeCurrent (EGLD spl ay dpy,
EG_Sur f ace draw,
EG.Surface read,
EG.Cont ext ct x)

eglGetCurrentContext

The OpenVG context for the current rendering API that is bound to the current
thread may be retrieved by calling eglGetCurrentContext:

EGLCont ext egl Get Current Cont ext () '

eglDestroyContext

An EGL context is destroyed by calling eglDestroyContext.

‘EGLBOO| ean egl DestroyCont ext (EGLDi spl ay di spl ay, EG.Cont ext context) '

20

OpenVG 1.0 Specification 4.2.2 - EGL Functions

eglSwapBuffers

When drawing occurs in double-buffered mode, all drawing takes place into an
invisible back buffer, and it is necessary to call eglSwapBuffers to force the
buffer contents to be copied to the visible window. If the visible buffer has a
lesser color bit depth than the back buffer, dithering may be performed as part of
the buffer copy operation.

EG.Bool ean egl SwapBuf f er s(EGLDi spl ay dpy,
EG.Sur face surface);

4.3 Forcing Drawing to Complete

OpenVG provides functions to force the completion of rendering, in order to
allow applications to synchronize between multiple rendering APIs.

vgFlush

The vgFlush function ensures that all outstanding requests on the current
context will complete in finite time. vgFlush may return prior to the actual
completion of all requests.

‘voi d vgFl ush(voi d) '

vgFinish

The vgFinish function forces all outstanding requests on the current context to
complete, returning only when the last request has completed.

voi d vgFi ni sh(voi d) '

21

OpenVG 1.0 Specification 5 - Setting API Parameters

5 Setting APl Parameters

API parameters may be set and retrieved using generic get and set functions.
The use of generic functions allows for extensibility of the API without the
addition of additional functions. Extensions may receive unique identifier values
for new parameter types by registering with the Khronos group.

Parameters take two forms: some are set relative to a rendering context, and
others are set on a particular VGHand| e-based object. The former make use of
the vgSet and vgGet functions and the latter make use of the vgSetParameter
and vgGetParameter functions.

5.1 Context Parameter Types

Parameter types that are set on a rendering context are defined in the
VGPar anTType enumeration. The datatype and default value associated with
each parameter is shown in Table 4.

VGParamType

The VGPar aniType enumeration defines the parameter type of the value to be
set or retrieved using vgSet and vgGet:

typedef enum {
/* Mode settings */

VG_MATRI X_MODE = 0x1100,
VG FI LL_RULE = 0x1101,
VG | MAGE_QUALI TY = 0x1102,
VG_RENDERI NG_QUALI TY = 0x1103,
VG _BLEND MODE = 0x1104,
VG_| MAGE_MODE = 0x1105,
/* Scissoring rectangles */

VG_SCl SSOR_RECTS = 0x1106,
[* Stroke parameters */

VG_STROKE_LI NE_W DTH = 0x1110,
VG_STROKE_CAP_STYLE = 0x1111,
VG _STROKE_JO N_STYLE = 0x1112,
VG STROKE M TER LIM T = 0x1113,
VG_STROKE_DASH PATTERN = 0x1114,
VG_STROKE_DASH PHASE = 0x1115,
VG _STROKE_DASH _PHASE RESET = 0x1116,

/* Edge fill color for VG TILE FILL tiling node */
VG TI LE FILL_CO.OR = 0x1120,

[* Color for vgQ ear */
VG _CLEAR _COLCOR = 0x1121,

22

OpenVG 1.0 Specification 5.1 - Context Parameter Types

/* Enabl e/ di sabl e al pha maski ng and sci ssoring */

VG_MASKI NG = 0x1130,
VG_SCl SSORI NG = 0x1131,
/* Pixel |layout information */

VG _PI XEL_LAYOQUT = 0x1140,
VG_SCREEN_LAYOQUT = 0x1141,

[* Source format selection for inage filters */
VG _FI LTER_FORMAT_LI NEAR 0x1150,
VG _FI LTER_FORVAT_PREMULTI PLI ED = 0x1151,

[* Destination wite enable mask for image filters */
VG_FI LTER_CHANNEL MASK = 0x1152,

[* Inmplenentation limts (read-only) */
VG_MAX_SCI SSOR_RECTS = 0x1160,

VG_MAX_DASH_COUNT = 0x1161,
VG_MAX_KERNEL_SI ZE = 0x1162,
VG_MAX_SEPARABLE KERNEL_SIZE = 0x1163,
VG_MAX_COLOR_RAMP_STOPS = 0x1164,
VG_MAX_| MAGE_W DTH = 0x1165,
VG_MAX_| MAGE_HEI GHT = 0x1166,
VG_MAX_| MAGE_PI XELS = 0x1167,
VG_MAX_| MAGE_BYTES = 0x1168,
VG_MAX_FLOAT = 0x1169

} VGPar anType;

5.2 Setting and Querying Context Parameter Values

Each vgGet/vgGetParameter or vgSet/vgSetParameter function has four
variants, depending on the data type of the value being set, differentiated by a
suffix: i for scalar integral values, f for scalar floating-point values, and iv and fv
for vectors of integers and floating-point values, respectively. The vector variants
may also be used to set scalar values using a count of 1. When setting a value of
integral type using a floating-point vgSet variant (ending with f or fv), or
retrieving a floating-point value using an integer vgGet function (ending with i
or iv), the value is converted to an integer using a mathematical floor operation. If
the resulting value is outside the range of integer values, the closest valid integer
value is substituted.

The count parameter used by the array variants (ending with iv or fv) limits
the number of values that are read from the val ues array parameter. For
parameters that require a fixed number of values (e.g., color values of type
VG | oat [4]), count must have the appropriate value. For parameters that
place restrictions on the number of values that may be accepted (e.g., that it be a
multiple of a specific number, as for scissor rectangles which are specified as a
set of 4-tuples), count must obey the restriction. For parameters that accept an
arbitrary number of values up to some maximum number (e.g., dash patterns) ,

23

OpenVG 1.0 Specification 5.2 - Setting and Querying Context Parameter Values

all count specified values up to the maximum are used and values beyond the
maximum are ignored. If the count parameter is 0, the pointer argument is not
dereferenced. For example, the call vgSet (VG_STROKE_DASH _PATTERN, O,
(void *) 0) sets the dash pattern to a zero-length array (which has the effect
of disabling dashing) without dereferencing the third parameter. If an error
occurs due to an inappropriate value of count, the call has no effect on the
parameter value.

Certain parameter values are read-only. Calling vgSet or vgSetParameter on
these values has no effect.
vgSet

The vgSet functions set the value of a parameter on the current context.

voi d vgSetf (VGParanilype paranflType, VG| oat val ue)

voi d vgSeti (VGParanlype paraniType, VG nt val ue)

voi d vgSet fv(VGPar anifype par anfType, VG nt count,
const V&l oat * val ues)

voi d vgSeti v(VGPar anifype par anType, VG nt count,

const VG nt * val ues)

ERRORS
VG | LLEGAL_ARGUVENT ERROR
if par anlype is not a valid value from the VGPar anilype enumeration

if par anlype refers to a vector parameter in vgSetf or vgSeti

- if par anlype refers to a scalar parameter in vgSetfv or vgSetiv and count
is not equal to 1

- if val ue is not a legal enumerated value for the given parameter in vgSetf
or vgSeti, or if val ues[i] is not a legal enumerated value for the given
parameter in vgSetfv or vgSetiv for 0 <i < count

- if val ues is NULL in vgSetfv or vgSetiv and count is greater than 0
- if val ues is not properly aligned in vgSetfv or vgSetiv
- if count is less than 0 in vgSetfv or vgSetiv

- if count is not a valid value for the given parameter

For example, to set the blending mode to the integral value
VG_BLEND_SRC_OVER (see Section 12.5), the application would call:

vgSet i (VG_BLEND_MODE, VG BLEND_SRC OVER);]

24

OpenVG 1.0 Specification 5.2 - Setting and Querying Context Parameter Values

vgGet and vgGetVectorSize
The vgGet functions return the value of a parameter on the current context.

The vgGetVectorSize function returns the maximum number of elements in
the vector that will be retrieved by the vgGetiv or vgGetfv functions if called
with the given par anType argument. For scalar values, 1 is returned. If vgGetiv
or vgGetfv is called with a smaller value for count than that returned by
vgGetVectorSize, only the first count elements of the vector are retrieved. Use
of a greater value for count will result in an error.

The original value passed to vgSet (except as specifically noted, and provided
the call to vgSet completed without error) is returned by vgGet, even if the
implementation makes use of a truncated or quantized value internally. This rule
ensures that OpenVG state may be saved and restored without degradation.

If an error occurs during a call to vgGetf, vgGeti, or vgGetVectorSize, the
return value is undefined. If an error occurs during a call to vgGetfv or vgGetiv,
nothing is written to val ues.

V& | oat vgCetf (VGParanilype paranilype)
VG nt vgCeti (VGPar anifype par anilype)

VG nt vgCet Vect or Si ze(VGPar anifype par anilype)

voi d vgCet f v(VGPar anifype par anifype, VG nt count, VG|oat * val ues)
voi d vgCeti v(VGPar anifype par anifype, VA nt count, VG nt * val ues)

ERRORS
VG_ILLEGAL_ARGUMENT_ERROR

if par anilype is not a valid value from the VGPar amlype enumeration

- if par aniType refers to a vector parameter in vgGetf or vgGeti
- if val ues is NULL in vgGetfv or vgGetiv

- if val ues is not properly aligned in vgGetfv or vgGetiv

- if count is less than or equal to 0 in vgGetfv or vgGetiv

- if count is greater than the value returned by vgGetVectorSize for the given
parameter in vgGetfv or vgGetiv

5.2.1 Default Context Parameter Values

When a new OpenVG context is created, it contains default values as shown in
Table 4. Note that some tokens have been split across lines for reasons of space.

25

OpenVG 1.0 Specification 5.2.1 - Default Context Parameter Values

Parameter Datatype Default Value
VG MATRI X_PATH_USER
VG_MATRI X_MODE VGWat ri xMode
TO_SURFACE
VG FI LL_RULE VGFi | | Rul e VG_EVEN_ODD
VG | MAGE_QUALI TY VG mageQual ity VG | MAGE_QUALI TY_FASTER
VG_RENDERI NG QUALI TY \(;G;elr'?)e/” ng VG _RENDERI NG QUALI TY_BETTER
VG_BLEND_ MODE V@Bl endMbde VG BLEND SRC_OVER
VG | MAGE_ MODE VG mageMbde VG_DRAW | MAGE_NORMAL
VG_SCl SSOR_RECTS VG nt * { } (array of length 0)
VG_STROKE_LI NE_W DTH VG | oat 1.0f
VG_STROKE_CAP_STYLE VGCapSt yl e VG_CAP_BUTT
VG _STROKE_JO N_STYLE VGJoi nSt yl e VG JO N M TER
VG STROKE MTER LIM T VG | oat 4.0f
VG_STROKE_DASH_PATTERN VG| oat * { } (array of length 0) (disabled)
VG _STROKE_DASH PHASE VG | oat 0.0f
\é(ég:IME—DASH—PHASE— VGbool ean VG _FALSE (disabled)
VG TI LE_FI LL_COLOR VG | oat [4] { 0.0f, 0.0f, 0.0f, 0.0f }
VG CLEAR COLOR VG | oat [4] {0.0f, 0.0f, 0.0f, 0.0f }
VG_NMASKI NG VCGbool ean VG_FALSE (disabled)
VG_SCl SSORI NG VCGbool ean VG_FALSE (disabled)
VG_PI XEL_LAYOUT VGPi xel Layout VG _PI XEL_LAYOUT_UNKNOWN
VG _SCREEN LAYOUT VGPi xel Layout Layout of the drawing surface
VG FI LTER FORMAT LI NEAR VGbool ean VG _FALSE (disabled)
VG_FI LTER_FORMAT_ VGbool ean VG_FALSE (disabled)

PREMULTI PLI ED

(VG RED | VG GREEN |

VG FI LTER_ CHANNEL_MASK VGbitfiel d VG BLUE | VG ALPHA

Table 4: Default Parameter Values for a Context

26

OpenVG 1.0 Specification 5.2.1 - Default Context Parameter Values

The read-only parameter values VG_MAX_SCI SSOR_RECTS,
VG_MAX_DASH COUNT, VG _MAX_KERNEL_SI ZE,
VG_MAX_SEPARABLE_KERNEL_SI ZE, VG_MAX_GAUSSI AN_STD DEVI ATI ON,
VG_MAX_COLOR RAMP_STOPS, VG MAX_| MAGE_W DTH,
VG_MAX_| MAGE_HEI GHT, VG MAX_| MAGE_PI XELS, VG _MAX_| MAGE_BYTES,
and VG_MAX_FLQAT are initialized to implementation-defined values.

The VG_SCREEN_LAYQUT parameter is initialized to the current layout of the
display device containing the current drawing surface, if applicable.

The matrices for matrix modes VG_MATRI X PATH USER TO SURFACE,
VG_MATRI X_| MAGE_USER_TO_SURFACE,
VG_MATRI X_FI LL_PAI NT_TO _USER, and
VG_MATRI X_STROKE_PAI NT_TO_USER are initialized to the identity matrix
(see Section 6.5):

sx shx tx

1
shy sy t|=|0
w, W, W, 0

S = O
— O O

Default paint parameter values are set for the filling and stroking paint modes.

5.3 Setting and Querying Object Parameter Values

Objects that are referenced using a VGHandl e (i.e., V@ mage, VGPai nt, and
VGPat h objects) may have their parameters set and queried using a number of
vgSetParameter and vgGetParameter functions. The semantics of these functions
(including the handling of invalid count values) are similar to those of the
vgGet and vgSet functions.

vgSetParameter

The vgSetParameter functions set the value of a parameter on a given
VGHandl| e-based obj ect .

voi d vgSet Paranmeterf (VCGHandl e object, VG nt paranilype,
V& | oat val ue)

voi d vgSet Paraneteri (VCGHandl e object, VG nt paranilype,
VG nt val ue)

voi d vgSet Par anet er f v(VGHandl e obj ect, VG nt paranfype,
VG nt count, const V&I oat * val ues)

voi d vgSet Par anet eri v(VGHandl e obj ect, VG nt paranfype,
VG nt count, const VG nt * val ues)

27

OpenVG 1.0 Specification 5.3 - Setting and Querying Object Parameter Values

ERRORS

VG_BAD HANDLE ERROR

- if obj ect is not a valid handle, or is not shared with the current context
VG | LLEGAL_ARGUMENT _ERROR

- if par anType is not a valid value from the appropriate enumeration

if par anType refers to a vector parameter in vgSetParameterf or
vgSetParameteri

- if par anType refers to a scalar parameter in vgSetParameterfv or
vgSetParameteriv and count is not equal to 1

- if val ue is not a legal enumerated value for the given parameter in
vgSetParameterf or vgSetParameteri, or if val ues|[i] is not a legal
enumerated value for the given parameter in vgSetParameterfv or
vgSetParameteriv for 0 <i < count

- if val ues is NULL in vgSetParameterfv or vgSetParameteriv and count is
greater than 0

- if val ues is not properly aligned in vgSetParameterfv or vgSetParameteriv
- if count is less than 0 in vgSetParameterfv or vgSetParameteriv

- if count is not a valid value for the given parameter

vgGetParameter and vgGetParameterVectorSize

The vgGetParameter functions return the value of a parameter on a given
VCHand| e-based object.

The vgGetParameterVectorSize function returns the number of elements in the
vector that will be returned by the vgGetParameteriv or vgGetParameterfv
functions if called with the given par anifype argument. For scalar values, 1 is
returned. If vgGetParameteriv or vgGetParameterfv is called with a smaller
value for count than that returned by vgGetParameterVectorSize, only the first
count elements of the vector are retrieved. Use of a greater value for count will
result in an error.

The original value passed to vgSetParameter (provided the call to
vgSetParameter completed without error) should be returned by
vgGetParameter (except where specifically noted), even if the implementation
makes use of a truncated or quantized value internally.

If an error occurs during a call to vgGetParameterf, vgGetParameteri, or
vgGetParameterVectorSize, the return value is undefined. If an error occurs
during a call to vgGetParameterfv or vgGetParameteriv, nothing is written to
val ues.

28

OpenVG 1.0 Specification 5.3 - Setting and Querying Object Parameter Values

V& | oat vgCet Paraneterf (VGHandl e obj ect,
VG nt paranlype)
VG nt vgCet Paranet eri (VGHandl e obj ect,
VG nt paranmlype)

VG nt vgCet Par anet er Vect or Si ze (VGHandl e obj ect
VG nt paranilype)

voi d vgCet Par anet er f v(VGHandl e obj ect,

VG nt par anilype,

VG nt count, V&Il oat * val ues)
voi d vgCet Par anet eri v(VGHandl e obj ect,

VG nt paranlype,

VG nt count, VG nt * val ues)

ERRORS

VG BAD HANDLE ERROR

- if obj ect is not a valid handle, or is not shared with the current context
VG | LLEGAL ARGUVENT ERROR

if par anType is not a valid value from the appropriate enumeration

- if par anType refers to a vector parameter in vgGetParameterf or
vgGetParameteri

- if val ues is NULL in vgGetParameterfv or vgGetParameteriv
- if val ues is not properly aligned in vgGetParameterfv or vgGetParameteriv
- if count is less than or equal to 0 in vgGetParameterfv or vgGetParameteriv

- if count is greater than the value returned by vgGetParameterVectorSize
for the given parameter in vgGetParameterfv or vgGetParameteriv

29

OpenVG 1.0 Specification 6 — Rendering Quality and Antialiasing

6 Rendering Quality and Antialiasing

Rendering quality settings are available to control implementation-specific
trade-offs between quality and performance. For example, an application might
wish to use the highest quality setting for still images, and the fastest setting
during Ul operations or animation. The implementation must satisfy
conformance requirements regardless of the quality setting.

A non-antialiased mode is provided in which pixel coverage is always
assigned to be 0 or 1, based on the inclusion of the pixel center in the geometry
being rendered. When antialiasing is disabled, a coverage value of 1 will be
assigned to each pixel whose center lies within the estimated path geometry, and
a coverage value of 0 will be assigned otherwise. A consistent tie-breaking rule
must be used for paths that pass through pixel centers.

For purposes of estimating whether a pixel center is included within a path,
implementations may make use of approximations to the exact path geometry,
providing that the following constraints are met. Conceptually, draw a disc D
around each pixel center with a radius of just under %2 a pixel (in topological
terms, an open disc of radius 2) and consider its intersection with the exact path
geometry:

1. If D is entirely inside the path, the coverage at the pixel center must be
estimated as 1;

2. If D is entirely outside the path, the coverage at the pixel center must be
estimated as 0;

3. If D lies partially inside and partially outside the path, the coverage
may be estimated as either 0 or 1 subject to the additional constraints that:
a. The estimation is deterministic and invariant with respect to state
variables apart from the current user-to-surface transformation and path
coordinate geometry; and

b. For two disjoint paths that share a common segment, if D is partially
covered by each path and completely covered by the union of the paths,
the coverage must be estimated as 1 for exactly one of the paths. A
segment is considered common to two paths if and only if both paths
have the same path format, path datatype, scale, and bias, and the
segments have bit-for-bit identical segment types and coordinate values. If
the segment is specified using relative coordinates, any preceding
segments that may influence the segment must also have identical
segment types and coordinate values.

Non-antialiased rendering may be useful for previewing results or for
techniques such as picking (selecting the geometric primitive that appears at a

30

OpenVG 1.0 Specification 6 — Rendering Quality and Antialiasing

given screen location) that require a single geometric entity to be associated with
each pixel after rendering has completed.

Applications may indicate the sub-pixel color layout of the display in order to
optimize rendering quality.

6.1 Rendering Quality

The overall rendering quality may be set to one of three settings: non-
antialiased, faster, or better.

VGRenderingQuality

The VGRenderi ngQual i ty enumeration defines the values for setting the
rendering quality:

typedef enum {
VG_RENDERI NG _QUALI TY_NONANTI ALl ASED
VG_RENDERI NG QUALI TY_FASTER
VG_RENDERI NG_QUALI TY_BETTER

} VGRenderingQuality;

0x1200,
0x1201,
0x1202 /* Default */

The VG_RENDERI NG_QUALI TY_NONANTI ALI ASED setting disables
antialiasing. The VG_RENDERI NG_QUALI TY_FASTER setting causes rendering to
be done at the highest available speed, while still satisfying all API conformance
criteria. The VG_RENDERI NG_QUALI TY_BETTER setting, which is the default,
causes rendering to be done with the highest available quality.

The vgSet function is used to control the quality setting to one of
VG_RENDERI NG_QUALI TY_NONANTI ALI ASED,
VG _RENDERI NG_QUALI TY_FASTER or VG _RENDERI NG QUALI TY_BETTER:

vgSeti (VG_RENDERI NG QUALI TY, VG RENDERI NG QUALI TY_NONANTI ALI ASED) ;
vgSeti (VG_RENDERI NG_QUALI TY, VG RENDERI NG_QUALI TY_FASTER) ;
vgSeti (VG_RENDERI NG_QUALI TY, VG _RENDERI NG_QUALI TY_BETTER) ;

6.2 Additional Quality Settings
VGPixelLayout

The VGPi xel Layout enumeration describes a number of possible geometric
layouts of the red, green, and blue emissive or reflective elements within a pixel.
This information may be used as a hint to the rendering engine to improve
rendering quality. The supported pixel layouts are illustrated in Figure 2.

31

OpenVG 1.0 Specification 6.2 - Additional Quality Settings

typedef enum {

VG_PI XEL_LAYOUT UNKNOWN = 0x1300,
VG _PI XEL_LAYOUT RGB_VERTI CAL = 0x1301,
VG_PI XEL_LAYOUT BGR VERTI CAL = 0x1302,
VG_PI XEL_LAYOUT RGB_HORI ZONTAL = 0x1303,
VG_PI XEL_LAYOUT _BGR_HORI ZONTAL = 0x1304

} VGPi xel Layout ;

The pixel layout of the display device associated with the current drawing
surface may be queried using vgGeti with a paranType value of
VG _SCREEN_LAYOUT. The value VG Pl XEL_LAYOUT _UNKNOWN may indicate
that the color elements of a pixel are geometrically coincident, or that no layout
information is available to the implementation.

To provide the renderer with a pixel layout hint, use vgSeti with a par anilype
value of VG Pl XEL_LAYOUT and a value from the VGPi xel Layout
enumeration. The value VG Pl XEL_LAYOUT_UNKNOMN disables any
optimizations based on pixel layout, treating the color elements of a pixel as
geometrically coincident. Reading back the value of VG Pl XEL_LAYOUT with
vgGet simply returns the value set by the application or the default value and
does not reflect the properties of the drawing surface.

RGB_VERTI CAL BGR_VERTI CAL

R B

RGB_HORI ZONTAL G G BGR_HORI ZONTAL
B R

Figure 2: VGPi xel Layout Values

6.3 Coordinate Systems and Transformations

Geometry is defined in a two-dimensional coordinate system that may or may
not correspond to pixel coordinates. Drawing may be performed independently
of the details of screen size, resolution, and drawing area by establishing suitable
transformations between coordinate systems.

32

OpenVG 1.0 Specification 6.4 — Coordinate Systems

6.4 Coordinate Systems

Geometric coordinates are specified in the user coordinate system. The path-user-
to-surface and image-user-to-surface transformations map between the user
coordinate system and pixel coordinates on the destination drawing surface. This
pixel-based coordinate system is known as the surface coordinate system. The
relationship between the user and surface coordinate systems and the
transformations that map between them is shown in Figure 3 below.

The user coordinate system is oriented such that values along the X axis
increase from left to right and values along the Y axis increase from bottom to
top, as in OpenGL. When the user-to-surface transformation is the identity
transformation, a change of 1 unit along the X axis corresponds to moving by
one pixel.

In the surface coordinate system, pixel (0, 0) is located at the lower-left corner
of the drawing surface. The pixel (x, y) has its center at the point (x + 72, y + 1%).
Antialiasing filters used to evaluate the color or coverage of a pixel are centered
at the pixel center. If antialiasing is disabled, the evaluation of each pixel occurs
at its center.

6.5 Transformations

Geometry is defined in the user coordinate system, and is ultimately
transformed into surface coordinates and assigned colors by means of a set of
user-specified transformations that apply to geometric path data and to paint.

6.5.1 Homogeneous Coordinates

Homogeneous coordinates are used in order to allow translation factors to be
included in the affine matrix formulation, as well as to allow perspective effects
for images. In homogeneous coordinates, a two-dimensional point (x, y) is
represented by the three-dimensional column vector [x,)/ 1]". The same point
may be equivalently represented by the vector [s*x, s*y, s]' for any non-zero scale
factor s. More detailed explanations of the use of homogeneous coordinates may
be found in most standard computer graphics textbooks, for example
[FvDFH95].

33

OpenVG 1.0 Specification 6.5.1 - Homogeneous Coordinates

Surface Coordinates

Uséfu.éééfd‘inates Clipping and Scissoring
Drawing
Surface
Scissoring — Bounds

Rectangles

~

Figure 3: Coordinates, Transformation, Clipping, and Scissoring

6.5.2 Affine Transformations

Geometric objects to be drawn are transformed from user coordinates to
surface coordinates as they are drawn by means of a 3x3 affine transformation
matrix with the following entries:

sx shx tx

shy sy ty
0 0 1

The entries may be divided by their function:

sx and sy define scaling in the x and y directions, respectively;
shx and shy define shearing in the x and y directions, respectively;
tx and ty define translation in the x and y directions, respectively.

34

OpenVG 1.0 Specification 6.5.2 - Affine Transformations

An affine transformation maps a point (x, y) (represented using homogeneous
coordinates as the column vector [x, y, 1]7) into the point (x*sx + y*shx + tx, x*shy
+ y*sy + ty) using matrix multiplication:

sx shx x| | x x*sx + yxshx +ix
shy sy ty|| y|=| xxshy + yxsy +i1y
0 0 111 1

Affine transformations allow any combination of scaling, rotation, shearing,
and translation. The concatenation of two affine transformations is an affine
transformation, whose matrix form is the product of the matrices of the original
transformations.

Gradients and patterns are subject to an additional affine transformation
mapping the coordinate system used to specify the gradient parameters into user
coordinates. The path-user-to-surface transformation is then applied to yield
surface coordinates.

OpenVG does not provide the notion of a hierarchy of transformations;
applications must maintain their own matrix stacks if desired.
6.5.3 Projective (Perspective) Transformations

The vgDrawlImage function uses a 3x3 projective (or perspective) transformation
matrix (representing the image-user-to-surface transformation) with the
following entries to transform from user coordinates to surface coordinates:

sx shx

shy sy ty
Wo Wi W,

A projective transformation maps a point (x, y) into the point:

X*8X +y*shx +ix x*shy+ y*sy+ty
X*kwotyRw, +w, xkw+ yrw +w,

using matrix multiplication and division by the third homogeneous coordinate:

X*SX + y* shx+tx
sx shx x| | x X*Sx+ y*shx +tx X*¥W,+ y*w;+w,
shy sy || y|=| x*shy+y*sy+ty| S| x*kshy+y*xsy+ty
w, w; w,l| 1 X*wyt yxw,+w, X*w,+y*w,+w,

1

35

OpenVG 1.0 Specification 6.5.3 - Projective (Perspective) Transformations

The concatenation of two projective transformations is a projective
transformation, whose matrix form is the product of the matrices of the original
transformations.

Both affine and projective transformations map straight lines to straight lines.
However, affine transformations map evenly spaced points along a source line to
evenly spaced points in the destination, whereas projective transformations
allow the distance between points to vary due to the effect of division by the
denominator d = (x*w, + y*w; + w,). Although OpenVG does not provide support
for three-dimensional coordinates, proper setting of the w matrix entries can
simulate the effect of placement of images in three dimensions, as well as other
warping effects.

6.6 Matrix Manipulation

Transformation matrices are manipulated using the vgLoadldentity,
vgLoadMatrix, and vgMultMatrix functions. For convenience, the vgTranslate,
vgScale, vgShear, and vgRotate functions may be used to concatenate common
types of transformations.

The matrix conventions used by OpenVG are similar to those of OpenGL. A
point to be transformed is given by a homogeneous column vector [x, y, 1]".
Transformation of a point p by a matrix M is defined as the product Mp.
Concatenation of transformations is performed using right-multiplication of
matrices.

In the following sections, the matrix being updated by each call will be
represented by the symbol M.

VGMatrixMode

The current matrix to be manipulated is specified by setting the matrix mode.
Separate matrices are maintained for transforming paths, images, and paint
(gradients and patterns). The matrix modes are defined in the VGVat ri xMode
enumeration:

typedef enum {

VG_MATRI X_PATH USER TO SURFACE = 0x1400,
VG_MATRI X_| MAGE_USER TO_SURFACE = 0x1401,
VG MATRI X_FI LL_PAINT_TO USER = 0x1402,
VG_MATRI X_STROKE_PAI NT_TO USER = 0x1403

VGVt ri xMode;

To set the matrix mode, call vgSeti with a type of VG_MATRI X_MODE and a
value of VG MATRI X _*. For example, to set the matrix mode to allow
manipulation of the path-user-to-surface transformation, call:

vgSet i (VG_MATRI X_MODE, VG MATRI X_PATH_USER TO_SURFACE) ;]

36

OpenVG 1.0 Specification 6.6 — Matrix Manipulation

vglL oadldentity
The vgLoadIdentity function sets the current matrix M to the identity matrix:
1 00
M=0 1 0
0 0 1

voi d vglLoadl dentity(voi d) '

vgLoadMatrix

The vgLoadMatrix function loads an arbitrary set of matrix values into the
current matrix. Nine matrix values are read from m in the order:

{ sx, shy, wy, shx, sy, wy, tx, ty, w, }
defining the matrix:
sx shx x

M= shy sy ty
Wo Wi W,

However, if the targeted matrix is affine (i.e., the matrix mode is not
VG_MATRI X_| MAGE_USER _TO_SURFACE), the values { wy, w;, w, } are ignored
and replaced by the values { 0, 0, 1 }, resulting in the affine matrix:

sx shx tx
M= shy sy

0 0 1
voi d vgLoadMatri x(const VG |loat * m '
ERRORS
VG | LLEGAL _ARGUVENT _ERROR
- if mis NULL

- if mis not properly aligned

37

OpenVG 1.0 Specification 6.6 — Matrix Manipulation

vgGetMatrix

It is possible to retrieve the value of the current transformation by calling
vgGetMatrix. Nine values are written to min the order:

{ sx, shy, wy, shx, sy, w,, tx, ty, w, }

For an affine matrix, w, and w; will always be 0 and w, will always be 1.

voi d vgGet Matri x(VG&loat * m '

ERRORS

VG | LLEGAL ARGUVENT ERROR
- if mis NULL

- if mis not properly aligned

vgMultMatrix

The vgMultMatrix function right-multiplies the current matrix M by a given
matrix:

sx shx ix
M=M1 shy sy 1ty
Wo Wi W,

Nine matrix values are read from min the order:
{ sx, shy, wy, shx, sy, wy, tx, ty, w, }

and the current matrix is multiplied by the resulting matrix. However, if the
targeted matrix is affine (e, the matrix mode is not
VG_NMATRI X_| MAGE_USER_TO_SURFACE) , the values { wy, w;, w, } are ignored
and replaced by the values { 0, 0, 1 } prior to multiplication.

voi d vgMil t Matri x(const VG | oat * m '

ERRORS

VG | LLEGAL ARGUVENT ERROR
- if mis NULL

- if mis not properly aligned

38

OpenVG 1.0 Specification 6.6 — Matrix Manipulation

vgTranslate

The vgTranslate function modifies the current transformation by appending a
translation. This is equivalent to right-multiplying the current matrix M by a
translation matrix:

v
<
S O~
S~ O

ix
ty
1

void vgTransl ate(V& |l oat tx, V&Il oat ty) '

vgScale

The vgScale function modifies the current transformation by appending a
scale. This is equivalent to right-multiplying the current matrix M by a scale
matrix:

sx 0 O
M=M{ 0 sy O
0 0 1
voi d vgScal e(VE | oat sx, V&I oat sy) '

vgShear

The vgShear function modifies the current transformation by appending a
shear. This is equivalent to right-multiplying the current matrix M by a shear
matrix:

1 shx O
M=M{shy 1 0
0 0 1

voi d vgShear (V& | oat shx, V& | oat shy) '

39

OpenVG 1.0 Specification 6.6 — Matrix Manipulation

vgRotate

The vgRotate function modifies the current transformation by appending a
counter-clockwise rotation by a given angle (expressed in degrees) about the
origin. This is equivalent to right-multiplying the current matrix M by the
following matrix (using the symbol a to represent the value of the angl e
parameter):

cos(a) —sin(a) 0
M=M{ sin(a) cos(a) 0
0 0 1

To rotate about a center point (cx, cy) other than the origin, the application may
perform a translation by (-cx, -cy), followed by the rotation, followed by a
translation by (cx, cy).

voi d vgRot at e(V&E | oat angl e) '

40

OpenVG 1.0 Specification 7 - Scissoring, Masking, and Clearing

7 Scissoring, Masking, and Clearing

All drawing is clipped (restricted) to the bounds of the drawing surface, and
may be further clipped to the interior of a set of scissoring rectangles. If available,
an alpha mask is applied for further clipping and to create soft edge and partial
transparency effects.

Pixels outside the drawing surface bounds, or (when scissoring is enabled) not
in any scissoring rectangle are not affected by any drawing operation. For any
drawing operation, each pixel will receive the same value for any setting of the
scissoring rectangles that contains the pixel. That is, the placement of the
scissoring rectangles, and whether scissoring is enabled, affects only whether a
given pixel will be written, without affecting what value it will receive.

7.1 Scissoring

Drawing may be restricted to the union of a set of scissoring rectangles.
Scissoring is enabled when the parameter VG _SCI SSORI NG has the value
VG_TRUE. Scissoring may be disabled by calling vgSeti with a paraniype
argument of VG_SCl SSCRI NGand a value of VG_FALSE.

VG_MAX_SCISSOR_RECTS

The VG_MAX_SCl SSOR_RECTS parameter contains the maximum number of
scissoring rectangles that may be supplied for the VG _SCI SSOR_RECTS
parameter. All implementations must support at least 32 scissor rectangles. If
there is no implementation-defined limit, a value of VG MAXI NT may be
returned. The value may be retrieved by calling vgGeti with a par aniType
argument of VG_MAX_SClI SSCR_RECTS:

VG nt maxSci ssorRects = vgCeti (VG _MAX_SCl SSOR_RECTS) ; I

Specifying Scissoring Rectangles

Each scissoring rectangle is specified as an integer 4-tuple of the form (minX,
minY, width, height), where minX and minY are inclusive. A rectangle with width <
0 or height < 0 is ignored. The scissoring region is defined as the union of all the
specified rectangles. The rectangles as specified need not be disjoint. If scissoring
is enabled and no valid scissoring rectangles are present, no drawing occurs. If
more than VG_MAX_SCI SSOR_RECTS rectangles are specified, those beyond the
tirst VG_MAX_SCl SSOR_RECTS are discarded immediately (and will not be
returned by vgGet).

#defi ne NUM RECTS 2

[* { Mn X, Mn Y, Wdth, Height } 4-Tuples */

VG nt coords[4*NUM RECTS] = { 20, 30, 100, 200,
50, 70, 80, 80 };

vgSeti v(VG SCI SSOR RECTS, 4*NUM RECTS, coords)

41

OpenVG 1.0 Specification 7.2 — Alpha Masking

7.2 Alpha Masking

All drawing operations may be modified by an alpha mask, defining an
additional alpha value at each pixel of the drawing surface that is multiplied by
the coverage value computed by the rasterization stage of the pipeline. Alpha
masking is enabled when an alpha mask is present for the drawing surface (e.g.,
by specifying an EGLConf i g with an EGL_ALPHA_MASK_SI ZE attribute having
a value greater than zero) and the VG _MASKI NG parameter has the value
VG_TRUE. Alpha masking may be disabled by calling vgSeti with a parameter of
VG_MASKI NG and a value of VG_FALSE. If an alpha mask is present, it may be
manipulated by the vgMask function regardless of the value of VG_MASKI NG at
the time of the call. If an alpha mask is not present, the behavior is the same as
though there were an alpha mask having a value of 1 at every pixel; functions
that manipulate the mask values have no effect.

In this section, we will describe alpha values as ranging from 0 to 1. The actual
bit depth used for computation is implementation-dependent. It must be
possible to obtain configurations supporting a mask with at least 1 bit for 1-bit
black and white drawing surfaces, a mask with at least 4 bits for 16-bit color
drawing surfaces, and a mask with at least 8 bits for 8-bit grayscale and 24-bit
color drawing surfaces.

An alpha mask may be thought of as an alpha-only image with the same size
as the current drawing surface. Initially, an alpha mask has the value of 1 at
every pixel. Changes to the alpha mask outside of the current drawing surface
bounds are ignored. If the drawing surface size changes, the alpha mask is
resized accordingly, with new pixels being initialized to an alpha value of 1. If
the context acquires a new drawing surface, the alpha mask is reset.

An alpha mask defines a stencil area through which primitives are placed
before being drawn. The union, intersection, and subtraction operations on
masks are defined by analogy with the corresponding operations on the stencil
areas.

The mask alpha values are multiplied by the corresponding coverage values of
each primitive being drawn in the clipping and masking stage (stage 5) of the
rendering pipeline (see Section 2.5). The masking step is equivalent to replacing
the source image with the result of the Porter-Duff operation “Src in Mask” (see
Section 12.2).

VGMaskOperation

The VGVaskOper at i on enumeration defines the set of possible operations
that may be used to modify the drawing surface alpha mask, possibly making
use of a new mask image. Each operation occurs within a rectangular region of
interest.

The VG_CLEAR _MASK operation sets all mask alpha values in the region of
interest to 0, ignoring the new mask image.

42

OpenVG 1.0 Specification 7.2 — Alpha Masking

The VG _FI LL_MASK operation sets all mask alpha values in the region of
interest to 1, ignoring the new mask image.

The VG_SET_MASK operation copies alpha values in the region of interest from
the new mask image, overwriting the previous alpha mask values.

The VG_UNI ON_MASK operation replaces the previous alpha mask in the
region of interest by its union with the new mask image. The resulting alpha
values are always greater than or equal to their previous value.

The VG_| NTERSECT_MASK operation replaces the previous alpha mask in the
region of interest by its intersection with the new mask image. The resulting
mask values are always less than or equal to their previous value.

The VG_SUBTRACT_MASK operation subtracts the new alpha mask from the
previous alpha mask and replaces the previous alpha mask in the region of
interest by the resulting mask. The resulting alpha values are always less than or
equal to their previous value.

Table 5 gives the equations defining the new mask alpha value for each mask
operation in terms of the previous alpha value oprev and the newly supplied
mask alpha value omask.

Operation Alpha Equation
VG_CLEAR_NMASK anew = 0
VG _FI LL_MASK anew =1
VG _SET_MASK Onew = Omask
VG_UNI ON_MASK anew =1 - (1 - amask)*(1 - aprev)
VG | NTERSECT _MASK Onew = Omask *Oprev
VG_SUBTRACT_MASK anew = dprev*(1 — amask)

Table 5: VGMaskOperation Equations

typedef enum {

VG_CLEAR MASK = 0x1500,
VG _FI LL_MASK = 0x1501,
VG_SET_MASK = 0x1502,
VG_UNI ON_MASK = 0x1503,
VG_| NTERSECT _MASK = 0x1504,
VG_SUBTRACT _MASK = 0x1505

} V@GvaskOper at i on;

vgMask

The vgMask function modifies the alpha mask values according to a given
oper at i on, possibly using alpha values taken from a mask image. If no alpha
mask is configured, vgMask has no effect.

43

OpenVG 1.0 Specification 7.2 — Alpha Masking

The affected region is the intersection of the drawing surface bounds with the
rectangle extending from pixel (x, y) of the drawing surface and having the given
w dt h and hei ght in pixels. For operations that make use of the mask image
parameter (i.e., operations other than VG _CLEAR_MASK and VG _FI LL_MASK),
mask image pixels starting at (0, 0) are used, and the region is further limited to
the width and height of mask. For the VG_CLEAR _MASK and VG _FI LL_MASK
operations, the mask parameter is ignored and does not affect the region being
modified. The value VG_| NVALI D_HANDLE may be supplied in place of an
actual image handle.

The mask image defines alpha values at each of its pixels as follows. If the
image pixel format includes an alpha channel, the alpha channel is used.
Otherwise, values from the red (for color image formats) or grayscale (for
grayscale formats) channel are used. The value is divided by the maximum value
for the channel to obtain an alpha value between 0 and 1. If the image is bi-level
(black and white), black pixels receive an alpha value of 0 and white pixels
receive an alpha value of 1.

voi d vgMask(VA mage mask, VGvaskOperati on operati on,
VGnt x, V@nt y, V@nt width, VG nt height) I

ERRORS
VG _BAD HANDLE ERROR

- if operation is not VG_CLEAR_MASK or VG_FI LL_MASK, and mask is not a
valid image handle, or is not shared with the current context

VG_| MAGE_| N_USE_ERROR
- if mask is currently a rendering target
VG_| LLEGAL_ARGUMENT_ERRCR

- if oper ati on is not a valid value from the VGvaskOper at i on
enumeration

- if wi dt h or hei ght is less than or equal to 0

7.3 Fast Clearing

The vgClear function allows a region of pixels to be set to a single color with a
single call.

vgClear

The vgClear function fills the portion of the drawing surface intersecting the
rectangle extending from pixel (x, y) and having the given wi dt h and hei ght

44

OpenVG 1.0 Specification 7.3 - Fast Clearing

with a constant color value, taken from the VG_CLEAR COLOR parameter. The
color value is expressed in non-premultiplied sRGBA (sRGB color plus
alpha)format. Values outside the [0, 1] range are interpreted as the nearest
endpoint of the range. The color is converted to the destination color space in the
same manner as if a rectangular path were being filled. Clipping and scissoring
take place in the usual fashion, but antialiasing, masking, and blending do not
occur.

void vgC ear(VG@nt x, V@Gnt y, V@nt width, VG nt height) '

ERRORS
VG | LLEGAL_ARGUMENT ERROR
- i f widthorhei ght isless than or equal to 0

For example, to set the entire drawing surface with dimensions W DTH and
HEI GHT to an opaque yellow color, the following code could be used:

VG|l oat color[4] = { 1.0f, 1.0f, 0.0f, 1.0f }; /* Opaque yellow */

vgSeti (VG _SCl SSORI NG, VG _FALSE) ;
vgSet f v(VG_CLEAR COLOR, 4, color);
vgC ear (0, 0, WDTH, HElI GHT);

45

OpenVG 1.0 Specification 8 — Paths

8 Paths

Paths are the heart of the OpenVG API. All geometry to be drawn must be
defined in terms of one or more paths. Paths are defined by a sequence of
segment commands (or segments). Each segment command in the standard format
may specify a move, a straight line segment, a quadratic or cubic Bézier segment,
or an elliptical arc. Extensions may define other segment types.

8.1 Moves

A path segment may consist of a “move to” segment command that causes the
path to jump directly to a given point, starting a new subpath without drawing,.

8.2 Straight Line Segments

Paths may contain horizontal, vertical, or arbitrary line segment commands. A
special “close path” segment command may be used to generate a straight line
segment joining the current vertex of a path to the vertex that began the current
portion of the path.

8.3 Bézier Curves

Bézier curves are polynomial curves defined using a parametric
representation. That is, they are defined as the set of points of the form (x(f), y(t)),
where x(t) and y(t) are polynomials of t and t varies continuously from 0 to 1.
Paths may contain quadratic or cubic Bézier segment commands.

8.3.1 Quadratic Bézier Curves

A quadratic Bézier segment is defined by three control points, (xo, yo), (X1, V1),
and (x,, ,). The curve starts at (x, yy) and ends at (x,, 1,). The shape of the curve
is influenced by the placement of the internal control point (x;, v;), but the curve
does not usually pass through that point. Assuming non-coincident control
points, the tangent of the curve at the initial point x, is alighed with and has the
same direction as the vector x; - x, and the tangent at the final point x; is aligned
with and has the same direction as the vector x, - x;. The curve is defined by the
set of points (x(f), y(t)) as t varies from 0 to 1, where:

x(t)=x (1=t +2%x,%(1—1) %t +x, %1
yor(1=t P+ 2%y * (1 =t) k1 +y %1’

<

=
~

=
I

8.3.2 Cubic Bézier Curves

Cubic Bézier segments are defined by four control points (xo, vo), (x1, Y1), (X2 1),
and (x;, y3). The curve starts at (xo, v9) and ends at (x3 y3). The shape of the curve

46

OpenVG 1.0 Specification 8.3.2 — Cubic Bézier Curves

is influenced by the placement of the internal control points (x;, y;) and (x», 1),
but the curve does not usually pass through those points. Assuming non-
coincident control points, the tangent of the curve at the initial point x, is aligned
with and has the same direction as the vector x; - x, and the tangent at the final
point x; is aligned with and has the same direction as the vector x; - x,. The curve
is defined by the set of points (x(f), y(t)) as t varies from 0 to 1, where:

x (£)=xgk(1=1) +3xx, % (1—=1) %t +3%x,% (1 —1) %"+ x %1
y(t)=y ok (1=1) +3% y x(1—t Pkt +3% y, % (1 —t)% '+ y * 1

8.3.3 G’ Smooth Segments

G' Smooth quadratic or cubic segments implicitly define their first internal
control point in such a manner as to guarantee a continuous tangent direction at
the join point when they are joined to a preceding quadratic or cubic segment.
Geometrically, this ensures that the two segments meet without a sharp corner.
However, the length of the unnormalized tangent vector may experience a
discontinuity at the join point.

G' smoothness at the initial point of a quadratic or cubic segment may be
guaranteed by suitable placement of the first internal control point (x;, y;) of the
following segment. Given a previous quadratic or cubic segment with an internal
control point (px, py) and final endpoint (ox, oy), we compute (x;, ;) as (2%ox - px,
2%y - py) (i.e., the reflection of the point (px, py) about the point (ox, oy)). For
segments of the same type, this will provide C' smoothness (see the next
section).

° o(PxPY)

(ox,0y)

(x Y,)=(2%ox-px,2*oy-py)

Fiqure 4: Smooth Curve Construction

47

OpenVG 1.0 Specification 8.3.4 - C1 Smooth Segments

8.3.4 C' Smooth Segments

[Note: this section is informative only. |

C' smooth quadratic or cubic segments define their first internal control point
(x1, y1) in such a manner as to guarantee a continuous first derivative at the join
point when they are joined to a preceding quadratic or cubic segment.
Geometrically, this ensures that the two segments meet with continuous
parametric velocity at the join point. This is a stronger condition than G'
continuity.

Note that joining a C' smooth segment to a preceding line segment will not
produce a smooth join. To guarantee a smooth join, convert line segments to
equivalent quadratic or cubic curves whose internal control points all lie along
the line segment.

Given a previous quadratic or cubic segment with an internal control point
(px, py) and final endpoint (ox, oy), (x5, y1) is computed as follows:

« When joining a previous quadratic or cubic segment to a following segment
of the same type (quadratic or cubic):
(1, Y1) = (2%0x - px, 2%0Y - py)
+ When joining a previous quadratic segment to a following cubic segment:
(x1, y1) = (6%0x - 2#px, 5*0y - 2*py)/3

« When joining a previous cubic segment to a following quadratic segment:

(x1, y1) = (6%0x - 3*px, 5*0y - 3*py)/2
8.3.5 C* Smooth Segments

[Note: this section is informative only. |

C? smooth cubic segments implicitly define both of their internal control points
(1, y1) and (x» 1,) in such a manner as to guarantee continuous first and second
derivatives at the join point when they are joined to a preceding quadratic or
cubic segment. Geometrically, this ensures that the two segments meet with
continuous velocity and acceleration at the join point.

Note that joining a C* smooth segment to a preceding line segment will not
produce a smooth join. To guarantee a smooth join, convert line segments to
equivalent quadratic or cubic curves whose internal control points all lie along
the line segment.

Given three previous control points (qx, qy), (px, py), and (ox, oy) (for a
quadratic segment, (qx, qy) is the initial endpoint, (px, py) is the internal control
point and (ox, oy) is the final endpoint; for a cubic segment, (qx, qy), and (px, py)
are the first and second internal control points, respectively, and (ox, oy) is the

48

OpenVG 1.0 Specification 8.3.5 — C2 Smooth Segments

final endpoint), (x;, y1) is computed as described in the preceding section, and (x,,
1) is computed as follows.

When joining a previous quadratic segment to a following cubic segment:
(X2, Y2) = (8*0x — 6*px + qx, 8oy - 6*py + qy)/3

When joining a previous cubic segment to a following cubic segment:
(2 y2) = (d+(ox - px) + qx, 40y - py) + qy)

8.3.6 Converting Segments From Quadratic to Cubic Form
[Note: This section is informative only. |

Given a quadratic Bézier curve with control points (x4, yo), (X1, 1), and (x, y»),
an identical cubic Bézier curve may be formed using the control points (x,, yo),
(xo+ 2%x1, Yo + 2%1)/3, (X2 2%x1, Yot 2%1)/3, (X2, V2)-

8.4 Elliptical Arcs

Elliptical arc segments join a pair of points with a section of an ellipse with
given horizontal and vertical axes and a rotation angle (in degrees). Given these
parameters, there are four possible arcs distinguished by their direction around
the ellipse (clockwise or counter-clockwise) and whether they take the smaller or
larger path around the ellipse.

Figure 5 below shows the two possible ellipses with horizontal axis rh, vertical
axis rv, and counter-clockwise rotation angle rot (shown as the angle between the
vertical line labeled rot and the line labeled rv) passing through the points (xq, 1)
and (x, ;). The four arcs connecting the points are labeled L and S for large and
small, and CW and CCW for clockwise and counter-clockwise.

Negative values of rh and rv are replaced with their absolute values. If exactly
one of rh and rv is 0, and the arc endpoints are not coincident, the arc is drawn as
if it were projected onto the line containing the endpoints. If both i and rv are 0,
or if the arc endpoints are coincident, the arc is drawn as a line segment between
its endpoints. The rot parameter is taken modulo 360 degrees.

If no elliptical arc exists with the given parameters because the endpoints are
too far apart (as detailed in the next section), the arc is drawn as if the radii were
scaled up uniformly by the smallest factor that permits a solution.

Some notes on the mathematics of ellipses are provided in Appendix A
(Section 17).

49

OpenVG 1.0 Specification 8.4 - Elliptical Arcs

Lcew (x, ¥, LCW

.

(x,y,)

Figure 5: Elliptical Arcs

8.5 The Standard Path Format

Complex paths may be constructed in application (client-side) memory and
passed into OpenVG to define a VGPat h object. Such path data is defined by a
sequence of segment commands referencing a separate sequence of geometric
coordinates and parameters.

In this section, we define the standard data format for paths that may be used
to define sequences of various types of path segments. Extensions may define
other path data formats.

VG_PATH_FORMAT_STANDARD

The VG_PATH_FORMAT_STANDARD macro defines a constant to be used as an
argument to vgCreatePath to indicate that path data are stored using the
standard format. As this API is revised, the lower 16 bits of version number may
increase. Each version of OpenVG will accept formats defined in all prior
specification versions with which it is backwards-compatible.

Extensions wishing to define additional path formats may register for format
identifiers that will differ in their upper 16 bits; the lower 16 bits may be used by
the extension vendor for versioning purposes.

‘#defi ne VG PATH FORVAT_STANDARD 0 I

8.5.1 Path Segment Command Side Effects

In order to define the semantics of each segment command type, we define
three reference points (all are initially (0, 0)):

50

OpenVG 1.0 Specification 8.5.1 - Path Segment Command Side Effects

(sx, sy): the beginning of the current subpath, i.e., the position of the last
MOVE_TOsegment.

(0x, oy): the last point of the previous segment.

(px, py): the last internal control point of the previous segment, if the
segment was a (regular or smooth) quadratic or cubic Bézier, or else the last
point of the previous segment.

Figure 6 illustrates the locations of these points at the end of a sequence of
segment commands { MOVE_TO, LINE_TO, CUBIC_TO }.

(vx, py)

Figure 6: Segment Reference Points

We define points (x0, y0), (x1, y1), and (x2, y2) in the discussion below as
absolute coordinates. For segments defined using relative coordinates, (x0, y0),
etc., are defined as the incoming coordinate values added to (ox, oy). Ellipse rh,
rv, and rot parameters are unaffected by the use of relative coordinates.

Each segment (except for MOVE_TO segments) begins at the point (ox, oy)
defined by the previous segment.

A path consists of a sequence of subpaths. As path segment commands are
encountered, each segment is appended to the current subpath. The current
subpath is ended by a MOVE_TO or CLOSE_PATH segment, and a new current
subpath is begun. The end of the path data also ends the current subpath.

8.5.2 Segment Commands

The following table describes each segment command type along with its
prefix, the number of specified coordinates and parameters it requires, the
numerical value of the segment command, the formulas for any implicit

51

OpenVG 1.0 Specification

8.5.2 - Segment Commands

coordinates, and the side effects of the segment command on the points (ox, oy),
(sx, sy), and (px, py) and on the termination of the current subpath.

. Implicit .
Type Command Coordinates Value Points Side Effects
(px,py)=(ox,0y)=(sx,sy)
Close Path CLOSE_PATH none 0 PPy v v
End current subpath
(sx,5y)=(px,py)=(0x,0y)
Move MOVE_TO x0,y0 1 =(x0,y0)
End current subpath
Line LINE_TO 0,0 2 (pxpy) =(Ox)"’y)=(w'y0
(px,py)=(x0,0y)
Horizontal Line HLINE_TO x0 3 y0=oy Papy y
ox=x0
(px,py)=(0x,y0)
Vertical Line VLINE_TO y0 4 x0=0x PPy s
oy=y0
(px,py)=(x0,y0)
Quadratic QUAD_TO x0,y0,x1,y1 5 Prpy Y
(ox,0y)=(x1,y1)
x0,y0,x1,y1, (px,py)=(x1,y1)
Cubic CUBIC_TO oy 6 Papy /
x2,y2 (ox,0y)=(x2,y2)
1 (0, y0)= (px,py)=
guigwom SQUAD_TO x1,y1 7 (27ox-px, (2*0x-px, 2*0y-py)
2%0y-py) (ox,0y)=(x1,y1)
(x0,y0)= o o=(Lyl)
1 X, =(X4,
G’ Smooth SCUBIC.TO xlyla2y? 8 (eoxpx, 70
Cubic (ox,0y)=(x2,y2)
2x0y-py)
SATCaH CCW SCCWARC_TO rh,rv,rot,x0,y0 9 (px.py) =(ox),oy)=(x0y0
Small (W SCWARC_TO rhro,rotx0,y0 10 (px’PyF("x)"’y):(xO’yO
Eﬁge cew LCCWARC_TO rh,ro,rotx0y0 11 (pxpy) =("x)"’y)=(xo'y0
I:;r:ge cw LCWARC_TO rhrorot,x0,y0 = 12 (pxpy) =(ox),oy)=(x0,y0
Reserved Reserved 13-15

52

OpenVG 1.0 Specification 8.5.2 - Segment Commands

Table 6: Client-Side Path Segment Commands

Each segment type may be defined using either absolute or relative
coordinates. A relative coordinate (x, y) is added to (ox, oy) to obtain the
corresponding absolute coordinate (ox + x, oy + y). Relative coordinates are
converted to absolute coordinates immediately as each segment is encountered
during rendering.

The HLI NE_TOand VLI NE_TO segment types are provided in order to avoid
the need for an SVG viewing application (for example) to perform its own
relative to absolute conversions when parsing path data.

In SVG, the behavior of smooth quadratic and cubic segments differs slightly
from the behavior defined above. If a smooth quadratic segment does not follow
a quadratic segment, or a smooth cubic segment does not follow a cubic
segment, the initial control point (x0, y0) is placed at (ox, oy) instead of being
computed as the reflection of (px, py). This behavior may be emulated by
converting an SVG smooth segment into a regular segment with all of its control
points specified when the preceding segment is of a different degree.

Note that the coordinates of a path are defined even if the path begins with a
segment type other than MOVE_TO (including HLI NE_TO, VLI NE_TQ or relative
segment types) since the coordinates are based on the initial values of (ox, oy),
(sx, sy), and (px, py) which are each defined as (0, 0).

8.5.3 Coordinate Data Formats

Coordinate and parameter data (henceforth called simply coordinate data)
may be expressed in the set of formats shown in Table 7 below. Multi-byte
coordinate data (i.e., S_16, S_32 and F datatypes) are stored within a client-side
representation using the native byte order (endianness) of the platform.
Implementations may quantize incoming data in the S_32 and F formats to a
lesser number of bits, provided at least 16 bits of precision are maintained.

Judicious use of smooth curve segments and 8- and 16-bit datatypes can result
in substantial memory savings for common path data, such as font glyphs. Using
smaller datatypes also conserves bus bandwidth when transferring paths from
application memory to OpenVG.

Datatype VG_PATH_DATATYPE Suffix Bytes Value
8-bit signed integer S 8 1 0
16-bit signed integer S 16 2 1
32-bit signed integer S 32 4 2
IEEE 754 floating-point F 4 3

Table 7: Client-Side Path Coordinate Datatypes

53

OpenVG 1.0 Specification 8.5.3 — Coordinate Data Formats

VGPathDatatype

The VGPat hDat at ype enumeration defines values describing the possible
numerical datatypes for path coordinate data.

typedef enum {
VG _PATH DATATYPE_S_ 8
VG_PATH DATATYPE_S 16
VG_PATH DATATYPE_S 32
VG_PATH_DATATYPE_F

} VGPat hDat at ype;

WNhEFkO

8.5.4 Segment Type Marker Definitions

Segment type markers are defined as 8-bit integers, with the leading 3 bits
reserved for future use, the next 4 bits containing the segment command type,
and the least significant bit indicating absolute vs. relative coordinates (0 for
absolute, 1 for relative). The reserved bits must be set to 0.

For the CLOSE_PATH segment command, the value of the Abs/Rel bit is
ignored.

Reserved Command Type Abs/
Rel

Figure 7: Segment Type Marker Layout

VGPathAbsRel

The VGPat hAbsRel enumeration defines values indicating absolute
(VG_ABSCOLUTE) and relative (VG_RELATI VE) values.

t ypedef enum {
VG _ABSOLUTE = 0,
VG RELATIVE = 1

} VGPat hAbsRel ;

VGPathSegment

The VGPat hSegnent enumeration defines values for each segment command
type. The values are pre-shifted by 1 bit to allow them to be combined easily
with values from VGPat hAbsRel .

54

OpenVG 1.0 Specification

8.5.4 — Segment Type Marker Definitions

typedef enum {

VG_CLOSE_PATH = (0<<1),
VG_MOVE_TO =(1<<1),
VG LI NE_TO =(2<<1),
VG HLI NE_TO = (3 << 1),
VG VLI NE_TO = (4<<1),
VG_QUAD TO = (5<<1),
VG_CUBI C_TO = (6 << 1),
VG_SQUAD_TO = (7 << 1),
VG_SCUBI C_TO = (8 << 1),
VG_SCCWARC_TO = (9 << 1),
VG_SCWARC TO = (10 << 1),
VG_LCCWARC_TO = (11 << 1),
VG_LCWARC TO = (12 << 1)

} VGPat hSegnent ;

VGPathCommand

The VGPat hCommand enumeration defines combined values for each segment
command type and absolute/relative value. The values are shifted left by one bit
and ORed bitwise (i.e., using the C | operator) with the appropriate value from
VGPat hAbsRel to obtain a complete segment command value.

typedef enum {

VG_MOVE_TO_ABS = VG MIWVE TO | VG ABSOLUTE,
VG_MOVE_TO_REL = VG MIVE TO | VG RELATI VE,
VG LI NE_TO_ABS = VG LINETO | VG ABSOLUTE,
VG LI NE_TO REL = VG LINE TO | VG RELATIVE,
VG _HLI NE_TO_ABS = VG HLINE_ TO | VG ABSOLUTE,
VG _HLI NE_TO REL = VG HLINE_ TO | VG _RELATI VE,
VG VLI NE_TO_ABS = VG VLINE TO | VG ABSOLUTE,
VG VLI NE_TO REL = VG VLINE TO | VG RELATI VE,
VG_QUAD TO ABS = VG QUAD TO | VG ABSOLUTE,
VG_QUAD TO REL = VG QUAD TO | VG RELATI VE,
VG _CUBI C_TO _ABS = VG CUBICTO | VG ABSOLUTE,
VG_CUBI C_TO REL = VG CUBIC TO | VG RELATIVE,
VG_SQUAD_TO_ABS = VG SQUAD TO | VG ABSOLUTE,
VG_SQUAD_TO REL = VG SQUAD TO | VG RELATI VE,
VG_SCUBI C_TO_ABS = VG SCUBIC_ TO | VG ABSOLUTE,
VG_SCUBI C_TO _REL = VG SCUBIC_TO | VG RELATI VE,
VG_SCCWARC_TO_ABS = VG_SCCWARC TO | VG _ABSOLUTE,
VG_SCCOWARC_TO_REL = VG_SCCWARC TO | VG _RELATI VE,
VG_SCWARC_TO ABS = VG _SCWARC TO | VG ABSOLUTE,
VG_SCWARC_TO REL = VG _SCWARC TO | VG RELATI VE,
VG_LCOWARC_TO ABS = VG LCOWARC TO | VG ABSOLUTE,
VG_LCOWARC_TO REL = VG LCOWARC TO | VG RELATI VE,
VG_LOWARC_TO ABS = VG LOWARC TO | VG ABSOLUTE,
VG_LCOWARC_TO REL = VG LOWARC TO | VG RELATIVE

} VGPat hComand;

55

OpenVG 1.0 Specification 8.5.5 - Client-Side Path Example

8.5.5 Client-Side Path Example

The following code example shows how to traverse a client-side path stored
using the standard representation. A byte is read containing a segment
command, and the segment command type and relative/absolute flag are
extracted by application-defined SEGVENT_COVIVAND and SEGVENT_ABS_REL
macros. The number of coordinates and number of bytes per coordinate (for the
given data format) are also determined using lookup tables. Finally, the relevant
portion of the path data stream representing the current segment is copied into a
temporary buffer and used as an argument to a user-defined processSegment
function that may perform further processing.

56

OpenVG 1.0 Specification 8.5.5 - Client-Side Path Example

#defi ne PATH_MAX COORDS 6 /* Maxi mum nunber of coordinates/command */

#def i ne PATH MAX BYTES 4 /* Bytes in |largest data type */

#def i ne SEGVENT COVMAND(command) /* Extract segnent type */ \
(((command) & Oxle) >> 1)

#def i ne SEGVENT ABS REL(command) /* Extract absolute/relative bit */ \
((command) & 0x1)

/* Nunmber of coordinates for each command */

static const VG nt numCoords[] = {0,2,2,1,1,4,6,2,4,5,5,5, 5};
/* Number of bytes for each datatype */

static const V@ nt nunmBytes[] = {1, 2,4, 4};

/* User-defined function to process a single segnment */
extern void
pr ocessSegnent (VGPat hSegnent command, VGPat hAbsRel absRel,
VGPat hDat at ype dat at ype,
void * segnent Dat a) ;

/* Process a path in the standard format, one segnent at a tine. */
voi d
processPat h(const VGQubyte * pat hSegnents, const void * pathDat a,
i nt nunBegnents, VGPat hDat at ype dat at ype)
{

V@ubyt e segnent Type, segnent Dat a] PATH_MAX COORDS* PATH _MAX BYTES] ;
VG nt segldx = 0, dataldx = O;
VG nt command, absRel, nunBytes;

whil e (segldx < nunBegnents) {
segnent Type = pat hSegnent s[segl dx++] ;
command = SEGVENT_COMVAND(segnent Type) ;
absRel = SEGVENT_ABS REL(segnent Type);
nunByt es = nunCoor ds[conmand] * nunByt es[dat at ype] ;

[* Copy segnent data for further processing */
mencpy(segnent Dat a, &pat hDat a[dat al dx], nunBytes);

/* Process conmmand */
processSegnent (command, absRel, datatype, (void *) segnentData);
dat al dx += nunByt es;

8.6 Path Operations

In addition to filling or stroking a path, the API allows the following basic
operations on paths:

- Create a path with a given set of capabilities (vgCreatePath)
- Remove data from a path (vgClearPath)
- Deallocate a path (vgDestroyPath)

57

OpenVG 1.0 Specification 8.6 — Path Operations

Query path information (using vgGetParameter)

Query the set of capabilities for a path (vgGetPathCapabilities)
Reduce the set of capabilities for a path (vgRemovePathCapabilities)
Append data from one path onto another (vgAppendPath)

Append client-side data onto a path (vgAppendPathData)

Modify coordinates stored in a path (vgModifyPathCoords)
Transform a path (vgTransformPath)

Interpolate between two paths (vgInterpolatePath)

Determine the geometrical length of a path (vgPathLength)

Get position and tangent information for a point at a given geometric distance
along path (vgPointAlongPath)

Get an axis-aligned bounding box for a path (vgPathBounds,
vgTransformedPathBounds)

Higher-level geometric primitives are defined in the optional VGU utility
library (see Section 16):

Append a line to a path (vguLine)

Append a polyline or polygon to a path (vguPolygon)
Append a rectangle to a path (vguRect)

Append a round-cornered rectangle to a path (vguRoundRect)
Append an ellipse to a path (vguEllipse)

Append a circular arc to a path (vguArc)

8.6.1 Storage of Paths

OpenVG stores path data internally to the implementation. Paths are
referenced via opaque VGPat h handles. Applications may initialize paths using
the client-side memory representation defined above or other representations
defined by extensions.

It is possible for an implementation to store path data in hardware-accelerated
memory. Implementations may also make wuse of their own internal
representation of path segments. The intent is for applications to be able to
define a set of paths, for example one for each glyph in the current typeface, and
to be able to re-render each previously defined path with maximum efficiency.

VGPath
VCGPat h represents an opaque handle to a path.

‘typedef VGHandl e VGPat h; I

58

OpenVG 1.0 Specification 8.6.2 — Creating and Destroying Paths

8.6.2 Creating and Destroying Paths

Paths are created and destroyed using the vgCreatePath and vgDestroyPath
functions. During the lifetime of a path, an application may indicate which path
operations it plans to perform using path capability flags defined by the
VGPat hCapabi | i ti es enumeration.

VGPat hCapabi lities

The VGPat hCapabi | i ti es enumeration defines a set of constants specifying
which operations may be performed on a given path object. At the time a path is
defined, the application specifies which operations it wishes to be able to
perform on the path. Over time, the application may disable previously enabled
capabilities, but it may not re-enable capabilities once they have been disabled.
This feature allows OpenVG implementations to make use of internal path
representations that may not support all path operations, possibly resulting in
higher performance on paths where those operations will not be performed.

The capability bits and the functionality they allow are described below:

« VG _PATH CAPABI LI TY_APPEND FROM - use path as the srcPath argument to
vgAppendPath

+ VG _PATH CAPABI LI TY_APPEND TO - wuse path as the dstPath argument to
vgAppendPath and vgAppendPathData

+ VG PATH CAPABILITY_MODIFY - wuse path as the dstPath argument to
vgModifyPathCoords

+ VG_PATH_CAPABI LI TY_TRANSFORM FROM - use path as the srcPath argument to
vgTransformPath

« VG _PATH CAPABI LI TY_TRANSFORM TO - use path as the dstPath argument to
vgTransformPath

« VG _PATH_CAPABI LI TY_| NTERPOLATE_FROM- use path as the st art Pat h or endPat h
argument to vgInterpolatePath

+ VG _PATH_CAPABI LI TY_I NTERPOLATE_TO - use path as the dstPath argument to
vgInterpolatePath

* VG _PATH_CAPABI LI TY_PATH_LENGTH - use path as the pat h argument to vgPathLength
« VG _PATH _CAPABI LI TY_PO NT_ALONG PATH - use path as the path argument to
vgPointAlongPath

« VG _PATH _CAPABI LI TY_TANGENT_ALONG PATH - use path as the path argument to
vgPointAlongPath with non-NULL t angent X and t angent Y arguments

« VG _PATH CAPABI LI TY_PATH BOUNDS - wuse path as the path argument to
vgPathBounds

« VG _PATH CAPABI LI TY_PATH TRANSFORMED_BOUNDS - use path as the pat h argument
to vgPathTransformedBounds

« VG _PATH_CAPABI LI TY_ALL - a bitwise OR of all the defined path capabilities

59

OpenVG 1.0 Specification 8.6.2 — Creating and Destroying Paths

typedef enum {

VG _PATH_CAPABI LI TY_APPEND FROM = (1 << 0),
VG _PATH_CAPABI LI TY_APPEND TO = (1 << 1),
VG_PATH_CAPABI LI TY_MODI FY = (1 << 2),
VG_PATH_CAPABI LI TY_TRANSFORM FROM = (1 << 3),
VG_PATH_CAPABI LI TY_TRANSFORM TO = (1 << 4),
VG_PATH_CAPABI LI TY_| NTERPOLATE_FROM = (1 << 5),
VG_PATH_CAPABI LI TY_| NTERPOLATE_TO = (1 << 6),
VG _PATH_CAPABI LI TY_PATH_LENGTH = (1 << 7),
VG_PATH_CAPABI LI TY_PO NT_ALONG_PATH = (1 << 8),
VG_PATH_CAPABI LI TY_TANGENT ALONG_PATH = (1 << 9),
VG _PATH_CAPABI LI TY_PATH_BOUNDS = (1 << 10),
VG _PATH_CAPABI LI TY_PATH_TRANSFORMED BOUNDS = (1 << 11),

VG _PATH CAPABI LI TY_ALL
} VGPat hCapabi liti es;
___|

(1 <<12) - 1

It is legal to call vgCreatePath, vgClearPath, and vgDestroyPath regardless of
the current setting of the path’s capability bits, as these functions discard the
existing path definition.

vgCreatePath

vgCreatePath creates a new path that is ready to accept segment data and
returns a VGPat h handle to it. The path data will be formatted in the format
given by pat hFor mat , typically VG_PATH_FORMAT_STANDARD. The dat at ype
parameter contains a value from the VGPat hDat at ype enumeration indicating
the datatype that will be used for coordinate data. The capabilities
argument is a bitwise OR of the desired VGPat hCapabi | i ti es values. Bits of
capabi | i ti es that do not correspond to values from VGPat hCapabi | i ti es
have no effect. If an error occurs, VG _| NVALI D_HANDLE is returned.

The scal e and bi as parameters are used to interpret each coordinate of the
path data; an incoming coordinate value v will be interpreted as the value
(scale*v + bias). scal e must not equal 0. The datatype, scale, and bias together
define a valid coordinate data range for the path; segment commands that
attempt to place a coordinate in the path that is outside this range will overflow
silently, resulting in an undefined coordinate value. Functions that query a path
containing such values, such as vgPathLength and vgPointAlongPath, also
return undefined results.

The segnent CapacityH nt parameter provides a hint as to the total
number of segments that will eventually be stored in the path. The
coor dCapaci t yHi nt parameter provides a hint as to the total number of
specified coordinates (as defined in the “Coordinates” column of Table 6) that
will eventually be stored in the path. A value less than or equal to O for either
hint indicates that the capacity is unknown. The path storage space will in any
case grow as needed, regardless of the hint values. However, supplying hints

60

OpenVG 1.0 Specification 8.6.2 — Creating and Destroying Paths

may improve performance by reducing the need to allocate additional space as
the path grows. Implementations should allow applications to append segments
and coordinates up to the stated capacity in small batches without degrading
performance due to excessive memory reallocation.

VGPat h vgCr eat ePat h(VG nt pat hFor mat ,

VGPat hDat at ype dat at ype,
V& | oat scal e, VG| oat bias,
VG nt segnent Capaci t yHi nt,
VG nt coor dCapacityHi nt,
V&oitfield capabilities)

ERRORS

VG_UNSUPPORTED_PATH FORVAT _ERROR

- if pat hFor mat is not a supported format

VG | LLEGAL_ARGUMENT _ERROR

- if dat at ype is not a valid value from the VGPat hDat at ype enumeration

- if scal eisequal to 0

61

OpenVG 1.0 Specification 8.6.2 — Creating and Destroying Paths

vgClearPath

vgClearPath removes all segment command and coordinate data associated
with a pat h. The handle continues to be valid for use in the future, and the path
format and datatype retain their existing values. The capabi | i ti es argument
is a bitwise OR of the desired VGPat hCapabilities values. Bits of
capabi | i ti es that do not correspond to values from VGPat hCapabi |l i ti es
have no effect. Using vgClearPath may be more efficient than destroying and re-
creating a path for short-lived paths.

voi d vgd ear Pat h(VGPat h path, VGhitfield capabilities) '

ERRORS
VG _BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context

vgDestroyPath

vgDestroyPath releases any resources associated with pat h, and makes the
handle invalid in all contexts that shared it.

voi d vgDest royPat h(VGPat h pat h) '

ERRORS
VG BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context

8.6.3 Path Queries

VGPathParamType

Values from the VGPat hParaniType enumeration may be used as the
par aniType argument to vgGetParameter to query various features of a path. All
of the parameters defined by VGPat hPar aniType are read-only. Table 8 shows
the datatypes for each parameter type.

62

OpenVG 1.0 Specification 8.6.3 — Path Queries

typedef enum {

VG _PATH_FORMAT = 0x1600,
VG_PATH_DATATYPE = 0x1601,
VG _PATH_SCALE = 0x1602,
VG_PATH_BI AS = 0x1603,
VG_PATH_NUM SEGMVENTS = 0x1604,
VG_PATH_NUM COORDS = 0x1605

} VGPat hPar anTType;

Parameter Datatype
VG_PATH_FORVAT VG nt
VG_PATH_DATATYPE VG nt
VG_PATH_SCALE VG | oat
VG_PATH_BI AS VG | oat
VG_PATH_NUM_SEGVENTS VG nt
VG_PATH_NUM_COORDS VG nt

Table 8: VGPathParamType Datatypes

Path Format

The command format of a path is queried as an integer value using the
VG_PATH_FORNAT parameter:

VGPat h pat h;
VG nt pat hFormat = vgGet Paraneteri (path, VG PATH FORMAT);

Path Datatype

The coordinate datatype of a path is queried as an integer value using the
VG_PATH_DATATYPE parameter. The returned integral value should be cast to
the VGPat hDat at ype enumeration:

VGPat h pat h;
VGPat hDat at ype pat hDat at ype =
(VGPat hDat at ype) vgGet Par anet eri (path, VG PATH DATATYPE) ;

Path Scale

The scale factor of the pat h is queried as a floating-point value using the
VG_PATH_SCALE parameter:

VGPat h pat h;
V& | oat pat hScal e = vgGet Par anet erf (path, VG PATH SCALE);

63

OpenVG 1.0 Specification 8.6.3 — Path Queries

Path Bias

The bias of the path is queried as a floating-point value using the
VG_PATH_BI AS parameter:

VGPat h pat h;
VG | oat pat hBi as = vgGet Paraneterf (path, VG PATH Bl AS);

Number of Segments

The number of segments stored in the path is queried as an integer value using
the VG_PATH_NUM SEGVENTS parameter:

VGPat h pat h;
VG nt pat hNunSegnents = vgGet Paraneteri (path, VG PATH NUM SEGVENTS) ;

Number of Coordinates

The total number of specified coordinates (i.e.,, those defined in the

“Coordinates” column of Table 6) stored in the path is queried as an integer
value using the VG_PATH_NUM_COORDS parameter:

VGPat h pat h;
VG nt pat hNumCoor ds = vgGet Paraneteri (path, VG PATH NUM COORDS) ;

8.6.4 Querying and Modifying Path Capabilities
vgGetPathCapabilities

The vgGetPathCapabilities function returns the current capabilities of the
pat h, as a bitwise OR of VGPat hCapabi | i ti es constants. If an error occurs, 0
is returned.

VGoitfield vgGet Pat hCapabi |l ities(VGPat h pat h) '

ERRORS
VG BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context

vgRemovePathCapabilities

The vgRemovePathCapabilities function requests the set of capabilities
specified in the capabi | i ti es argument to be disabled for the given pat h. The
capabi | i ti es argument is a bitwise OR of the VGPat hCapabi | i ti es values
whose removal is requested. Attempting to remove a capability that is already

64

OpenVG 1.0 Specification 8.6.4 — Querying and Modifying Path Capabilities

disabled has no effect. Bits of capabi | i ti es that do not correspond to values
from VGPat hCapabi | i ti es have no effect.

An implementation may choose to ignore the request to remove a particular
capability if no significant performance improvement would result. In this case,
vgGetPathCapabilities will continue to report the capability as enabled.

\voi d vgRenovePat hCapabi lities(VGPath path, VCGhitfield capabilities) I

ERRORS
VG BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context

8.6.5 Copying Data Between Paths

vgAppendPath

vgAppendPath appends a copy of all path segments from sr cPat h onto the
end of the existing data in dst Pat h. It is legal for sr cPat h and dst Pat h to be
handles to the same path object, in which case the contents of the path are
duplicated. If srcPat h and dst Pat h are handles to distinct path objects, the
contents of sr cPat h will not be affected by the call.

The VG_PATH_CAPABI LI TY_APPEND_FROM capability must be enabled for
srcPat h, and the VG PATH CAPABI LI TY_APPEND TO capability must be
enabled for dst Pat h.

If the scale and bias of dst Path define a narrower range than that of
sr cPat h, overflow may occur silently.

\voi d vgAppendPat h(VGPat h dst Pat h, VGPat h srcPat h) I

ERRORS
VG BAD HANDLE ERROR

- if either dst Pat h or sr cPat h is not a valid path handle, or is not shared
with the current context

VG _PATH CAPABI LI TY_ERROR
- if VG_PATH _CAPABI LI TY_APPEND FROMis not enabled for sr cPat h
- if VG_PATH CAPABI LI TY_APPEND TOis not enabled for dst Pat h

65

OpenVG 1.0 Specification 8.6.6 — Appending Client-Side Data to a Path

8.6.6 Appending Client-Side Data to a Path

vgAppendPathData

vgAppendPathData appends data taken from a client-side representation
stored in pat hDat a to the given path dst Pat h. The data are formatted using
the path format of dstPath (as returned by querying the path’s
VG_PATH_FORVAT parameter using vgGetParameteri). The nunSegnents
parameter gives the total number of entries in the pat hSegnment s array, and
must be greater than 0. Legal values for the pathSegments array are the values
from the VGPat hConmmand enumeration as well as VG CLOSE PATH and
(VG_CLOSE_PATH | VG_RELATI VE) (which are synonymous).

The pat hDat a pointer must be aligned on a 1-, 2-, or 4-byte boundary (as
defined in the “Bytes” column of Table 7) depending on the size of the
coordinate datatype (as returned by querying the path’s VG_PATH_DATATYPE
parameter using vgGetParameteri). The VG_PATH_CAPABI LI TY_APPEND TO
capability must be enabled for pat h.

Each incoming coordinate value, regardless of datatype, is transformed by the
scale factor and bias of the path.

voi d vgAppendPat hDat a(VGPat h dst Pat h,
VG nt nunBSegnent s,
const VG@ubyte * pat hSegnents,
const void * pathDat a)

ERRORS
VG _BAD HANDLE ERROR

- if dst Pat h is not a valid path handle, or is not shared with the current
context

VG_PATH_CAPABI LI TY_ERROR

- if VG_PATH_CAPABI LI TY_APPEND_ TOis not enabled for dst Pat h
VG | LLEGAL_ARGUMENT _ERROR

if pat hSegnment s or pat hDat a is NULL

if pat hDat a is not properly aligned

if nunmSegnent s is less than or equal to 0

if pat hSegment s contains an illegal command

66

OpenVG 1.0 Specification 8.6.7 — Modifying Path Data

8.6.7 Modifying Path Data

Coordinate data in an existing path may be modified, for example to create
animation effects. Implementations should choose an internal representation for
paths that have the VG_PATH_CAPABI LI TY_MODI FY capability enabled that
allows for efficient modification of the coordinate data.

vgModifyPathCoords

vgModifyPathCoords modifies the coordinate data for a contiguous range of
segments of dst Pat h, starting at st art | ndex (where 0 is the index of the first
path segment) and having length nunSegment s. The data in pat hDat a must be
formatted in exactly the same manner as the original coordinate data for the
given segment range, unless the path has been transformed using
vgTransformPath or interpolated using vgInterpolatePath. In these cases, the
path will have been subject to the segment promotion rules as specified in those
functions.

The pat hDat a pointer must be aligned on a 1-, 2-, or 4-byte boundary
depending on the size of the coordinate datatype (as returned by querying the
path’'s VG _PATH DATATYPE parameter using vgGetParameteri). The
VG_PATH_CAPABI LI TY_MODI FY capability must be enabled for pat h.

Each incoming coordinate value, regardless of datatype, is transformed by the
scale factor and bias of the path.

voi d vghModi f yPat hCoor ds(VGPat h dst Pat h,
VG nt startlndex, VG nt nunBegnents,
const void * pathDat a)

ERRORS
VG _BAD HANDLE ERROR

- if dst Pat h is not a valid path handle, or is not shared with the current
context

VG_PATH_CAPABI LI TY_ERROR

- if VG_PATH CAPABI LI TY_MODI FY is not enabled for dst Pat h
VG | LLEGAL_ARGUMENT _ERROR

if pat hDat a is NULL

if pat hDat a is not properly aligned

if start | ndex isless than 0

if numSegnent s is less than or equal to 0

67

OpenVG 1.0 Specification 8.6.7 — Modifying Path Data

- ifstartlndex + nunBegnments is greater than the number of segments in
the path

8.6.8 Transforming a Path

vgTransformPath

vgTransformPath appends a transformed copy of srcPath to the current
contents of dst Pat h. The appended path is equivalent to the results of applying
the current path-user-to-surface transformation (VG_MATRI X_PATH _USER TO_
SURFACE) to sr cPat h.

It is legal for sr cPat h and dst Pat h to be handles to the same path object, in
which case the the transformed path will be appended to the existing path. If
srcPat h and dst Pat h are handles to distinct path objects, the contents of
sr cPat h will not be affected by the call.

All HLINE_TO * and VLINE_TO * segments present in srcPath are
implicitly converted to LINE_TO * segments prior to applying the
transformation. The original copies of these segments in srcPath remain
unchanged.

Any * ARC_TOsegments are transformed, but the endpoint parametrization of
the resulting arc segments are implementation-dependent. The results of calling
vglnterpolatePath on a transformed path that contains such segments are
undefined.

The VG_PATH_CAPABI LI TY_TRANSFORM FROM capability must be enabled
for sr cPat h, and the VG_PATH_CAPABI LI TY_TRANSFORM TO capability must
be enabled for dst Pat h.

Overflow may occur silently if coordinates are transformed outside the
datatype range of dst Pat h.

\voi d vgTransfornPat h(VGPat h dst Pat h, VGPat h srcPat h) I

ERRORS
VG _BAD HANDLE ERROR

- if either dst Pat h or sr cPat h is not a valid path handle, or is not shared
with the current context

VG_PATH_CAPABI LI TY_ERRCR
- if VG_PATH_CAPABI LI TY_TRANSFORM FROMis not enabled for sr cPat h
- if VG_PATH_CAPABI LI TY_TRANSFORM TOis not enabled for dst Pat h

68

OpenVG 1.0 Specification 8.6.9 - Interpolating Between Paths

8.6.9 Interpolating Between Paths

Interpolation takes two compatible paths, in a sense described below, and
defines a new path that interpolates between them by a parameter anount.
When anount is equal to 0, the result is equivalent to the first path; when
anmount is equal to 1, the result is equivalent to the second path. Values between
0 and 1 produce paths that smoothly interpolate between the two extremes.
Values outside the [0, 1] range produce extrapolated paths. Conceptually,
interpolation occurs as follows. First, the two path parameters are copied and the
copies are normalized by:

Converting all coordinates to floating-point format, applying the path scale
and bias parameters

Converting all relative segments to absolute form

Converting {H,V}LINE_TO_* segments to LINE_TO form

Converting (S)QUAD_TO_*/SCUBIC_TO_* segments to CUBIC_TO form
Retaining all *ARC_TO_* and CLOSE_PATH segments

If, following normalization, both paths have the same sequence of segment
types (treating all forms of arc as the same), interpolation proceeds by linearly
interpolating between each corresponding pair of segment parameters in the
normalized paths. If the starting arc type differs from the final arc type, the
starting arc type is used for values of amount less than 0.5, and the final arc type
is used for values greater than or equal to 0.5. Finally, the coordinates are
converted to the data type of the destination.

vginterpolatePath

The vglnterpolatePath function appends a path, defined by interpolation (or
extrapolation) between the paths startPath and endPath by the given
anmount, to the path dstPath. It returns VG TRUE if interpolation was
successful (i.e., the paths had compatible segment types after normalization), and
VG _FALSE otherwise. If interpolation is unsuccessful, dstPath is left
unchanged.

It is legal for dstPath to be a handle to the same path object as either
start Pat h or endPat h or both, in which case the contents of the source path
or paths referenced by dst Pat h will have the interpolated path appended. If
dst Pat h is not the a handle to the same path object as either st art Pat h or
endPat h, the contents of st art Pat h and endPat h will not be affected by the
call.

Overflow may occur silently if the datatype of dst Pat h has insufficient range
to store an interpolated coordinate value.

69

OpenVG 1.0 Specification 8.6.9 - Interpolating Between Paths

The VG PATH CAPABI LI TY_I NTERPOLATE_FROM capability must be
enabled for both of startPath and endPat h, and the
VG_PATH_CAPABI LI TY_I NTERPCLATE_TO capability must be enabled for
dst Pat h.

V&oool ean vgl nt er pol at ePat h(VGPat h dst Pat h,
VGPat h start Pat h,
VGPat h endPat h,
V& | oat anpunt)

ERRORS
VG BAD HANDLE ERROR

- if any of dst Pat h, st ar t Pat h, or endPat h is not a valid path handle, or is
not shared with the current context

VG_PATH_CAPABI LI TY_ERRCOR

- if VG_PATH CAPABI LI TY_PATH | NTERPOLATE_ TOis not enabled for
dst Pat h

- if VG_PATH_CAPABI LI TY_PATH_| NTERPOLATE_FROMis not enabled for
st art Pat h or endPat h

8.6.10 Length of a Path

An approximation to the geometric length of a portion of a path may be
obtained by calling the vgPathLength function. MOVE_TO segments and implicit
path closures (see Section 8.7.1) do not contribute to the path length.
CLOSE_PATH segments have the same length as a LI NE_TO segment with the
same endpoints.

vgPathLength

The vgPathLength function returns the length of a given portion of a path in
the user coordinate system (that is, in the path’s own coordinate system,
disregarding any matrix settings). Only the subpath consisting of the
nunBegnent s path segments beginning with st ar t Segnment (where the initial
path segment has index 0) is used. If an error occurs, -1.0f is returned.

The VG _PATH_CAPABI LI TY_PATH_LENGTH capability must be enabled for
pat h.

V& | oat vgPat hLengt h(VGPat h pat h,
VG nt startSegnment, VG nt nunBegnents);

70

OpenVG 1.0 Specification 8.6.10 - Length of a Path

ERRORS

VG_BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VG_PATH_CAPABI LI TY_ERROR

- if VG_PATH_CAPABI LI TY_PATH_LENGTH s not enabled for pat h

VG_| LLEGAL_ARGUVENT_ERROR

- if start Segnent is less than 0 or greater than the index of the final path
segment

- if nunSegnent s is less than or equal to 0

- if (start Segnment +nunSegnent s - 1) is less than 0 or greater than the
index of the final path segment

8.6.11 Position and Tangent Along a Path

Some path operations, such as the placement and orientation of text along a
path, require the computation of a set of points along a path as well as a normal
(perpendicular) vector at each point. The vgPointAlongPath function provides
points along the path as well as normalized tangent vectors (from which normals
may easily be derived).

The Tangents of a Path Segment

The tangent at a given point along a path is defined as a vector pointing in the
same direction as the path at that point. The tangent at any point of a line
segment is parallel to the line segment; the tangent at any point along a Bézier
curve or elliptical arc segment may be defined using the derivatives of the
parametric equations x(f) and y(f) that define the curve. The incoming tangent at
a point is defined using the direction in which the curve is “traveling” prior to
arriving at the point; the outgoing tangent is defined using the direction the
curve is traveling as it leaves the point. The incoming and outgoing tangents
may differ at a vertex joining different curve segments, or at a sharp “cusp” in a
curve.

If a point along a path segment has no tangent defined, for example where a
path segment has collapsed to a single point, the following algorithm is used to
define incoming and outgoing tangents at the point. Search backwards until a
segment is found with a tangent defined at its end point, or the start of the
current path is reached; if a tangent is found, use it as the incoming tangent.
Search forwards until a segment is found with a tangent defined at its starting
point, or the end of the current path is reached; if a tangent is found, use it as the
outgoing tangent. If these searches produce exactly one defined tangent, that
tangent is used as both the incoming and outgoing tangent. If the searches

71

OpenVG 1.0 Specification 8.6.11 - Position and Tangent Along a Path

produced no defined tangent, the incoming and outgoing tangents are both
assigned the value (1, 0). Tangent vectors are normalized to have unit length.

vgPointAlongPath

The vgPointAlongPath function returns the point lying a given distance along
a given portion of a path and the unit-length tangent vector at that point. Only
the subpath consisting of the nunSegnents path segments beginning with
start Segnent (where the initial path segment has index 0) is used. For the
remainder of this section we refer only to this subpath when discussing paths.

If di st ance is less than or equal to 0, the starting point of the path is used. If
di st ance is greater than or equal to the path length (i.e., the value returned by
vgPathLength when called with the same st art Segnment and nunfSegnent s
parameters), the visual ending point of the path is used.

Intermediate values return the (x, y) coordinates and tangent vector of the
point at the given distance along the path. Because it is not possible in general to
compute exact distances along a path, an implementation is not required to use
exact computation even for segments where such computation would be
possible. For example, the path:

MOVE TO 0O, O; LINETO 10, O // draw a line of length 10
MOVE _TO 10, 10 // create a discontinuity
LINE TO 10, 20 // draw a line of length 10

may return either (10, 0) or (10, 10) (or points nearby) as the point at distance
10.0. Implementations are not required to compute distances exactly, as long as
they satisfy the constraint that as di stance increases monotonically the
returned point and tangent move forward monotonically along the path.

Where the implementation is able to determine that the point being queried
lies exactly at a discontinuity or cusp, the incoming point and tangent should be
returned. In the example above, returning the pre-discontinuity point (10, 0) and
incoming tangent (1, 0) is preferred to returning the post-discontinuity point (10,
10) and outgoing tangent (0, 1).

The VG PATH _CAPABI LI TY_PO NT_ALONG _PATH capability must be
enabled for pat h.

If the reference arguments X and y are both non-NULL, and the
VG_PATH_CAPABI LI TY_PQO NT_ALONG_PATH capability is enabled for pat h,
the point (x, y) is returned in x and y. Otherwise the variables referenced by x
and y are not written.

If the reference arguments t angent X and t angent Y are both non-NULL, and
the VG _PATH_CAPABI LI TY_TANGENT_ALONG_PATH capability is enabled for
pat h, the geometric tangent vector at the point (x, y) is returned in t angent X
and tangentY. Otherwise the variables referenced by tangentX and
t angent Y are not written.

72

OpenVG 1.0 Specification 8.6.11 - Position and Tangent Along a Path

Where the incoming tangent is defined, vgPointAlongPath returns it. Where
only the outgoing tangent is defined, the outgoing tangent is returned.

The points returned by vgPointAlongPath are not guaranteed to match the
path as rendered; some deviation is to be expected.

voi d vgPoi nt Al ongPat h(VGPat h pat h,
VG nt startSegnment, VG nt nunBegnents,
VG | oat di stance,
V& loat * x, VEloat * vy,

V& |l oat * tangentX, V&Il oat * tangenty)
|

ERRORS

VG_BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VG PATH_CAPABI LI TY _ERROR

- If x and y are both non-NULL, and the
VG _PATH_CAPABI LI TY_PO NT_ALONG_PATHis not enabled for pat h

- Iftangent Xand t angent Y are both non-NULL, and the
VG_PATH_CAPABI LI TY_TANGENT_ALONG_PATH capability is not enabled
for pat h

VG | LLEGAL_ARGUVENT ERROR

- if st art Segnent is less than O or greater than the index of the final path
segment

- if nunSegnent s is less than or equal to 0

- if (start Segnent +nunSegnent s - 1) is less than 0 or greater than the
index of the final path segment

- if x,y, tangent Xort angent Y is not properly aligned

8.6.12 Querying the Bounding Box of a Path

To draw complex scenes efficiently, it is important to avoid drawing objects
that do not appear in the region being drawn. A simple way to determine
whether an object may be visible is to determine whether its bounding box - an
axis-aligned rectangle that is guaranteed to contain the entire object - intersects
the drawn region. The vgPathBounds and vgPathTransformedBounds functions
provide bounding box information.

Two types of bounding boxes may be obtained for a path. The first, obtained
by calling vgPathBounds, returns a tight axis-aligned bounding box for the area
contained within the path in its own coordinate system. The second, obtained by

73

OpenVG 1.0 Specification 8.6.12 - Querying the Bounding Box of a Path

calling vgPathTransformedBounds, returns an axis-aligned bounding box for the
path as it will appear when drawn on the drawing surface (i.e., following
application of the current path-user-to-surface transform). The latter function
does not guarantee to bound the shape tightly, but still may provide tighter
bounds than those obtained by transforming the result of vgPathBounds, at a
lower cost.

The bounding box of a path is defined to contain the area within the path, i.e.,
the area that would be drawn if the path were to be filled. If the path is to be
stroked, the application must adjust the bounding box to take the stroking
parameters into account. Note that Miter joins in particular may extend far
outside the bounding box.
vgPathBounds

The vgPathBounds function returns an axis-aligned bounding box that tightly
bounds the interior of the given pat h. Stroking parameters are ignored. If pat h
is empty, m nX and m nY are set to 0 and W dt h and hei ght are set to -1. If
pat h contains a single point, m nX and m nY are set to the coordinates of the
point and wi dt h and hei ght are set to 0.

The VG_PATH_CAPABI LI TY_PATH _BOUNDS capability must be enabled for
pat h.

voi d vgPat hBounds(VGPat h pat h,
V& loat * minX, V&Iloat * mnY,
V&l oat * width, V&Il oat * height)

ERRORS

VG _BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VG | LLEGAL ARGUMVENT ERRCR

- if m nX, mnY,w dt h, or hei ght is NULL

- if m nX, m nY,w dt h, or hei ght is not properly aligned

VG PATH_CAPABI LI TY_ERROR

_ if VG_PATH CAPABI LI TY_PATH BOUNDS is not enabled for pat h

vgPathTransformedBounds

The vgPathTransformedBounds function returns an axis-aligned bounding
box that is guaranteed to enclose the geometry of the given pat h following
transformation by the current path-user-to-surface transform. The returned
bounding box is not guaranteed to fit tightly around the path geometry. If pat h

74

OpenVG 1.0 Specification 8.6.12 - Querying the Bounding Box of a Path

is empty, m nX and m nY are set to 0 and W dt h and hei ght are set to -1. If
pat h contains a single point, m nX and m nY are set to the transformed
coordinates of the point and W dt h and hei ght are set to 0.

The VG PATH_CAPABI LI TY_PATH TRANSFORVED BOUNDS capability must
be enabled for pat h.

voi d vgPat hTr ansf or medBounds(VGPat h pat h,
V& loat * minX, V&Iloat * mnY,
V&l oat * width, V&I oat * height)

ERRORS

VG BAD_ HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VG | LLEGAL ARGUVENT ERROR

- if m nX, m nY,wi dt h, or hei ght is NULL

- if m nX, m nY,w dt h, or hei ght is not properly aligned

VG PATH_CAPABI LI TY_ERROR

_ if VG_PATH_CAPABI LI TY_PATH_TRANSFORMED BOUNDS is not enabled
for pat h

8.7 Interpretation of Paths

The interpretation of a path, composed of a sequence of one or more subpaths,
depends on whether it is to be stroked or filled. For stroked paths, each subpath
has stroking parameters applied to it separately, with the dash phase at the end
of each subpath used at the beginning of the next subpath. This process results in
a set of stroked shapes. The union of these shapes then defines the outline path
to be filled. For filled paths, the interior of the path (as defined below) is filled.

8.7.1 Filling Paths

A simple, non-self-intersecting closed path divides the plane into two regions,
a bounded inside region and an unbounded outside region. Note that knowing the
orientation of the outermost path (i.e., clockwise or counter-clockwise) is not
necessary to differentiate between the inside and outside regions.

A path that self-intersects, or that has multiple overlapping subpaths, requires
additional information in order to define the inside region. Two rules that
provide different definitions for the area enclosed by such paths, known as the
non-zero and even/odd fill rules, are supported by OpenVG. To determine

75

OpenVG 1.0 Specification 8.7.1 - Filling Paths

whether any point in the plane is contained in the inside region, imagine
drawing a line from that point out to infinity in any direction such that the line
does not cross any vertex of the path. For each edge that is crossed by the line,
add 1 to the counter if the edge crosses from left to right, as seen by an observer
walking along the line towards infinity, and subtract 1 if the edge crosses from
right to left. In this way, each region of the plane will receive an integer value.

The non-zero fill rule says that the point is inside the shape if the resulting
sum is not equal to 0. The even/odd rule says that the point is inside the shape if
the resulting sum is odd, regardless of sign (e.g., -7 is odd, 0 is even). Consider
the star-shaped path shown in Figure 8 below, indicated with solid lines. The
orientation of the lines making up the path is indicated with arrows. An
imaginary line to infinity starting in the central region of the star is shown as a
dashed line pointing to the right. Two edges of the star cross the line to infinity
going left to right, indicated by the downward-pointing arrows. The central
region therefore has a count of +2. According to the even/odd rule, it is outside
the path, whereas according to the non-zero rule it is inside. Implementations
must be able to deal with paths having up to 255 crossings along any line. The
behavior of more complex paths is undefined.

Figure 8: Even/Odd Fill Rule

76

OpenVG 1.0 Specification 8.7.1 - Filling Paths

Creating Holes in Paths

The fill rule is applied with respect to all subpaths simultaneously during
filling. Thus, one subpath may be used to create a hole inside an enclosing
subpath by defining the two subpaths with opposing orientations (clockwise
versus counter-clockwise). Note that the orientation of extremely small paths
may depend on the numerical precision of the internal representation of points.
Care should be taken to avoid the use of paths that have nearly collapsed to a
line or a point.

The relative orientation of subpaths, along with the fill rule, determines
whether overlapping subpaths will result in holes, as shown in Figure 9 below.

Even/Odd Fill Rule Non-Zero Fill Rule

Same

Orientation

Opposing

Orientation

Figure 9: Creating Holes with Subpaths

77

OpenVG 1.0 Specification 8.7.1 - Filling Paths

Implicit Closure of Filled Subpaths

When filling a path, any subpaths that do not end with a CLOSE_PATH
segment command (i.e., they are terminated with a MOVE_TO ABS or
MOVE_TO_REL segment command, or they contain the final segment of the path)
are implicitly closed, without affecting the position of any other vertices of the
path or the (sx, sy), (px, py) or (ox, oy) variables. For example, consider the
sequence of segment commands:

MOVE TOABS 0, O0; LINE TOABS 10, 10: LINE TOABS 10, O
MOVE_TO REL 10, 2: LINE_TO ABS 30, 12; LINE TO ABS 30, 2

If filled, this sequence will result in one filled triangle with vertices (0, 0), (10,
10), and (10, 0) and another filled triangle with vertices (20, 2), (30, 12), and (30,
2). Note that the implicit closure of the initial subpath prior to the MOVE_TO_REL
segment command has no effect on the starting coordinate of the second triangle;
it is computed by adding the relative offset (10, 2) to the final coordinate of the
previous segment (10, 0) to obtain (20, 2) and is not altered by the (virtual)
insertion of the line connecting the first subpath’s final vertex (10, 0) to its initial
vertex (0, 0)). Figure 10 illustrates this process, with the resulting filled areas
highlighted. When stroking a path, no implicit closure takes place, as shown in
Figure 11. Implicit closure affects only the output when filling a path, and does
not alter the path data in any way.

0¢ OL HNIT

(implicit closure)

Figure 10: Implicit Closure of Filled Paths

%)

2
T'0€ O ANTIT

NET S

%O'OI Ol dNIT

Figure 11: Stroked Paths Have No Implicit Closure

78

OpenVG 1.0 Specification 8.7.2 - Stroking Paths

8.7.2 Stroking Paths

Stroking a path consists of “widening” the edges of the path using a straight-
line pen held perpendicularly to the path. At the start and end vertices of the
path, an additional end-cap style is applied. At interior vertices of the path, a line
join style is applied.

Conceptually, stroking of a path is performed in two steps. First, the stroke
parameters are applied in the user coordinate system to form a new shape
representing the end result of dashing, widening the path, and applying the end
cap and line join styles. Second, a path is created that defines the outline of this
stroked shape. This path is transformed using the path-user-to-surface
transformation (possibly involving shape distortions due to non-uniform scaling
or shearing). Finally, the resulting path is filled with paint in exactly the same
manner as when filling a user-defined path using the non-zero fill rule.

Stroking a path applies a single “layer” of paint, regardless of any intersections
between portions of the thickened path. Figure 12 illustrates this principle. A
single stroke (above) is drawn with a black color and an alpha value of 50%,
compared with two separate strokes (below) drawn with the same color and
alpha values. The single stroke produces a shape with a uniform color of 50%
gray, as if a single layer of translucent paint has been applied, even where
portions of the path overlap one another. By contrast, the separate strokes
produce two applications of the translucent paint in the area of overlap, resulting
in a darkened area.

Single Stroke

Separate Strokes

Figure 12: Each Stroke Applies a Single Layer of Paint

79

OpenVG 1.0 Specification 8.7.3 — Stroke Parameters

8.7.3 Stroke Parameters
Stroking a path involves the following parameters, set on a context:

Line width in user coordinate system units

End cap style - one of Butt, Round, or Square

Line join style - one of Miter, Round, or Bevel

Miter limit - if using Miter join style

Dash pattern - array of dash on/ off lengths in user units
Dash phase - initial offset into the dash pattern

These parameters are set on the current context using the variants of the vgSet
function. The values most recently set prior to calling vgDrawPath (see Section
8.8) are applied to generate the stroke.

End Cap Styles

Figure 13 illustrates the Butt (top), Round (center), and Square (bottom) end
cap styles applied to a path consisting of a single line segment. Figure 14
highlights the additional geometry created by the end caps. The Butt end cap
style terminates each segment with a line perpendicular to the tangent at each
endpoint. The Round end cap style appends a semicircle with a diameter equal
to the line width centered around each endpoint. The Square end cap style
appends a rectangle with two sides of length equal to the line width
perpendicular to the tangent, and two sides of length equal to half the line width
parallel to the tangent, at each endpoint. The outgoing tangent is used at the left
endpoint and the incoming tangent is used at the right endpoint.

e Bt
—_ e
I Square

Figure 13: End Cap Styles

Fiqure 14: End Cap Styles with Additional Geometry Highlighted

80

OpenVG 1.0 Specification 8.7.3 — Stroke Parameters

Line Join Styles

Figure 15 illustrates the Bevel (left), Round (center), and Miter (right) line join
styles applied to a pair of line segments. Figure 16 highlights the additional
geometry created by the line joins. The Bevel join style appends a triangle with
two vertices at the outer endpoints of the two “fattened” lines and a third vertex
at the intersection point of the two original lines. The Round join style appends a
wedge-shaped portion of a circle, centered at the intersection point of the two
original lines, having a radius equal to half the line width. The Miter join style
appends a trapezoid with one vertex at the intersection point of the two original
lines, two adjacent vertices at the outer endpoints of the two “fattened” lines and
a fourth vertex at the extrapolated intersection point of the outer perimeters of
the two “fattened” lines. A Round join is used at a cusp of a cubic Bézier
segment.

When stroking using the Miter join style, the miter length (i.e., the length
between the intersection points of the inner and outer perimeters of the two
“fattened” lines) is compared to the product of the user-set miter limit and the
line width. If the miter length exceeds this product, the Miter join is not drawn
and a Bevel join is substituted.

444

Bevel Round Miter

Figure 15: Line Join Styles

/\/Iiter Length

Figure 16: Line Join Styles with Additional Geometry Highlighted

81

OpenVG 1.0 Specification 8.7.3 — Stroke Parameters

Miter Length

The ratio of miter length to line width may be computed directly from the
angle 0 between the two line segments being joined as 1/sin(6/2). A number of
angles with their corresponding miter limits for a line width of 1 are shown in
Table 9.

Angle (degrees) Miter Limit Angle (degrees) Miter Limit
10 11.47 45 2.61
11.47 10 60 2
23 5 90 1.41
28.95 4 120 1.15
30 3.86 150 1.03
38.94 3 180 1

Table 9: Corresponding Angles and Miter Limits

Dashing

The dash pattern consists of a sequence of lengths of alternating “on” and
“off” dash segments. The first value of the dash array defines the length, in user
coordinates, of the first “on” dash segment. The second value defines the length
of the following “oft” segment. Each subsequent pair of values defines one “on”
and one “off” segment.

The dash phase defines the starting point in the dash pattern that is associated
with the start of the first segment of the path. For example, if the dash pattern is
[10 20 30 40] and the dash phase is 35, the path will be stroked with an “on”
segment of length 25 (skipping the first “on” segment of length 10, the following
“off” segment of length 20, and the first 5 units of the next “on” segment),
followed by an “off” segment of length 40. The pattern will then repeat from the
beginning, with an “on” segment of length 10, an “off” segment of length 20, an

on” segment of length 30, etc. Figure 17 illustrates this dash pattern.

Conceptually, dashing is performed by breaking the path into a set of subpaths
according to the dash pattern. Each subpath is then drawn independently using
the end cap, line join style, and miter limit that were set for the path as a whole.

Dashes of length 0 are drawn only if the end cap style is VG_CAP_ROUND or
VG_CAP_SQUARE. The incoming and outgoing tangents (which may differ if the
dash falls at a vertex of the path) are evaluated at the point, using the
vgPointAlongPath algorithm. The end caps are drawn using the orientation of
each tangent, and a join is drawn between them if the tangent directions differ. If
the end cap style is VG_CAP_BUTT, nothing will be drawn.

82

OpenVG 1.0 Specification 8.7.3 — Stroke Parameters
A dash, or space between dashes, with length less than 0 is treated as having a
length of 0.

A negative dash phase is equivalent to the positive phase obtained by adding a
suitable multiple of the dash pattern length.

Dash Phase=35

40

Dash Pattern:

10

25 10 30 10 30 10 30 .. '

Resulting Line: /
o

Figure 17: Dash Pattern and Phase Example

30

8.7.4 Stroke Generation

The algorithm for generating a stroke is as follows. The steps described in this
section conceptually take place in user coordinates, on a copy of the path being
stroked in which all relative and implicit coordinates have been converted to
absolute coordinates. An initial MOVE_TO 0, 0 segment is added if the path does
not begin with a MOVE_TQO,

The path to be stroked is divided into subpaths, each ending with a MOVE_TO
or CLOSE_PATH segment command or with the final path segment. Subpaths
consisting of only a single MOVE_TOsegment are discarded.

A subpath consisting of a single point (i.e., a MOVE_TO segment followed by a
sequence of LI NE_TO QUAD_TQO CUBI C_TO and/or ARC_TO segments with all
control points equal to the current point, possibly followed by a CLOSE_PATH
segment) is collapsed to a lone vertex, which is marked as an END vertex (for
later generation of end caps). A tangent vector of (1, 0) is used for Square end
caps.

83

OpenVG 1.0 Specification 8.7.4 — Stroke Generation

Subpaths that do not consist only of a single point have any zero-length
segments removed.

If a subpath does not end with a CLOSE_PATH segment command, its first and
last vertices are marked as END vertices. All the internal vertices that begin or
end path segments within the subpath, as well as the initial/final vertex if the
subpath ends with a CLOSE_PATH segment, are marked as JOIN vertices (for
later generation of line joins).

Each subpath is processed in turn as described below until all subpaths have
been stroked.

If dashing is enabled, the dash pattern and phase are used to break the
subpath into a series of smaller subpaths representing the “on” portions of the
dash pattern. New vertices are created at the endpoints of each dash subpath
and marked as END vertices. The old subpath is discarded and replaced with the
dash subpaths for the remainder of the stroke processing. The dash phase is
advanced for each subsequent segment by the length of the previous segment
(where CLOSE_PATH segments are treated as LINE_TO segments). If
VG_DASH_PHASE_RESET is disabled (set to VG_FALSE), the final dash phase at
the end of the subpath is used as the initial dash phase for the next subpath.
Otherwise, the original dash phase is used for all subpaths.

For each END vertex, an end cap is created (if Square or Round end caps have
been requested) using the orientation given by the tangent vector. The tangent
vector is defined in the same manner as for the vgPointAlongPath function (see

p. 71).
For each JOIN vertex, a line join is created using the orientations given by the
tangent vectors of the two adjacent path segments. If Miter joins are being used,

the length of the miter is computed and compared to the product of the line
width and miter limit; if the miter would be too long, a Bevel join is substituted.

8.7.5 Setting Stroke Parameters

Setting the line width of a stroke is performed using vgSetf with a par aniType
argument of VG_STROKE_LI NE_W DTH. A line width less than or equal to 0
prevents stroking from taking place.

V&G | oat | i neWdth;
vgSet f (VG _STROKE LI NE_W DTH,

i neWdth);

VGCapStyle

The VGCapSt yl e enumeration defines constants for the Butt, Round, and
Square end cap styles:

84

OpenVG 1.0 Specification 8.7.5 - Setting Stroke Parameters

typedef enum {

VG CAP_BUTT = 0x1700,
VG _CAP_ROUND = 0x1701,
VG _CAP_SQUARE = 0x1702

} VGCapStyl e;

Setting the end cap style is performed using vgSeti with a paraniype
argument of VG STROKE_CAP_STYLE and a value from the VCGCapStyl e
enumeration.

VGCapStyl e capStyl e;
vgSeti (VG STROKE _CAP_STYLE, capStyle);

VGJoinStyle

The VG&oi nSt yl e enumeration defines constants for the Miter, Round, and
Bevel line join styles:

typedef enum {

VG JO N_M TER = 0x1800,
VG_JO N_ROUND = 0x1801,
VG JO N_BEVEL = 0x1802

} VQ&oinStyl e;

Setting the line join style is performed using vgSeti with a paraniype
argument of VG _STROKE_JO N_STYLE and a value from the VGJoi nStyl e
enum.

VGJoi nStyl e joi nStyl e;
vgSeti (VG STROKE JO N _STYLE, joinStyle);

Setting the miter limit is performed using vgSetf with a par aniType argument
of VG_STROKE_M TER _LIM T:

VG|l oat mterLimt;
vgSetf (VG STROKE M TER LIMT, mterLimt);

Miter limit values less than 1 are silently clamped to 1.

VG_MAX_DASH_COUNT

The VG_MAX_DASH_COUNT parameter contains the maximum number of dash
segments that may be supplied for the VG_STROKE_DASH_PATTERN parameter.
All implementations must must support at least 16 dash segments (8 on/off
pairs). If there is no implementation-defined limit, a value of VG_MAXI NT may be
returned. The value may be retrieved by calling vgGeti:

VG nt maxDashCount = vgGCeti (VG MAX DASH COUNT) ; '

85

OpenVG 1.0 Specification 8.7.5 - Setting Stroke Parameters

Setting the Dash Pattern

The dash pattern is set using vgSetfv with a paraniType argument of
VG_STROKE_DASH PATTERN:

V& | oat dashPatt er n[DASH_COUNT] ;
VG nt count = DASH COUNT;
vgSet f v(VG_STROKE_DASH PATTERN, count,

dashPattern);

Dashing may be disabled by calling vgSetfv with a count of 0:

vgSet f v(VG_STROKE_DASH_PATTERN, 0, NULL): '

The dash phase is set using vgSetf with a paranilype argument of
VG_STROKE_DASH _PHASE. The resetting behavior of the dash phase when
advancing to a new subpath is set using vgSeti with a par aniType argument of
VG_STROKE_DASH PHASE RESET:

V& | oat dashPhase;

VGbool ean dashPhaseReset ;

vgSet f (VG_STROKE_DASH PHASE, dashPhase);

vgSeti (VG_STROKE_DASH PHASE RESET, dashPhaseReset);

If the dash pattern has length 0, dashing is not performed. If the dash pattern
has an odd number of elements, the final element is ignored. Note that this
behavior is different from that defined by SVG; the SVG behavior may be
implemented by duplicating the odd-length dash pattern to obtain one with
even length.

If more than VG_MAX_DASH_COUNT dashes are specified, those beyond the
tirst VG_MAX_DASH_COUNT are discarded immediately (and will not be returned
by vgGet).

8.7.6 Non-Scaling Strokes

In some cases, applications may wish stroked geometry to appear with a
particular stroke width in the surface coordinate system, independent of the
current user-to-surface transformation. For example, a stroke representing a road
on a map might stay the same width as the user zooms in and out of the map,
since the stroke width is intended to indicate the type of road (e.g., one-way
street, divided road, interstate highway or Autobahn) rather than its true width
on the ground.

OpenVG does not provide direct support for this “non-scaling stroke”
behavior. However, the behavior may be obtained relatively simply using a
combination of features.

If the current user-to-surface transformation consists only of uniform scaling,
rotation, and translation (i.e., no shearing or non-uniform scaling), then the
stroke width may be set to the desired stroke width in drawing surface
coordinates, divided by the scaling factor introduced by the transformation. This

86

OpenVG 1.0 Specification 8.7.6 — Non-Scaling Strokes

scaling factor may be known to the application a priori, or else it may be
computed as the square root of the absolute value of the determinant (sx*sy -
shx*shy) of the user-to-surface transformation.

If the user-to-surface transformation includes shearing or non-uniform scaling,
the geometry to be stroked must be transformed into surface coordinates prior to
stroking. The paint transformation must also be set to the concatenation of the
paint-to-user and user-to-surface transformations in order to allow correct
painting of the stroked geometry. The following code illustrates this technique:

VGPath srcPath; /* Path to be drawn with non-scaling stroke */
VGPath dstPath; /* Path in drawi ng surface coordi nates */

V& | oat strokePai nt ToUser[9]; /* Paint-to-user transformation */
V& | oat pat hUser ToSurface[9]; /* User-to-surface transformation */

[* Transformthe geonetry into surface coordi nates. */
vghat ri xMode(VG_MATRI X_PATH USER _TO_ SURFACE) ;
vglLoadMat ri x(pat hUser ToSur f ace) ;

vgTr ansf or mPat h(dst Pat h, srcPath);

/* Use the identity matrix for drawing the stroked path. */
vgLoadl dentity();

/[* Set the paint transformation to the concatenation of the
* paint-to-user and user-to-surface transformations.
*/

vgMat ri xMbde(VG MATRI X FI LL_PAI NT_TO USER);

vgLoadMat ri x(pat hUser ToSur f ace) ;

vgMul t Mat ri x(strokePai nt ToUser) ;

[* Stroke the transformed path. */
vgDr awPat h(dst Pat h, VG STROKE PATH) ;

8.8 Filling or Stroking a Path
VGFillRule

The VGFi | | Rul e enumeration defines constants for the even/odd and non-
zero fill rules.

typedef enum {
VG _EVEN ODD = 0x1900,
VG_NON_ZERO = 0x1901
} VGFi || Rul €;

To set the rule for filling, call vgSeti with a type parameter value of
VG FILL_RULE and a val ue parameter defined using a value from the
VGFi | | Rul e enumeration. When the path is filled, the most recent setting of the

87

OpenVG 1.0 Specification 8.8 - Filling or Stroking a Path

fill rule on the current context is used. The fill rule setting has no effect on
stroking.

VGFi I IRul e fillRule;
vgSeti (VG FILL_RULE, fillRule);

VGPaintMode

The VGPai nt Mode enumeration defines constants for stroking and filling
paths, to be used by the vgDrawPath, vgSetPaint, and vgGetPaint functions.

typedef enum {
VG_STROKE_PATH
VG FI LL_PATH

} VGPai nt Mode;

(1 << 0),
(1 << 1)

vgDrawPath

Filling and stroking are performed by the vgDrawPath function. The
pai nt Modes argument is a bitwise OR of values from the VGPai nt Mbde
enumeration, determining whether the path is to be filled (VG _FI LL_PATH),

stroked (VG_STROKE_PATH), or both (VG_FI LL_PATH | VG_STROKE_PATH). If
both filling and stroking are to be performed, the path is first filled, then stroked.

voi d vgDrawPat h(VGPat h path, V&itfield paint Modes) '

ERRORS

VG_BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VG_| LLEGAL_ARGUVENT_ERROR

- if pai nt Mbdes is not a valid bitwise OR of values from the VGPai nt Mode
enumeration

Filling a Path

Calling vgDrawPath with a pai nt Modes argument of VG _FI LL_PATH causes
the given path to be filled, using the paint defined for the VG_FI LL_PATH paint
mode and the current fill rule.

The matrix currently set for the VG_MATRI X_FI LL_PAI NT_TO_USER matrix
mode is applied to the paint used to fill the path outline. The matrix currently set
for the VG MATRI X PATH USER TO SURFACE matrix mode is used to
transform the outline of the path and the paint into surface coordinates.

vgDr awPat h(VGPat h pat h, VG FI LL_PATH); '

88

OpenVG 1.0 Specification 8.8 - Filling or Stroking a Path

Stroking a Path

Calling vgDrawPath with a pai nt Modes argument of VG _STROKE_PATH
causes the given path to be stroked, using the paint defined for the
VG_STROKE_PATH paint mode and the current set of stroke parameters.

The matrix currently set for the VG MATRI X_STROKE_PAI NT_TO_USER
matrix mode is applied to the paint used to fill the stroked path outline. The
matrix currently set for the VG MATRI X_PATH USER TO SURFACE matrix
mode is used to transform the outline of the stroked path and the paint into
surface coordinates.

vgDr awPat h(VGPat h pat h, VG _STROKE_PATH) ; '

The following code sample shows how an application might set stroke
parameters using variants of vgSet, and stroke a path object (defined elsewhere):

VGPat h pat h;

/[* Set the line width to 2.5 */

vgSet f (VG_STROKE LI NE_W DTH, 2.5f);

/[* Set the miter linmt to 10.5 */

vgSet f (VG_STROKE M TER LIM T, 10.5f);

/* Set the cap style to CAP_SQUARE */

vgSeti (VG_STROKE_CAP_STYLE, VG _CAP_SQUARE);
/* Set the join style to JON M TER */
vgSeti (VG_STROKE _JO N_STYLE, VG JO N M TER);

[* Set the dash pattern */
V& | oat dashes[] = { 1.0f, 2.0f, 2.0f, 2.0f };
vgSet f v(VG _STROKE _DASH PATTERN, 4, dashes);

/* Set the dash phase to 0.5 and reset it for every subpath */
vgSet f (VG_STROKE_DASH _PHASE, 0. 5f);
vgSeti (VG_STROKE_DASH PHASE RESET, VG TRUE);

[* Stroke the path */
vgDr awPat h(pat h, VG STROKE_PATH) ;

Filling and Stroking a Path

Calling vgDrawPath with a pai nt Modes argument of (VG _FI LL_PATH |
VG_STROKE_PATH) causes the given path to be first filled, then stroked, exactly
as if vgDrawPath were called twice in succession, first with a pai nt Mbdes
argument of VG FI LL_PATH and second with a pai nt Modes argument of
VG_STROKE_PATH.

vgDr awPat h(VGPat h path, VG FILL_PATH | VG _STROKE_PATH) ; '

89

OpenVG 1.0 Specification 9 - Paint

9 Paint

Paint defines a color and an alpha value for each pixel being drawn. Color paint
defines a constant color for all pixels; gradient paint defines a linear or radial
pattern of smoothly varying colors; and pattern paint defines a possibly repeating
rectangular pattern of colors based on a source image. It is possible to define new
types of paint as extensions.

Paint is defined in its own coordinate system, which is transformed into user
coordinates by means of the fill-paint-to-user and stroke-paint-to-user
transformations (set using the VG MATRI X_FILL_PAINT_TO USER and
VG_MATRI X_STROKE_PAI NT_TO_USER matrix modes) depending on whether
the current geometry is being filled or stroked.

Given a (fill or stroke) paint-to-user transformation Tp and user-to-surface
transformation Tu, the paint color and alpha of a pixel to be drawn with surface
coordinates (x, y) is defined by mapping its center point (x + %3, y + %) through
the inverse transformation (Tu ° Tp)”, resulting in a sample point in the paint
coordinate space. This transformation must be evaluated with sufficient accuracy
to ensure a deviation from the ideal of no more than 1/8 of a pixel along either
axis. The paint value nearest that point may be used (point sampling), or paint
values from multiple points surrounding the central sample point may be
combined to produce an interpolated paint value. Paint color values are
processed in premultiplied alpha format during interpolation. The user-to-
surface transformation Tu is taken from the path-user-to-surface transformation
when fulfilling a vgDrawPath call, or from the image-user-to-surface
transformation when fulfilling a vgDrawImage call.

If the inverse transformation cannot be computed due to a (near-)singularity;,
no drawing occurs.

9.1 Paint Definitions

The OpenVG context stores two paint definitions at a time, one to be applied
to stroked shapes and one for filled shapes. This allows the interior of a path to
be filled using one type of paint and its outline to be stroked with another kind
of paint in a single vgDrawPath operation. Initially, default values are used.

VGPaint

VGPai nt represents an opaque handle to a paint object. A VGPai nt object is
live; changes to a VGPai nt object (using vgSet Par anet er, or by altering an
attached pattern image) attached to a context will immediately affect drawing
calls on that context. If a VGPai nt object is accessed from multiple threads, the
application must ensure (using vgFinish along with application-level
synchronization primitives) that the paint definition is not altered from one
context while another context may still be using it for drawing.

90

OpenVG 1.0 Specification 9.1 - Paint Definitions

typedef VGHandl e VGPRai nt ; '

9.1.1 Creating and Destroying Paint Objects

vgCreatePaint

vgCreatePaint creates a new paint object that is initialized to a set of default
values and returns a VGPai nt handle to it. If insufficient memory is available to
allocate a new object, VG_| NVALI D_HANDLE is returned.

VGPai nt vgCr eat ePai nt (voi d) '

vgDestroyPaint

The resources associated with a paint object may be deallocated by calling
vgDestroyPaint. Following the call, the pai nt handle is no longer valid in any
of the contexts that shared it. If the paint object is currently active in a drawing
context, the context continues to access it until it is replaced or the context is
destroyed.

voi d vgDest royPai nt (VGPai nt pai nt) '

ERRORS
VG _BAD HANDLE ERROR

- if paint is not a valid paint handle, or is not shared with the current context

9.1.2 Setting the Current Paint
vgSetPaint

Paint definitions are set on the current context using the vgSetPaint function.
The pai nt Modes argument is a bitwise OR of values from the VGPai nt Mode
enumeration, determining whether the paint object is to be used for filling
(VG_FI LL_PATH), stroking (VG_STROKE_PATH), or both (VG FI LL_PATH |
VG_STROKE_PATH). The current pai nt replaces the previously set paint object,
if any, for the given paint mode or modes. If paint is equal to
VG_| NVALI D_HANDLE, the previously set paint object for the given mode (if
present) is removed and the paint settings are restored to their default values.

voi d vgSet Pai nt (VGPai nt paint, VCbitfield paint Mdes) '

91

OpenVG 1.0 Specification 9.1.2 - Setting the Current Paint

ERRORS
VG _BAD HANDLE ERROR

- if pai nt is neither a valid paint handle nor equal to VG_| NVALI D_HANDLE,
or is not shared with the current context

VG | LLEGAL_ARGUVENT ERROR

- if pai nt Modes is not a valid bitwise OR of values from the VGPai nt Mode
enumeration

vgGetPaint

The vgGetPaint function returns the paint object currently set for the given
pai nt Mode, or VG_I NVALI D_HANDLE if an error occurs or if no paint object is
set (ie., the default paint is present) on the given context with the given
pai nt I\/bde

VGPai nt vgGet Pai nt (VGPai nt Mode pai nt Mode) I

ERRORS
VG | LLEGAL_ARGUMENT _ERROR
- if pai nt Mode is not a valid value from the VGPai nt Mode enumeration

9.1.3 Setting Paint Parameters

Paint functionality is controlled by a number of paint parameters that are
stored in each paint object.
VGPaintParamType

Values from the VGPai nt Par aniType enumeration may be used as the
par aniType argument to vgSetParameter and vgGetParameter to set and query
various features of a paint object:

92

OpenVG 1.0 Specification 9.1.3 - Setting Paint Parameters

typedef enum {
[* Col or paint parameters */

VG_PAI NT_TYPE = 0x1A00,
VG_PAI NT_COLOR = 0x1A01,
VG_PAI NT_COLOR_RAMP_SPREAD MODE = O0x1A02,
VG_PAI NT_COLOR_RAMP_STOPS = Ox1A03,
VG_PAI NT_COLOR RAMP_PREMULTI PLIED = 0x1A07,

[* Linear gradient paint paraneters */
VG_PAI NT_LI NEAR_GRADI ENT = Ox1A04,

/* Radi al gradient paint paraneters */
VG _PAI NT_RADI AL_ GRADI ENT = Ox1A05,

[* Pattern paint paraneters */
VG_PAI NT_PATTERN_TI LI NG_MODE = 0x1A06
} VGPai nt Par anType;

The default values that are used when no paint object is present (i.e., in a
newly-created context or following a call to vgSetPaint with a pai nt value of
VG_| NVALI D_HANDLE) are shown in Table 10. These values are also used as the
initial parameter value for a newly created paint object.

Parameter Datatype Default Value
VG_PAI NT_TYPE VCGPai nt Type VG_PAI NT_TYPE_COLOR
VG_PAI NT_COLOR VG | oat [4] { 0.0f, 0.0f, 0.0f, 1.0f }
\S/SEEQ:DE‘TM_];.S_ CR_RAMP_ VGCol or RanmpSpr eadMode VG _COLOR_RAMP_SPREAD PAD
\S/_(?azgl NT_COLOR_RAMP_ V& | oat * Array of Length 0
\P/(RSEI\P/G:_"I\"T BE?&SQ—RANP— VGhool ean VG _TRUE
\(;(;Z\;A:Em_u NEAR_ VG | oat [4] { 0.0f, 0.0f, 1.0f, 0.0f }
\(;%;A'EE—RAD' AL_ VG | oat [5] { 0.0f, 0.0f, 0.0f, 0.0f, 1.0f }
}r/IGE:DQIGEITNaI;éTTERN_ VGTi | i nghbde VG TI LE_FI LL

Table 10: VGPaintParamType Defaults

93

OpenVG 1.0 Specification 9.1.3 - Setting Paint Parameters

VGPaintType

The VGPaint Type enumeration is used to supply values for the
VG_PAI NT_TYPE paint parameter to determine the type of paint to be applied.

typedef enum {

VG_PAI NT_TYPE_COLOR = 0x1B0O,
VG_PAI NT_TYPE_LI NEAR_GRADI ENT = 0x1B01,
VG_PAI NT_TYPE_RADI AL_GRADI ENT = 0x1B02,
VG_PAI NT_TYPE_PATTERN = 0x1B03

} VGPai nt Type;

9.2 Color Paint

Color paint uses a fixed color and alpha for all pixels. An alpha value of 1
produces a fully opaque color. Colors are specified in non-premultiplied sSRGBA
format.

Setting Color Paint Parameters

To enable color paint, use vgSetParameteri to set the paint type to
VG _PAI NT_TYPE_COLOR

The vgSetParameterfv function allows the color and alpha values to be set
using the VG_PAI NT_CCOLOR paint parameter to values between 0 and 1. Values
outside this range are interpreted as the nearest endpoint of the range.

V& loat fill _red, fill _green, fill_blue, fill _al pha;
VG | oat stroke_red, stroke_green, stroke_ bl ue, stroke_al pha;
VGPai nt nyFi || Pai nt, nyStrokePaint;

VG loat * fill_RGBA = {
fill _red, fill _green, fill_blue, fill _al pha
s

V& | oat * stroke RGBA = {
stroke red, stroke green, stroke blue, stroke al pha
iE

[* Fill with color paint */
vgSet Paranet eri (nyFi || Pai nt, VG PAI NT_TYPE, VG PAINT_TYPE COLOR);
vgSet Paraneterfv(nyFi || Paint, VG PAINT_COLOR, 4, fill_RGBA);

[* Stroke with col or paint */
vgSet Par anet eri (nmyStrokePai nt, VG PAI NT_TYPE, VG PAINT_TYPE COLCR);
vgSet Par amet er f v(mySt r okePai nt, VG PAINT_COLOR, 4, stroke RGBA);

vgSetColor

As a shorthand, the vgSetColor function allows the VG _PAI NT_COLOR
parameter of a given pai nt object to be set using a 32-bit non-premultiplied

94

OpenVG 1.0 Specification 9.2 - Color Paint

SRCGBA 8888 representation (see Section 10.210.2). The r gba parameter is a
VQui nt with 8 bits of red starting at the most significant bit, followed by 8 bits
each of green, blue, and alpha. Each color or alpha channel value is conceptually
divided by 255.0f to obtain a value between 0 and 1.

voi d vgSet Col or (VGPai nt pai nt, VQuint rgba) '

ERRORS
VG _BAD HANDLE ERROR

- if pai nt is not a valid paint handle, or is not shared with the current context

The code:

VGPai nt pai nt;
VGQui nt rgba;
vgSet Col or (pai nt, rgba)

is equivalent to the code:
V& | oat rgba f[4];

rgba_f[0] = ((rgba >> 24) & Oxff)/255.0f;
rgha f[1] = ((rgbha >> 16) & Oxff)/255. 0f;
rgha f[2] = ((rgbha >> 8) & Oxff)/255. 0f;
rgba_f[3] = (rgba & Oxff)/255. 0f;

vgSet Par anet er f v(pai nt, VG PAINT_COLOR, 4, rgba f);

vgGetColor

The current setting of the VG_PAI NT_COLOR parameter on a given pai nt
object may be queried as a 32-bit non-premultiplied SRGBA 8888 value. Each
color channel or alpha value is clamped to the [0, 1] range, multiplied by 255,
and rounded to obtain an 8-bit integer; the resulting values are packed into a 32-
bit value in the same format as for vgSetColor.

V@&ui nt vgGet Col or (VGPai nt pai nt) '

ERRORS
VG BAD HANDLE ERROR

- if pai nt is not a valid paint handle, or is not shared with the current context

The code:

VGPai nt pai nt;
VQ&ui nt rgba;
rgbha = vgCet Col or (paint);

95

OpenVG 1.0 Specification 9.2 - Color Paint

96

OpenVG 1.0 Specification 9.2 - Color Paint

is equivalent to the code:
#defi ne CLAMP(x) ((x) < 0.0f ?2 0.0f : ((x) > 1.0f 2?2 1.0f : (x)))

VG | oat rgba_f[4];
int red, green, blue, alpha;

vgGet Par anet erfv(pai nt, VG PAINT_COLOR, 4, rgba f);
/*

* Clanmp col or and al pha val ues from vgGet Paraneterfv to the
* [0, 1] range, scale to 8 bits, and round to integer.

*/

red = (int)(CLAMP(rgba f[0])*255.0f + 0.5f);
green = (int)(CLAVP(rgba f[1])*255.0f + 0.5f);
blue = (int)(CLAMP(rgba f[2])*255.0f + 0.5f);
al pha = (int)(CLAMP(rgba f[3])*255.0f + 0.5f);

rgha = (red << 24) | (green << 16) | (blue << 8) | al pha;

9.3 Gradient Paint

Gradients are patterns used for filling or stroking. They are defined
mathematically in two parts; a scalar-valued gradient function defined at every
point in the two-dimensional plane (in paint coordinates), followed by a color
ramp mapping.

9.3.1 Linear Gradients

Linear gradients define a scalar-valued gradient function based on two points
(x0, y0) and (xI, yI) (in the paint coordinate system) with the following
properties:

It is equal to O at (x0, y0)

It is equal to 1 at (xI, y1)

It increases linearly along the line from (x0, y0) to (x1, y1)

It is constant along lines perpendicular to the line from (x0, y0) to (xI, y1)

An expression for the gradient function is:

Ax(x=x0)+A y(y—y0)
Ax*+A Y

glx,y)=

where 4x = x1 - x0 and 4y = y1 - y0. If the points (x0, y0) and (x1, y1) are
coincident (and thus 4x* + 4y = 0), the function is given the value 1 everywhere.

97

OpenVG 1.0 Specification 9.3.1 - Linear Gradients

Setting Linear Gradient Parameters

To enable linear gradient paint, use vgSetParameteri to set the paint type to
VG_PAI NT_TYPE_LI NEAR_GRADI ENT.

The linear gradient parameters are set using vgSetParameterfv with a
par aniType argument of VG_PAI NT_LI NEAR_GRADI ENT. The gradient values
are supplied as a vector of 4 floats in the order { x0, y0, x1, y1 }.

VG loat fill_x0, fill_y0, fill_x21, fill _y1;
V& | oat stroke x0, stroke y0, stroke x1, stroke yi;
VGPai nt nyFill Pai nt, nyStrokePaint;
V& loat * fill _linear_gradient = {
fill_x0, fill_yo0, fill_x21, fill _y1l
3

VG| oat * stroke_linear_gradient = {
stroke_x0, stroke_y0, stroke_x1, stroke_yl
b

[* Fill with l'inear gradient paint */
vgSet Paranet eri (nyFi || Pai nt, VG PAI NT_TYPE,
VG_PAI NT_TYPE_LI NEAR_GRADI ENT) ;
vgSet Paranet erfv(myFi | | Pai nt, VG PAI NT_LI NEAR GRADI ENT,
4, fill _linear_gradient);
[* Stroke with linear gradient paint */
vgSet Par amet eri (nySt r okePai nt, VG _PAI NT_TYPE,
VG _PAI NT_TYPE_LI NEAR_GRADI ENT) ;
vgSet Par anmet er f v(mySt r okePai nt, VG _PAI NT_LI NEAR _GRADI ENT,
4, stroke_linear_gradient);

9.3.2 Radial Gradients

Radial gradients define a scalar-valued gradient function based on a gradient
circle defined by a center point (cx, cy), a radius r, and a focal point (fx, fy) that is
forced to lie within the circle. All parameters are given in the paint coordinate
system.

The computation of the radial gradient function is illustrated in Figure 18. The
function is equal to 0 at the focal point and 1 along the circumference of the
gradient circle. Elsewhere, it is equal to the distance between (x, y) and (fx, fy)
(shown as d) divided by the length of the line segment starting at (fx, fy), passing
through (x, y) and ending on the circumference of the gradient circle (shown as
d). If the radius is less than or equal to 0, the function is given the value 1
everywhere.

An expression for the gradient function may be derived by defining the line
between (fx, fy) and (x, y) by the parametric expression (fx, fy) + tx(x - fx, y - fy)

and determmmg the positive value of t at which the line intersects the circle
(x - cx)* + (y - cy)’ = 1. Figure 18 illustrates the construction. The gradient value
g(x, y) is then given by 1/t. The resulting expression is:

98

OpenVG 1.0 Specification 9.3.2 - Radial Gradients

_ dx’+dy’
glx, y)=r——— - ~ , :
Vro(dx+dy”)—(dx fy =dy fx) =(dx fx +dy fy)

where fx' =fx-cx, fy' =fy —cy, dx=x - fxand dy =y - fy.
This may be rearranged and simplified to obtain a formula that does not
require per-pixel division:

(dxfx’+dyﬁ/’)+\3‘ P (dx’+dy’)—(dx ' =dy fx')
rr=(f+ ")

g(x,y)=

One way to evaluate the gradient function efficiently is to rewrite it in the form:
g, (x)=(4x+B)+| CX’+Dx+E

and to use forward differencing of Ax + B and Cx* + Dx + E to evaluate it
incrementally along a scanline with several additions and a single square root
per pixel.

gradient(x, y) = d /d, (x-cx)*+(y-cy)’=r’

x'=fx+t*(x-fx)
Y=+t yfy)

Figure 18: Radial Gradient Function

929

OpenVG 1.0 Specification 9.3.2 - Radial Gradients

Setting Radial Gradient Parameters

To enable radial gradient paint, use vgSetParameteri to set the paint type to
VG_PAI NT_TYPE_RADI AL_GRADI ENT. The radial gradient parameters are set
using vgSetParameterfv with a par anilype argument of
VG_PAI NT_RADI AL_GRADI ENT. The gradient values are supplied as a vector of
5 floats in the order { cx, cy, fx, fy, r }.

If (fx, fy) lies outside the circumference of the circle, the intersection of the line
from the center to the focal point with the circumference of the circle is used as
the focal point in place of the specified point. To avoid a division by 0, the
implementation may move the focal point along the line towards the center of
the circle by an amount sufficient to avoid numerical instability, provided the
new location lies at a distance of at least .99r from the circle center. The following
code illustrates the setting of radial gradient parameters:

VGPai nt nyFill Paint, nyStrokePaint;
VG loat fill_cx, fill_cy, fill_fx, fill_fy, fill_r;
V& | oat stroke cx, stroke cy, stroke fx, stroke fy, stroke r;
V& loat * fill _radial _gradient = { fill _cx, fill _cy,
fill _fx, fill_fy, fill_r };
V& | oat * stroke_radial _gradient = { stroke_cx, stroke_cy,
stroke fx, stroke fy, stroke r };
vgSet Paramet eri (nyFi | | Pai nt, VG _PAI NT_TYPE, [* Fill */
VG _PAI NT_TYPE_RADI AL_GRADI ENT) ;
vgSet Par anet erfv(nyFil | Pai nt, VG _PAI NT_RADI AL_GRADI ENT,
5, fill _radial _gradient);
vgSet Par anet eri (nySt rokePai nt, VG PAI NT_TYPE, [* Stroke */
VG_PAI NT_TYPE_RADI AL_GRADI ENT) ;
vgSet Par anet er f v(mySt r okePai nt, VG _PAI NT_RADI AL_GRADI ENT,
5, stroke radial_gradient);

9.3.3 Color Ramps

Color ramps map the scalar values produced by gradient functions to colors.
The application defines the non-premultiplied sRGBA color and alpha value
associated with each of a number of values, called stops. A stop is defined by an
offset between 0 and 1, inclusive, and a color value. Stops must be specified in
increasing order; if they are not, the entire sequence is ignored. It is legal to have
multiple stops with the same offset value, which will result in a discontinuity in
the color ramp, with the first stop with a given offset value defining the right
endpoint of one interval and the last stop with the same offset value defining the
left endpoint of the next interval. At an offset value equal to that of a stop, the
color value is that of the last stop with the given offset. Intermediate stops with
the same offset value have no effect. Stops with offsets less than 0 or greater than
1 are ignored.

If no valid stops have been specified (e.g., due to an empty input array, out-of-
range, or out-of-order stops), a stop at 0 with (R, G, B, a) color (0.0, 0.0, 0.0, 1.0)

100

OpenVG 1.0 Specification 9.3.3 - Color Ramps

(opaque black) and a stop at 1 with color (1.0, 1.0, 1.0, 1.0) (opaque white) are
implicitly defined. If at least one valid stop has been specified, but none has been
defined with an offset of 0, an implicit stop is added with an offset of 0 and the
same color as the first user-defined stop. If at least one valid stop has been
specified, but none has been defined with an offset of 1, an implicit stop is added
with an offset of 1 and the same color as the last user-defined stop.

If a color or alpha value of a given stop falls outside of the range [0, 1], the
closest endpoint of the range is used instead.

If the paint’'s VG _PAI NT_COLOR_RAMP_PREMULTI PLI ED flag is set to
VG_TRUE, color and alpha values at each gradient stop are multiplied together to
form premultiplied sRGBA values prior to interpolation. Otherwise, color and
alpha values are processed independently.

Color and alpha values at offset values between the stops are defined by
means of linear interpolation between the premultiplied or non-premultiplied
color values defined at the nearest stops above and below the given offset value.

VG_MAX_COLOR_RAMP_STOPS

The VG_MAX_COLOR_RAMP_STOPS parameter contains the maximum number
of gradient stops supported by the OpenVG implementation. All
implementations must support at least 32 stops. If there is no implementation-
defined limit, a value of VG_MAXI NT may be returned. Implicitly defined stops at
offsets 0 and 1 are not counted against this maximum. The value may be
retrieved by calling vgGeti:

VG nt naxStops = vgGeti (VG MAX_COLOR_RAMP_STOPS) ;]

VGColorRampSpreadMode

The application may only define stops with offsets between 0 and 1. Spread
modes define how the given set of stops are repeated or extended in order to
define interpolated color values for arbitrary input values outside the [0,1] range.
The VGCol or RanpSpr eadMbde enumeration defines three modes:

VG_COLOR_RAMP_SPREAD_PAD - extend stops
VG_COLOR_RAMP_SPREAD_REPEAT - repeat stops
VG_COLOR_RAMP_SPREAD_REFLECT - repeat stops in reflected order

typedef enum {

VG_COLOR_RAMP_SPREAD_PAD = 0x1000,
VG_COLOR_RAMP_SPREAD_REPEAT = 0x1001,
VG_COLOR_RAMP_SPREAD_REFLECT = 0x1C02

} VCGCol or RanpSpr eadMode;

101

OpenVG 1.0 Specification 9.3.3 - Color Ramps

In pad mode, the colors defined at 0 and 1 are used for all stop values less than
0 or greater than 1, respectively.

In repeat mode, the color values defined between 0 and 1 are repeated
indefinitely in both directions. Gradient values outside the [0, 1] range are
shifted by an integer amount to place them into that range. For example, a
gradient value of 5.6 will receive the same color as a gradient value of 0.6. A

gradient value of -5.6 will receive the same color as a gradient value of 0.4 (since
04=-5.6+6).

In reflect mode, the color values defined between 0 and 1 are repeated
indefinitely in both directions, but with alternate copies of the range reversed. A
gradient value of 1.2 will receive the same color as a gradient value of 0.8, since
0.8=1.0-0.2and 1.2 =1.0 + 0.2. A gradient value of 2.4 will receive the same
color as a gradient value of 0.4.

The color ramp pad modes are illustrated schematically in Figure 19.

(1

Pad

WM Repeat
W Reflect

Figure 19: Color Ramp Pad Modes

Setting Color Ramp Parameters

Color ramp parameters are set wusing vgSetParameter. The
VG_PAI NT_CCOLOR_RAMP_SPREAD_MODE parameter controls the spread mode
using a value from the VGCol or RanpSpreadMbde enumeration. The
VG_PAI NT_CCOLOR_RAVP_PREMULTI PLI ED parameter takes a VGbool ean
value and controls whether color and alpha values are interpolated in
premultiplied or non-premultiplied form. The VG_PAI NT_COLOR_RAMP_STOPS
parameter takes an array of floating-point values giving the offsets and colors of
the stops, in order. Each stop is defined by a floating-point offset value and four

102

OpenVG 1.0 Specification 9.3.3 - Color Ramps

floating-point values containing the sRGBA color and alpha value associated
with each stop, in the form of a non-premultiplied (R, G, B, @) quad. The
vgSetParameter function will generate an error if the number of values
submitted is not a multiple of 5 (zero is acceptable). Up to
VG_MAX_COLOR_RAMP_STCOPS 5-tuples may be set. If more than
VG_NMAX_COLCR_RAMP_STCOPS 5-tuples are specified, those beyond the first
VG_MAX_COLCR_RAMP_STCOPS are discarded immediately (and will not be
returned by vgGetParameter).

VGPai nt nyFill Paint, nyStrokePaint;

VGCol or RampSpr eadMode fill _spreadMode;
VGoool ean fill _premultiplied;
V&l oat fill_stops[5*FI LL_NUM STOPS] ;

VGCol or RanpSpr eadMode st roke_ spreadMode;
VGoool ean stroke _premul tipli ed;
V& | oat stroke_stops[5* STROKE NUM STOPS] ;

vgSet Paranet eri (nyFil | Pai nt, VG PAI NT_COLOR RAMP_SPREAD MODE,
fill _spreadMvbde);
vgSet Paramet eri (nyFi | | Pai nt, VG PAI NT_COLOR RAMP_PREMJLTI PLI ED,
fill _premultiplied);
vgSet Paramet er fv(myFi | | Pai nt, VG PAI NT_CO_.OR RAMP_STOPS,
5*FI LL_NUM STOPS, fill_stops);

vgSet Par anet eri (nyStrokePai nt, VG _PAI NT_COLOR_RAMP_SPREAD MCDE,
st r oke_spreadMode) ;
vgSet Par anet eri (nySt r okePai nt, VG PAI NT_COLOR RAMP_PREMJLTI PLI ED,
stroke_premul tiplied);
vgSet Par anet er f v(mySt r okePai nt, VG _PAI NT_COLOR_RAMP_STOPS,
5* STROKE_NUM STOPS, stroke stops);

A common set of color ramp settings are used for both linear and radial
gradients defined on a given paint object.

Formal Definition of Spread Modes
This section provides a formal definition of the color ramp spread modes.

In the following, assume that a sequence of stops {Sy Si, ..., Sxa} have been
defined by the application, and/or by default or implicit values. The stop S; is
defined to have offset x; and color ¢;. The stops are assumed to be ordered by
offset but may have duplicate offsets; that is, for all i < j, x; < x;. To determine the
interpolated color value at a given offset value v, determine the smallest i such
that x;,; > v. If x; = v, use the color ¢, otherwise perform linear interpolation
between the stops S; and Si1; to produce the color ¢; + (cis1 — i) (v - xi)/(Xi+1 — Xi).

In pad mode, values smaller than 0 are assigned the color ¢, and values greater
than or equal to 1 are assigned the color cy.;.

103

OpenVG 1.0 Specification 9.3.3 - Color Ramps

In repeat mode, the offset value v is mapped to a new value v~ that is
guaranteed to lie between 0 and 1. Following this mapping, the color is defined
as for pad mode:

’ —
repeat

v=|v
In reflect mode, the offset value v is mapped to a new value v~ that is

guaranteed to lie between 0 and 1. Following this mapping, the color is defined
as for pad mode:

.| vy, if | v]is even

V' reftect— 1—(V—lV]); jf[inS odd

9.3.4 Gradient Examples

Figure 20 shows a square from (0, 0) to (400, 400) painted with a set of linear
gradients with (x0, y0) = (50, 50), (x1, yI) = (350, 350).

Figure 21 shows the same square painted with radial gradients with centered
and non-centered focal points. The centered gradient, shown in the top row, has
its center (cx, cy) and focal point (fx, fy) both at (200, 200). The non-centered
gradient, shown in the bottom row, has its center (cx, cy) at (200, 200) and its focal
point (fx, fy) at (250, 250). The radius r for both gradients is equal to 100.

All the gradients shown in this section utilize a color ramp with stops at offsets
0.0, 0.33, 0.66, and 1.0 colored white, red, green, and blue, respectively, as shown
in Figure 22.

Pad Repeat Reflect

Figure 20: Linear Gradients

104

OpenVG 1.0 Specification 9.3.4 - Gradient Examples

Pad Repeat Reflect

©f°)
©©

Figure 21: Centered and Non-Centered Radial Gradients

MYM/0°0
Ud310)/99°
ang/0’ I

Figure 22: Color Ramp used for Gradient Examples

9.4 Pattern Paint

Pattern paint defines a rectangular pattern of colors based on the pixel values
of an image. Images are described below in Section 10. Each pixel (x, y) of the
pattern image defines a point of color at the pixel center (x + %2, y + %%).

Filtering may be used to construct an interpolated pattern value at the sample
point, based on the pattern image pixel values. The pattern tiling mode is used to
define values for pixel centers in the pattern space that lie outside of the bounds
of the pattern.

105

OpenVG 1.0 Specification 9.4 - Pattern Paint

Interpolation may be performed between multiple pixels of the pattern image
to produce an antialiased pattern value. The image quality setting at the time of
drawing (determined by the VG_| MAGE_QUALI TY parameter) is used to control
the quality of pattern interpolation. If the image quality is set to
VG_| MAGE_QUALI TY_NONANTI ALI ASED, nearest-neighbor interpolation (point
sampling) is used. If the image quality is set to VG_| MAGE_QUALI TY_FASTER or
VG_| MVAGE_QUALI TY_BETTER, higher-quality interpolation will be used if
available. Interpolation is done in the color space of the image using a
premultiplied representation.

vgPaintPattern

The vgPaintPattern function replaces any previous pattern image defined on
the given pai nt object for the given set of paint modes with a new pattern
image. A value of VG_| NVALI D_HANDLE for the patt er n parameter removes
the current pattern image from the paint object.

If the current paint object has its VG _PAI NT_TYPE parameter set to
VG_PAI NT_TYPE_PATTERN, but no pattern image is set, the paint object
behaves as if VG_PAI NT_TYPE were set to VG_PAI NT_TYPE COLOR

While an image is set as the paint pattern for any paint object, it may not be
used as a rendering target. Conversely, an image that is currently a rendering
target may not be set as a paint pattern.

‘voi d vgPai nt Pattern(VGPai nt paint, VG nage pattern) I

ERRORS
VG BAD HANDLE ERROR
- if pai nt is not a valid paint handle, or is not shared with the current context

- if pat t er n is neither a valid image handle nor equal to
VG _| NVALI D_HANDLE, or is not shared with the current context

VG | MAGE_| N_USE_ERROR
- if pat t er n is currently a rendering target

9.4.1 Pattern Tiling

Patterns may be extended (tiled) using one of four possible tiling modes,
defined by the VGTi | i ngMbde enumeration.

VGTilingMode

The VGTi | i ngMbde enumeration defines possible methods for defining colors
for source pixels that lie outside the bounds of the source image.

106

OpenVG 1.0 Specification 9.4.1 - Pattern Tiling

The VG_TI LE_FI LL condition specifies that pixels outside the bounds of the
source image should be taken as the color VG TI LE_FI LL_COLOR The color is
expressed as a non-premultiplied sSRGBA color and alpha value. Values outside
the [0, 1] range are interpreted as the nearest endpoint of the range.

The VG _TI LE_PAD condition specifies that pixels outside the bounds of the
source image should be taken as having the same color as the closest edge pixel
of the source image. That is, a pixel (x, y) has the same value as the image pixel
(max(0, min(x, width - 1)), max(0, min(y, height - 1))).

The VG _TI LE_REPEAT condition specifies that the source image should be
repeated indefinitely in all directions. That is, a pixel (x, y) has the same value as
the image pixel (x mod width, y mod height) where the operator ‘a mod b’ returns a
value between 0 and (b - 1) such that a = kb + (a mod b) for some integer k.

The VG _TI LE_REFLECT condition specifies that the source image should be
reflected indefinitely in all directions. That is, a pixel (x, y) has the same value as
the image pixel (x’, y") where:

x" = x mod width if floor(x/width) is even,
width - 1 - (x mod width) otherwise.

y" = y mod height if floor(y/height) is even,
height — 1 - (y mod height) otherwise.

typedef enum {

VG TI LE_FI LL = 0x1D00,
VG_TI LE_PAD = 0x1D01,
VG TI LE_REPEAT = 0x1D02,
VG _TI LE_REFLECT = 0x1D03,

} VGTi | i ngMode;

107

OpenVG 1.0 Specification 9.4.1 - Pattern Tiling

Setting the Pattern Tiling Mode

The pattern tiling mode is set using vgSetParameteri with a par aniType
argument of VG_PAI NT_PATTERN_TI LI NG_MCDE.

VGPai nt nyFill Paint, nyStrokePaint;
VG mage nyFil | Pai nt Patt er nl mage, nyStrokePai nt Patt er nl mage;

VGTi | i ngMode fill _tilingMde, stroke_tilingMde;

vgSet Paranet eri (nyFi || Pai nt, VG PAI NT_TYPE,
VG_PAI NT_TYPE_PATTERN) ;

vgSet Paranet eri (nyFi || Pai nt, VG PAI NT_PATTERN TI LI NG_MODE,
fill _tilinghode);

vgPai nt Pattern(nyFi |l | Paint, myFil | Pai ntPatternl mage);

vgSet Par anet eri (nmySt rokePai nt, VG _PAI NT_TYPE,
VG_PAI NT_TYPE_PATTERN) ;

vgSet Par anet eri (myStrokePai nt, VG_PAI NT_PATTERN_TI LI NG_MCDE,
stroke_tilinghde);

vgPai nt Patt er n(myStr okePai nt, myStrokePai nt Patt ernl mage) ;

108

OpenVG 1.0 Specification 10 - Images

10 Images

Images are rectangular collections of pixels. Image data may be inserted or
extracted in a variety of formats with varying bit depths, color spaces, and alpha
channel types. The actual storage format of an image is implementation-
dependent, and may be optimized for a given device. Images may be drawn to a
drawing surface, used to define paint patterns, or operated on directly by image
filter operations.

10.1 Image Coordinate Systems

An image defines a coordinate system in which pixels are indexed using
integer coordinates, with each integer corresponding to a distinct pixel. The
lower-left pixel has a coordinate of (0, 0), the x coordinate increases horizontally
from left to right, and the y coordinate increases vertically from bottom to top.
Note that this orientation is consistent with the other coordinate systems used in
the OpenVG AP], but differs from the top-to-bottom orientation used by many
other imaging systems.

The “energy” of a pixel is located at the pixel center; that is, the pixel with
coordinate (x, y) has its energy at the point (x + %2 y + %2). The color at a point not
located at a pixel center may be defined by applying a suitable filter to the colors
defined at a set of nearby pixel centers.

10.2 Image Formats

VG mageFor mat

The VG mageFor mat enumeration defines the set of supported pixel formats
and color spaces for images:

typedef enum { I

109

OpenVG 1.0 Specification 10.2 - Image Formats

[* RGB{A X} channel ordering */
VG_sRGBX_8888

VG _sRGBA 8888

VG _sRGBA 8888_PRE
VG _sRGB_565

VG sRGBA 5551

VG sRGBA 4444
VG sL_8

VG | RGBX_8888

VG | RGBA 8888

VG | RGBA 8888 _PRE

NPOOWO~NOU~WNEO

e

110

OpenVG 1.0 Specification 10.2 - Image Formats

/* {A X} RGB channel ordering *

~

VG_sXRGB_8888 = 0] (1 << 89,

VG _sARGB_8888 = 1] (1 <<89),

VG _sARGB 8888_PRE = 2] (1 <<¥9)),

VG _sARGB_1555 = 4] (1 << ¥9),

VG sARGB_4444 = 5] (1 << ¥9),

VG | XRGB_8888 = 7] (1 << #6),

VG | ARGB_8888 = 8] (1 << 6),

VG_| ARGB_8888_PRE = 9] (1 << 6),

[* BCR{A X} channel ordering */

VG_sBGRX_8888 = 0| (1<<7)),

VG _sBGRA 8888 = 1] (1<<7),

VG _sBGRA 8888_PRE = 2] (1<<7),

VG _sBGR 565 = 3] (1<<17),

VG _sBGRA 5551 = 4] (1<<7),

VG sBGRA 4444 = 5| (1<<7),

VG | BGRX_8888 = 7] (1<<7),

VG | BGRA 8888 = 8| (1<<7),

VG | BGRA 8888_PRE = 9| (1<<7)),

[* {A X} BGR channel ordering */

VG _sXBGR_8888 = 0| (1<<86)]| (1<<7)),
VG _sABGR 8888 = 1| (1<<86)]| (1<<7)),
VG _sABGR_8888_PRE = 2] (1<<86) | (1<<7)),
VG_sABGR_1555 = 4] (1<<86) | (1<<T7)),
VG _sABGR 4444 = 5] (1<<86) | (1<<7),
VG | XBGR_8888 = 7] (1<<86) | (1<<7),
VG | ABGR 8888 = 8] (1<<86) | (1<<17),
VG | ABGR_8888_PRE = 9] (1<<86) | (1<<7

} VA nageFor mat ;

The letter A denotes an alpha (a) channel , R denotes red, Gdenotes green, and
B denotes blue. X denotes a padding byte that is ignored. L denotes grayscale,
and BWdenotes (linear) bi-level grayscale (black-and-white), with 0 representing
black and 1 representing white in either case. A lower-case letter s represents a
non-linear, perceptually-uniform color space, as in sRGB and sL; a lower-case
letter | represents a linear color space using the sSRGB primaries. Formats with a
suffix of _PRE store pixel values in premultiplied format.

Bit 6 of the numeric values of the enumeration indicates the position of the
alpha channel (or unused byte for formats that do not include alpha). If bit 6 is
disabled, the alpha or unused channel appears as the last channel, otherwise it
appears as the first channel. Bit 7 indicates the ordering of the RGB color
channels. If bit 7 is disabled, the color channels appear in RGB order, otherwise
they appear in BGR order.

111

OpenVG 1.0 Specification 10.2 - Image Formats

The VG A 8 format is treated as though it were VG | RGBA 8888, with
R=G=B=1. Color information is discarded when placing an RGBA value into a
VG_A 8 pixel.

Abbreviated names such as | L or SRGBA PRE are used in this document
where the exact number of bits per channel is not relevant, such as when pixel
values are considered to have been remapped to a [0, 1] range. Such abbreviated
names are not an official part of the API.

The bits for each color channel are stored within a machine word representing
a single pixel from left to right (MSB to LSB) in the order indicated by the pixel
format name. For example, in a pixel with a format of VG_SRGB_565, the bits
representing the red channel may be obtained by shifting right by 11 bits (to
remove 6 bits of green and 5 bits of blue) and masking with the 5-bit wide mask
value Ox1f. Note that this definition is independent of the endianness of the
underlying platform as sub-word memory addresses are not involved.

Table 11 summarizes the symbols used in image format names.

Table 12 lists the size of a single pixel for each image format, in terms of bytes
and bits. Note that all formats other than VG_BW_1 use a whole number of bytes
per pixel.

Formats having linear-light coding (VG_| RGBX 8888, VG | RGBA 8888,
VG | RGBA 8888_PRE, and VG | L8) are liable to exhibit banding (or
contouring) artifacts when viewed with a contrast ratio greater than about 10:1
[POYNO3] and are intended mainly for inputting existing linearly-coded
imagery. For high-quality imaging, consider using one of the non-linear,
perceptually uniform image formats such as VG _SRGBX_8888,
VG_sRGBA 8888, VG _sRGBA 8888_PRE, and VG sL_8.

Symbol Interpretation
A Alpha channel
R Red color channel
G Green color channel
B Blue color channel
X Uninterpreted padding byte
L Grayscale
BW 1-bit Black and White
| Linear color space
S Non-linear (sRGB) color space
PRE Alpha values are premultiplied

Table 11: Symbols Used in Image Format Names

112

OpenVG 1.0 Specification 10.2 - Image Formats

Format Bytes Per Pixel Bits Per Pixel

VG_sRGBX_ 8888 4 32
VG_sRGBA 8888 4 32
VG_sRGBA 8888_PRE 4 32
VG_sRGB_565 2 16
VG_sRGBA 5551 2 16
VG_SRGBA 4444 2 16
VG sL_8 1 8
VG_| RGBX_8888 4 32
VG_| RGBA 8888 4 32
VG_| RGBA 8888_PRE 4 32
VG IL_8 1

VG A 8 1

VG BW 1 n/a 1

Table 12: Image Format Pixel Sizes

10.3 Creating and Destroying Images

VGImage
Images are accessed using opaque handles of type VG nmage.

t ypedef VGHandl e VA nage; I

VGImageQuality

The VA nageQual i ty enumeration defines varying levels of resampling
quality to be used when drawing images.

The VG_| MAGE_QUALI TY_NONANTI ALI ASED setting disables resampling;
images are drawn using point sampling (also known as nearest-neighbor
interpolation) only. VG_| MAGE_QUALI TY_FASTER enables low-to-medium
quality resampling that does not require extensive additional resource allocation.
VG_ | MAGE_QUALI TY_BETTER enables high-quality resampling that may
allocate additional memory for pre-filtering, tables, and the like.
Implementations are not required to provide three distinct resampling
algorithms, but the non-antialiased (point sampling) mode must be supported.

113

OpenVG 1.0 Specification 10.3 - Creating and Destroying Images

typedef enum {

VG | MAGE_QUALI TY_NONANTI ALI ASED = (1 << 0),
VG_| MAGE_QUALI TY_FASTER = (1 << 1),
VG_| MAGE_QUALI TY_BETTER = (1 << 2)

} VA mageQual i ty;

Use vgSeti with a parameter type of VG_| MAGE_QUALI TY to set the filter type
to be used for image drawing;:

VA nmageQual ity quality;
vgSeti (VG | MAGE QUALITY, quality);

VG_MAX_IMAGE_WIDTH

The VG _MAX_| MAGE_W DTH read-only parameter contains the largest legal
value of the w dth parameter to the vgCreatelmage function. All
implementations must define VG MAX | MAGE_W DTH to be an integer no
smaller than 256. If there is no implementation-defined limit, a value of
VG_MAXI NT may be returned. The value may be retrieved by calling vgGeti:

VG nt i mageMaxW dth = vgGeti (VG MAX_| MAGE_W DTH) ; '

VG_MAX_IMAGE_HEIGHT

The VG_MAX_| MAGE_HEI GHT read-only parameter contains the largest legal
value of the height parameter to the vgCreateImage function. All
implementations must define VG_MAX_| MAGE_HEI GHT to be an integer no
smaller than 256. If there is no implementation-defined limit, a value of
VG_MAXI NT may be returned. The value may be retrieved by calling vgGeti:

\VG nt i mageMaxHei ght = vgGeti (VG MAX | MAGE HEI GHT) ; '

VG_MAX_IMAGE_PIXELS

The VG_NMAX_| MAGE_PI XELS read-only parameter contains the largest legal
value of the product of the wi dt h and hei ght parameters to the vgCreateImage
function. All implementations must define VG_MAX_| MAGE_PI XELS to be an
integer no smaller than 65536. If there is no implementation-defined limit, a
value of VG_MAXI NT may be returned. The value may be retrieved by calling
vgGeti:

‘VG nt i mageMaxPi xel s = vgGeti (VG_MAX_| MAGE_PI XELS) ; '

VG_MAX_IMAGE_BYTES

The VG_MAX_| MAGE_BYTES read-only parameter contains the largest number
of bytes that may make up the image data passed to the vgCreateImage function.
All implementations must define VG_MAX_| MAGE_BYTES to be an integer no

114

OpenVG 1.0 Specification 10.3 - Creating and Destroying Images

smaller than 65536. If there is no implementation-defined limit, a value of
VG_MAXI NT may be returned. The value may be retrieved by calling vgGeti:

VG nt i mageMaxBytes = vgGeti (VG MAX_| MAGE_BYTES); I

vgCreatelmage

vgCreateImage creates an image with the given wi dt h, hei ght, and pixel
format and returns a VG nmage handle to it. If an error occurs,
VG_I NVALI D_HANDLE is returned. All color and alpha channel values are
initially set to zero. The format parameter must contain a value from the
VGE mageFor mat enumeration.

The al l owedQual ity parameter is a bitwise OR of values from the
VA mageQual i ty enumeration, indicating which levels of resampling quality
may be used to draw the image. It is always possible to draw an image using the
VG_| MAGE_QUALI TY_NONANTI ALI ASED quality setting even if it is not
explicitly specified.

VA nmage vgCreat el mage(VA mageFor mat f or mat ,
VG nt width, VG nt height,
V&oitfield all owedQuality)

ERRORS

VG_UNSUPPORTED | MAGE_FORMAT_ERROR

- if format is not a valid value from the VA mageFor mat enumeration
VG _| LLEGAL_ARGUMENT _ERROR

- if wi dt h or hei ght are less than or equal to 0

- if Wi dt h is greater than VG_MAX_| MVAGE_W DTH

- if hei ght is greater than VG_MAX_| MAGE_HEI GHT

- if w dt h*hei ght is greater than VG_MAX_| MAGE_PI XELS

- if w dt h* hei ght * (pixel size of f or mat) is greater than
VG_MAX_| MAGE_BYTES

- ifal | omedQual i ty is not a bitwise OR of values from the
VA mageQual i t y enumeration

vgDestroylmage

The resources associated with an image may be deallocated by calling
vgDestroylmage. Following the call, the i mage handle is no longer valid in any
context that shared it. If the image is currently in use as a rendering target, is the
ancestor of another image (see vgChildImage), or is set as a paint pattern image

115

OpenVG 1.0 Specification 10.3 - Creating and Destroying Images

on a VGPai nt object, its definition remains available to those consumers as long
as they remain valid, but the handle may no longer be used. When those uses
cease, the image’s resources will automatically be deallocated.

\voi d vgDestroyl mage(VA mage i mage) ; '

ERRORS
VG BAD HANDLE ERROR

- if i mage is not a valid image handle, or is not shared with the current
context

10.4 Querying Images

VGImageParamType

Values from the VG magePar anifype enumeration may be used as the
par aniType argument to vgGetParameter to query various features of an image.
All of the parameters defined by VG magePar anilype have integer values and
are read-only.

typedef enum {

VG_| MAGE_FORMAT = Ox1E0O,
VG | MAGE WDTH = Ox1EO1,
VG_| MAGE_HEI GHT = Ox1E02

} VG magePar anype;

Image Format

The value of the f or mat parameter that was used to define the image may be
queried using the VG_| MAGE_FORMAT parameter. The returned integral value
should be cast to the VA mageFor mat enumeration:

VA nage i mage;
VG nmageFor mat i mageFor mat =
(VA mageFor mat) vgGet Par anet eri (i mage,

VG_| MAGE_FORMAT) ;

Image Width

The value of the wi dt h parameter that was used to define the image may be
queried using the VG_| MAGE_W DTH parameter:

VG nage i mage;
VG nt i mageW dth = vgGet Paraneteri (i mage,

VG_| MAGE_W DTH) ;

116

OpenVG 1.0 Specification 10.4 - Querying Images

Image Height

The value of the hei ght parameter that was used to define the image may be
queried using the VG_| MAGE_HEI GHT parameter:

VA nage i mage;
VG nt i mageHei ght = vgGet Paraneteri (i mage, VG_| MAGE_HEI GHT) ;

10.5 Reading and Writing Image Pixels

vgClearimage

The vgClearImage function fills a given rectangle of an image with the color
specified by the VG_CLEAR _COLOR parameter. The rectangle to be cleared is
given by X, y, w dt h, and hei ght, which must define a positive region. The
rectangle is clipped to the bounds of the image.

voi d vgd ear | mage(VA nage i mage,
VG@Gnt x, V@nt y, V@nt width, VG nt height)

ERRORS
VG _BAD HANDLE ERROR

- if i mage is not a valid image handle, or is not shared with the current
context

VG | MAGE_ | N_USE_ERROR

- if i mage is currently a rendering target

VG | LLEGAL ARGUVENT ERROR

- if wi dt h or hei ght is less than or equal to 0

vglmageSubData

The vglmageSubData function reads pixel values from memory, performs
format conversion if necessary, and stores the resulting pixels into a rectangular
portion of an i nage.

Pixel values are read starting at the address given by the pointer dat a;
adjacent scanlines are separated by dat aSt ri de bytes. Negative or zero values
of dat aSt ri de are allowed. The region to be written is given by X, y, W dt h,
and hei ght, which must define a positive region. Pixels that fall outside the
bounds of the image are ignored.

Pixel values in memory are formatted according to the dataFor mat
parameter, which must contain a value from the VG mageFor mat enumeration.
The dat a pointer must be aligned according to the number of bytes of the pixel

117

OpenVG 1.0 Specification 10.5 - Reading and Writing Image Pixels

format specified by dat aFor mat , unless dat aFor mat is equal to VG_BW 1, in
which case 1 byte alignment is sufficient. Each pixel is converted into the format
of the destination image as it is written.

If dataFormat is not equal to VG BW 1, the destination image pixel
(x+iy+j)for0<i<w dthand 0<j < height is taken from the N bytes of
memory starting at data + jxdataStride + i*N, where N is the number of bytes per
pixel given in Table 12. For multi-byte pixels, the bits are arranged in the same
order used to store native multi-byte primitive datatypes. For example, a 16-bit
pixel would be written to memory in the same format as when writing through a
pointer with a native 16-bit integral datatype.

If dat aFormat is equal to VG BW 1, pixel (X +i,y +j) of the destination
image is taken from the bit at position (i % 8) within the byte at data + j*dataStride
+ floor(i/8) where the least significant bit (LSB) of a byte is considered to be at
position 0 and the most significant bit (MSB) is at position 7. Each scanline must
be padded to a multiple of 8 bits. Note that dat aStri de is always given in
terms of bytes, not bits.

If dat aFor mat specifies a premultiplied format (VG_sRGBA_8888_PRE or
VG_| RGBA _8888_PRE), color channel values of a pixel greater than their
corresponding alpha value are clamped to the alpha value.

voi d vgl mageSubDat a(VA mage i nage,

const void * data, VG nt dataStride,

VG mageFor mat dat aFor mat ,

VG nt x, V@Gnt y, V@nt width, VA nt height)

ERRORS

VG _BAD HANDLE_ ERROR

- if i mage is not a valid image handle, or is not shared with the current
context

VG_| MAGE_| N_USE_ERROR

- if i mage is currently a rendering target

VG_UNSUPPORTED _| MAGE_FORVAT_ERROR

- if dat aFor mat is not a valid value from the V@ nmageFor mat enumeration
VG_| LLEGAL_ARGUMENT_ERROR

- if wi dt h or hei ght is less than or equal to 0

- ifdatais NULL

- if dat a is not properly aligned

118

OpenVG 1.0 Specification 10.5 - Reading and Writing Image Pixels

vgGetimageSubData

The vgGetlmageSubData function reads pixel values from a rectangular
portion of an i mage, performs format conversion if necessary, and stores the
resulting pixels into memory.

Pixel values are written starting at the address given by the pointer dat a;
adjacent scanlines are separated by dat aSt ri de bytes. Negative or zero values
of dat aSt ri de are allowed. The region to be read is given by x, y, wi dt h, and
hei ght, which must define a positive region. Pixels that fall outside the bounds
of the image are ignored.

Pixel values in memory are formatted according to the dataFor mat
parameter, which must contain a value from the VG mageFor mat enumeration.
The dat a pointer must be aligned according to the number of bytes of the pixel
format specified by dat aFor mat, unless dat aFor mat is equal to VG_BW 1, in
which case 1 byte alignment is sufficient. Each pixel is converted from the format
of the source image as it is read.

The pixel layout in memory is identical to that of vglmageSubData.

voi d vgCet | mageSubDat a(V@ nage i mage,
void * data, VG nt dataStride,
VA mageFor mat dat aFor mat ,
VG@nt x, V@Gnt y, V@nt width, VA nt height)

ERRORS
VG BAD HANDLE ERROR

- if i mage is not a valid image handle, or is not shared with the current
context

VG_| MAGE_| N_USE_ERROR

- if i mage is currently a rendering target

VG_UNSUPPORTED _| MAGE_FORVAT_ERROR

- if dat aFor mat is not a valid value from the V@ mageFor mat enumeration
VG | LLEGAL ARGUVENT ERROR

- if wi dt h or hei ght is less than or equal to 0

- ifdatais NULL

- if dat a is not properly aligned

119

OpenVG 1.0 Specification 10.6 - Child Images

10.6 Child Images

A child image is an image that shares physical storage with a portion of an
existing image, known as its parent. An image may have any number of children,
but each image has only one parent (that may be itself). An ancestor of an image
is defined as the image itself, its parent, its parent’s parent, etc. Thus a pair of
images share storage if and only if they have a common ancestor. Changes to an
image are immediately reflected in all other images that share storage with it.

A child image remains valid even following a call to vgDestroyImage on one of
its ancestors (other than itself). When the last image of a set of images that share
pixel storage is destroyed, the storage will be reclaimed. Implementations may
use a reference count to determine when image storage may be reclaimed.

An image that shares storage with any other image may not be used as a
rendering target until all the images with which it shares storage have been
destroyed.
vgChildimage

The vgChildImage function returns a new VG nmage handle that refers to a
portion of the parent image. The region is given by the intersection of the
bounds of the parent image with the rectangle beginning at pixel (X, y) with
dimensions wi dt h and hei ght, which must define a positive region contained
entirely within par ent .

VA mage vgChi | dl mage(VA nage parent,
VGnt x, V@nt y, V@nt width, VG nt height) I

ERRORS
VG BAD HANDLE ERROR

- if par ent is not a valid image handle, or is not shared with the current
context

VG_| MAGE_| N_USE_ERROR
- if par ent is currently a rendering target
VG | LLEGAL ARGUMVENT ERRCR

if X is less than 0 or greater than or equal to the parent width

- ify is less than 0 or greater than or equal to the parent height
- if wi dt h or hei ght is less than or equal to 0

- if X + wi dt h is greater than the parent width

- ify + hei ght is greater than the parent height

120

OpenVG 1.0 Specification 10.6 - Child Images

vgGetParent

The vgGetParent function returns the parent of the given i mage. If i mage has
no parent, i mage is returned.

VA mage vgCet Par ent (VA mage i nage) '

ERRORS
VG _BAD HANDLE_ ERROR

- if i mage is not a valid image handle, or is not shared with the current
context

VG_| MAGE_| N_USE_ERROR
- if i mage is currently a rendering target

10.7 Copying Pixels Between Images

vgCopylmage

Pixels may be copied between images using the vgCopyIlmage function. The
source image pixel (SX + i, Sy + j) is copied to the destination image pixel
(dx +i,dy +j), for 0<i<w dth and 0 <j < hei ght. Pixels whose source or
destination lie outside of the bounds of the respective image are ignored. Pixel
format conversion is applied as needed.

If the dither flag is equal to VG TRUE, an implementation-dependent
dithering algorithm may be applied. This may be useful when copying into a
destination image with a smaller color bit depth than that of the source image.
Implementations should choose an algorithm that will provide good results
when the output images are displayed as successive frames in an animation.

If src and dst are the same image, or have a common ancestor and thus share
storage, the copy will occur in a consistent fashion as though the source pixels
were first copied into a temporary buffer and then copied from the temporary
buffer to the destination.

voi d vgCopyl mage(VA mage dst, VG nt dx, VG nt dy,
VA mage src, V@ nt sx, VG nt sy,
VG nt width, VG nt height,
VGbool ean dit her)

121

OpenVG 1.0 Specification 10.7 - Copying Pixels Between Images

ERRORS
VG _BAD HANDLE ERROR

- if either dst or sr ¢ is not a valid image handle, or is not shared with the
current context

VG_| MAGE_| N_USE_ERROR

- if either dst or sr c is currently a rendering target
VG_| LLEGAL_ARGUMENT_ERRCR

- if wi dt h or hei ght is less than or equal to 0

10.8 Drawing Images to the Drawing Surface

Images may be drawn onto a drawing surface. An affine or projective
transformation may be applied while drawing. The current image and blending
modes are used to control how image pixels are combined with the current paint
and blended into the destination. Conversion between the image and destination
pixel formats is applied automatically.

VGImageMode

The VA mageMbde enumeration is used to select between several styles of
image drawing, described in the vgDrawImage section below.

typedef enum {

VG DRAW | MAGE_NORMAL = Ox1FO0O0,
VG_DRAW | MAGE_MULTI PLY = Ox1FO01,
VG _DRAW | MAGE_STENCI L = Ox1FO02

} VG mageMode;

To set the image drawing mode, use vgSeti with a paranType value of
VG_| MAGE_MODE:

VG mageMode dr awl nageMbde;
vgSeti (VG_| MAGE_MODE, dr awl mageMode) ; I

vgDrawlmage

An image may be drawn to the current drawing surface using the
vgDrawlImage function. The current image-user-to-surface transformation Ti is
applied to the image, so that the image pixel centered at (px + %, py + %) is
mapped to the point (T7)(px + %2 py + V2). In practice, backwards mapping may be
used. That is, a sample located at (x, y) in the surface coordinate system is
colored according to an interpolated image pixel value at the point (Ti)"(x, y) in

122

OpenVG 1.0 Specification 10.8 - Drawing Images to the Drawing Surface

the image coordinate system. If Ti is non-invertible (or nearly so, within the
limits of numerical accuracy), no drawing occurs.

Interpolation is done in the color space of the image. Image color values are
processed in premultiplied alpha format during interpolation.

When a projective transformation is used (i.e., the bottom row of the image-
user-to-surface transformation contains values [wy w; w, | different from [001]),
each corner point (x, y) of the image must result in a positive value of
d = (x*wy+ y*w; + w;), or else nothing is drawn. This rule prevents degeneracies
due to transformed image points passing through infinity, which occurs when d
passes through 0. By requiring d to be positive at the corners, it is guaranteed to
be positive at all interior points as well.

When a projective transformation is used, the value of the VG _| MAGE_MODE
parameter is ignored and the behavior of VG DRAW | MAGE_NORMAL is
substituted. This avoids the need to generate paint pixels in perspective.

The set of pixels affected consists of the quadrilateral with vertices (T7)(0, 0),
(Ti)(w, 0), (Ti)(w, h), and (T7)(0, h) (where w and h are respectively the width and
height of the image), plus a boundary of up to 1% pixels for filtering purposes.

Clipping, masking, and scissoring are applied in the same manner as with
vgDrawPath. To limit drawing to a subregion of the image, create a child image
using vgChildImage.

The image quality will be the maximum quality allowed by the image (as
determined by the al | owedQual i ty parameter to vgCreateImage) that is not
higher than the current setting of VG_| MAGE_QUALI TY.

\voi d vgDr aw nage(VA nmage i nage) I

ERRORS
VG BAD HANDLE ERRCR

- if i mage is not a valid image handle, or is not shared with the current
context

VG | MAGE_| N_USE_ERRCR

- if i mage is currently a rendering target

123

OpenVG 1.0 Specification 10.8 - Drawing Images to the Drawing Surface

The effects of vgDrawlmage depend on the current setting of the
VG_| MAGE_MODE parameter:

VG_DRAW_IMAGE_NORMAL

When the VG_| MAGE_MODE parameter is set to VG_DRAW | MAGE_NORMAL, the
image is drawn. If the image contains an alpha channel, the alpha values
associated with each pixel are used as the source alpha values. Otherwise, the
source alpha is taken to be 1 at each pixel. No paint generation takes place. When

a projective transformation is used, this mode is used regardless of the setting of
the VG_| MAGE_MODE parameter.

VG_DRAW_IMAGE_MULTIPLY

When the VG_| MAGE_MODE parameter is set to VG_DRAW | MAGE_MULTI PLY,
the image being drawn is multiplied by the paint color and alpha values. This
allows the image to be drawn translucently (by setting the paint color to
R=G=B=1 and A=opacity), or to be modulated in other ways. For example, a
gradient paint could be used to create a fading effect, or a pattern paint could be
used to vary the opacity on a pixel-by-pixel basis. If the paint color is opaque
white (R=G=B=A=1) everywhere, the results are equivalent to those of
VG_DRAW | MAGE_NORMVAL.

Paint generation (using the VGPai nt object defined for the VG FI LL_PATH
paint mode) occurs at each pixel, and the interpolated image and paint color and
alpha values are multiplied channel-by-channel. The result (considered to be in
the same color space as the image) is used as the input to the current blend
function and normal blending takes place.

Note that the use of a source image having a linear pixel format (e.g.,
| RGB_888) will result in a brightened output due to the fact that the paint
values are not converted from sRGB to linear, yet the results are treated as linear.
Therefore the use of a linear source image in this mode is recommended only for
special effects.

VG_DRAW _IMAGE_STENCIL

When the VG | MAGE_MODE parameter is set to VG_DRAW | MAGE_STENCI L,
the image being drawn acts as a stencil through which the current paint is
applied. This allows an image to take the place of a geometric path definition in
some cases, such as drawing text glyphs. A special set of blending equations
allows the red, green, and blue channels to be blended using distinct alpha
values taken from the image. This feature allows stencils to take advantage of
sub-pixel effects on LCD displays.

Paint generation (using the VGPai nt object defined for the VG FI LL_PATH
paint mode) occurs at each pixel. The interpolated image and paint color and
alpha values are combined at each pixel as follows. Each image color channel

124

OpenVG 1.0 Specification 10.8 - Drawing Images to the Drawing Surface

value is multiplied by its corresponding alpha value (if the image has an alpha
channel) and by the paint alpha value to produce an alpha value associated with
that color channel. The result is considered to be in the same color space as the
paint (i.e., SRGB for all forms of paint except pattern paint with a linear pattern
image). The current blending equation (see Section 12) is applied separately for
each destination color channel, using the alpha value computed above as the
source alpha value for the blend, and the paint color value as the source color
value.

In terms of the blending functions o(0sw, 0dst) aNd C(Core, Casty Osres Olast) defined in
Section 12.1, the stenciled output color and alpha values are:

Omp = O Climage*Olpaints Oldst)

Ryt « C(Rpaint, Ras Rimage*admage*apaint/ adst) / Olemp
Gast « C(Gpaint/ Gase Gimage*aimage*%aint, adst) / Oltmp
Bast < C(Bpaint/ Bast, Bimage*(xdmage*apaint/ Uvdst) / Olemp

Ogst < Omp

For example, if Porter-Duff “Src over Dst” blending is enabled (see Section
12.2), the destination alpha and color values are computed as:

Omp = (Climage*Olpaint T Oldst* (1 = Olimage*Olpaint))

Rast « (Climage*Opaint *Rimage*Rpaint + 0last*Rast* (1 = Qlimage* Opaint *Rimage)) / Omp
Gast « (Uimage*Opaint *Gimage*Gpaint + 0ldst*Gast*(1 = Olimage* Olpaint *Gimage)) / Oltmp
Bast « (Climage*Olpaint *Bimage*Bpaint T 0las*Base* (1 = Olimage* Olpaint *Bimage)) / Otmp

Odst < atmp

10.9 Reading and Writing Drawing Surface Pixels

Several functions are provided to read and write pixels on the drawing surface
directly, without applying transformations, masking, or blending.

10.9.1 Writing Drawing Surface Pixels

vgSetPixels

The vgSetPixels function copies pixel data from the image sSrc onto the
drawing surface. The image pixel (SX + i, Sy +j) is copied to the drawing surface
pixel (dx + i, dy +j), for 0<i<w dt h and 0 <j < hei ght . Pixels whose source
lies outside of the bounds of sr ¢ or whose destination lies outside the bounds of

125

OpenVG 1.0 Specification 10.9.1 - Writing Drawing Surface Pixels

the drawing surface are ignored. Pixel format conversion is applied as needed.
Scissoring takes place normally. Transformations, masking, and blending are not
applied.

voi d vgSet Pi xel s(VG nt dx, VG nt dy,
V@ mage src, V@ nt sx, VA@nt sy,
VG nt width, VG nt height)

ERRORS

VG _BAD HANDLE ERROR

- if src is not a valid image handle, or is not shared with the current context
VG | MAGE | N_USE_ERROR

- if src is currently a rendering target

VG | LLEGAL ARGUVENT ERROR

- if wi dt h or hei ght is less than or equal to 0

vgWritePixels

The vgWritePixels function allows pixel data to be copied to the drawing
surface without the creation of a V@ mage object. The pixel values to be drawn
are taken from the data pointer at the time of the vgWritePixels call, so future
changes to the data have no effect. The effects of changes to the data by another
thread at the time of the call to vgWritePixels are undefined.

The dat aFor mat parameter must contain a value from the VA mageFor mat .
If dat aFor mat is not equal to VG_BW 1, dat a must be aligned according to the
number of bytes of dat aFor mat, and the pixel at memory location data +
j*dataStride + i*(bytes per pixel of dataFormat) is written to the drawing surface pixel
(dx +i,dy +j), for 0<i<wi dth and 0<j<hei ght. If dat aFor mat is equal to
VG_BW 1, data must only be 1-byte aligned, and pixel (dx + i, dy + j) of the
destination image is taken from the bit at position (i % 8) within the byte at data
+ j*dataStride + floor(i/8) where the least significant bit (LSB) of a byte is
considered to be at position 0 and the most significant bit (MSB) is at position 7.

If dat aFor mat specifies a premultiplied format (VG_sRGBA_8888_PRE or
VG_| RGBA_8888_PRE), color channel values of a pixel greater than their
corresponding alpha value are clamped to the alpha value.

Pixels whose destination coordinate lies outside the bounds of the drawing
surface are ignored. Pixel format conversion is applied as needed. Scissoring
takes place normally. Transformations, masking, and blending are not applied.

voi d vgWitePi xel s(const void * data, VG nt dataStride,
VG nageFor mat dat aFor mat ,

126

OpenVG 1.0 Specification 10.9.1 - Writing Drawing Surface Pixels

VG nt dx, VA nt dy,
VG nt width, VG nt height)

ERRORS

VG_UNSUPPORTED_| MAGE_FORVAT_ERRCR

- if dat aFor mat is not a valid value from the V@ nmageFor mat enumeration
VG | LLEGAL ARGUVENT ERROR

- if wi dt h or hei ght is less than or equal to 0

- ifdatais NULL

- if dat a is not properly aligned

The code:

void * dat a;

VA nageFor mat dat aFor nat ;
VG nt dataStri de;

VG nt dx, dy, width, height;

vgWit ePi xel s(data, dataStride, dataFormat, dx, dy, wi dth, height);

is equivalent to the code:

VA nage i mage;

void * dat a;

VA nageFor mat dat aFor nat ;

VG nt dataStride;

VG nt dx, dy, width, height;

i mmge = vgCreatel mage(dataFornmat, w dth, height, 0);
vgl mageSubDat a(i nage, data, dataStride, dataFornat,
0, 0, width, height);
vgSet Pi xel s(dx, dy, inmage, wi dth, height);

vgDest r oyl mage(i nage) ;

10.9.2 Reading Drawing Surface Pixels

vgGetPixels

The vgGetPixels function retrieves pixel data from the drawing surface into
the image dst. The drawing surface pixel (SXx + i, Sy + j) is copied to pixel
(dx +1i, dy +j) of the image dst, for 0 <i <w dth and 0 <j < hei ght. Pixels
whose source lies outside of the bounds of the drawing surface or whose
destination lies outside the bounds of dst are ignored. Pixel format conversion
is applied as needed. The scissoring region does not affect the reading of pixels.

127

OpenVG 1.0 Specification 10.9.2 - Reading Drawing Surface Pixels

voi d vgCet Pi xel s(Vd mage dst, VG nt dx, VG nt dy,
VG nt sx, VA nt sy,
VG nt width, VG nt height)

ERRORS

VG_BAD_HANDLE_ERROR

- if dst is not a valid image handle, or is not shared with the current context
VG | MAGE | N_USE_ERROR

- if dst is currently a rendering target

VG | LLEGAL ARGUVENT ERROR

- if wi dt h or hei ght is less than or equal to 0

vgReadPixels

The vgReadPixels function allows pixel data to be copied from the drawing
surface without the creation of a V@ nmage object.

The dat aFor mat parameter must contain a value from the VG mageFor mat
enumeration. If dat aFor mat is not equal to VG_BW 1, dat a must be aligned
according to the number of bytes of dat aFor mat , and the drawing surface pixel
(SX + 1, sy +j) is written to the memory location data + j*dataStride + i*(bytes per
pixel of dataFormat), for 0 <i <w dt h and 0 <j < hei ght . If dat aFor mat is equal
to VG_BW 1, dat a must only be 1-byte aligned, and the drawing surface pixel
(SX + 1, sy +j) is written to the bit at position (i % §8) within the byte at data +
j*dataStride + floor(i/8) where the least significant bit (LSB) of a byte is considered
to be at position 0 and the most significant bit (MSB) is at position 7.

Pixels whose source lies outside of the bounds of the drawing surface are
ignored. Pixel format conversion is applied as needed. The scissoring region
does not affect the reading of pixels.

voi d vgReadPi xel s(void * data, VG nt dataStride,
VA nageFor mat dat aFor mat ,
VG nt sx, VA nt sy,

VG nt width, VG nt height)

128

OpenVG 1.0 Specification 10.9.2 - Reading Drawing Surface Pixels

ERRORS

VG_UNSUPPORTED _| MAGE_FORMAT_ERRCR

- if dat aFor mat is not a valid value from the VA mageFor nat enumeration
VG_| LLEGAL_ARGUMENT_ERROR

- if wi dt h or hei ght is less than or equal to 0

- ifdat ais NULL

- if dat a is not properly aligned

The code:

void * data;

VA nmageFor mat dat aFor nat ;
VG nt dataStride;

VG nt sx, sy, width, height;

vgReadPi xel s(data, dataStride, dataFormat, sx, sy, w dth, height);

is equivalent to the code:

VA nage i mage;

voi d * dat a;

VG nt dataStride;

VA nageFor mat dat aFor nat ;
VG nt sx, sy, width, height;

i mmge = vgCreatel mage(dataFormat, wi dth, height, 0);

vgGet Pi xel s(i mage, 0, 0, sx, sy, w dth, height);

vgGet | mmgeSubDat a(i nmage, data, dataStride, dataFormat, w dth, height);
vgDest r oyl mage(i nage) ;

129

OpenVG 1.0 Specification 10.10 - Copying Portions of the Drawing Surface

10.10 Copying Portions of the Drawing Surface
vgCopyPixels

The vgCopyPixels function copies pixels from one region of the drawing
surface to another. Copies between overlapping regions are allowed and always
produce consistent results identical to copying the entire source region to a
scratch buffer followed by copying the scratch buffer into the destination region.

The drawing surface pixel (SX + i, Sy +j) is copied to pixel (dx + i, dy + j) for
0<i<w dt hand 0<j <hei ght. Pixels whose source or destination lies outside
of the bounds of the drawing surface are ignored. Transformations, masking, and
blending are not applied. Scissoring is applied to the destination, but does not
affect the reading of pixels.

voi d vgCopyPi xel s(VG nt dx, VG nt dy,
VG nt sx, VA nt sy,
VG nt width, VG nt height)

ERRORS
VG | LLEGAL_ARGUVMENT ERROR
- if wi dt h or hei ght is less than or equal to 0

130

OpenVG 1.0 Specification 11 - Image Filters

11 Image Filters

Image filters allow images to be modified and/or combined using a variety of
imaging operations. Operations are carried out using a bit depth greater than or
equal to the largest bit depth of the supplied images. The lower-left corners of all
source and destination images are aligned. The destination area to be written is
the intersection of the source and destination image areas. The source and
destination images involved in the filter operation must not overlap (i.e., have
any pixels in common within any common ancestor image). Source and
destination images may have a common ancestor as long as they occupy disjoint
areas within that area.

11.1 Format Normalization

A series of steps are carried out on application-supplied source images in order
to produce normalized source images for filtering. In practice, these
normalizations may be combined with the filter operations themselves for
efficiency.

The source pixels are converted to one of SRGBA, SRGBA PRE, | RGBA, or
| RGBA_PRE formats, as determined by the current values of the
VG_FI LTER_FORVAT_PREMULTI PLI ED and VG FI LTER FORVAT_LI NEAR
parameters. The conversions take place in the following order (equivalent to the
conversion rules defined in Section 3.4):

1) Source color and alpha values are scaled linearly to lie in a [0, 1] range. The
exact precision of the internal representation is implementation-dependent.

2) If the source image has premultiplied alpha, the alpha values are divided
out of each source color channel, and stored for later use. If the source image
has no alpha channel, an alpha value of 1 is added to each pixel.

3) If the source pixel is in a grayscale format (I L or SL), it is converted to an
RGB format (I RGB or sSRGB, respectively) by replication.

4) If the VG_FI LTER_FORVAT_LI NEAR parameter is set to VG_TRUE, and the
source pixel is in non-linear format, it is converted into the corresponding
linear format (SRGBA-I RGBA). If the VG FILTER FORVAT LI NEAR
parameter is set to VG_FALSE, and the source pixel is in linear format, it is
converted into the corresponding non-linear format (I RGBA-sRGBA).

5) If the VG FI LTER FORMAT_PREMULTI PLI ED parameter is equal to
VG_TRUE, each source color channel is multiplied by the corresponding alpha
value. Otherwise, the color channels are left undisturbed.

An implementation may collapse steps algebraically; for example, if no
conversion is to take place in step 4, the division and multiplication by alpha in
steps 2 and 5 may be implemented as a no-op.

131

OpenVG 1.0 Specification 11.1 - Format Normalization

The resulting pixel will be in SRGBA, sRGBA_PRE, | RGBA, or | RGBA PRE
format. The image filter then processes each of the four source channels in an
identical manner, resulting in a set of filtered pixels in the same pixel format as
the incoming pixels.

Finally, the filtered pixels are converted into the destination format using the
normal pixel format conversion rules, as described in section 3.4. Premultiplied
alpha values are divided out prior to color-space conversion, and restored
afterwards if necessary. The destination channels specified by the
VG_FI LTER_CHANNEL_MASK parameter (see below) are written into the
destination image.

11.2 Channel Masks

VGImageChannel

All image filter functions make use of the VG _FI LTER CHANNEL_MASK
parameter that specifies which destination channels are to be written. The
parameter is supplied as a bitwise OR of values from the V@ mageChannel
enumeration. If the destination pixel format is one of VG sL_8, VG | L_8 or
VG_BW 1 pixel format, the parameter is ignored. If the destination pixel format
does not contain an alpha channel, the VG_ALPHA bit is ignored. Bits other than
those defined by the V@ mageChannel enumeration are ignored.

VG _FI LTER _CHANNEL _MASK controls which color channels of the filtered
image are written into the destination image. In the case where the destination
image is premultiplied, and VG_FI LTER_CHANNEL_MASK does not specify that
all channels are to be written, the following steps are taken to ensure consistency:

1. If VG_FI LTER_FORVAT_PREMULTI PLI ED is enabled, the filtered color
channels are clamped between 0 and their corresponding alpha value, and
converted into non-premultiplied form (as described in Section 3.4)

2. The resulting color is converted into the destination color space

3. The destination is read and converted into non-premultiplied form

4. The destination channels specified by VG_FI LTER_CHANNEL _MASK are
replaced by the corresponding filtered values

5. The results are converted into premultiplied form and written to the
destination image

132

OpenVG 1.0 Specification 11.2 - Channel Masks

typedef enum {

VG RED = (1 << 3),
VG GREEN = (1 << 2),
VG BLUE = (1 << 1),
VG ALPHA = (1 << 0)

VA mageChannel ;

11.3 Color Combination

Color channel values may be combined using the vgColorMatrix function,
which computes output colors as linear combinations of input colors.
vgColorMatrix

The vgColorMatrix function computes a linear combination of color and alpha
values (Rsrc, Gsre, Bsre, asrc) from the normalized source image Sr € at each pixel:

R, My, My My Myl | R, my,

Gy _| Mo My My, Myl G, 4| ™4

B My, My My Myl | B, uon

& 4y Myy My My My [A msyy

or.

Rdst = 1Moo Rsrc + Moy Gsrc + 1001))] Bsrc + Moz Olsre + Mog
Gdst = Iy Rsrc + my Gsrc + mi Bsm + my3 Olsre + myy
Bdst = IMyo I{src + myp; Gsrc + my, Bsrc + Mo3 Olsye + myy
Odgst = IMap Rsrc + ms; Gsm + msp Bsrc + M3 Olsre + msy

The matrix entries are supplied in the mat r i X argument in the order { 1, 1y,
Moo, M30, M1, My, Moy, W31, Moy, Mo, Moy, Mao, Moz, M3, Moz, M3z, Mog, M1a, Mag, Mg |

133

voi d vgCol or Matri x(VA mage dst, VA nage src,
const V&loat * matri x)

OpenVG 1.0 Specification 11.3 - Color Combination

ERRORS

VG_BAD_HANDLE_ERROR

- if either dst or sr ¢ is not a valid image handle, or is not shared with the
current context

VG_| MAGE_| N_USE_ERROR

- if either dst or sr c is currently a rendering target

VG_| LLEGAL_ARGUVENT_ERROR

- if src and dst overlap

- ifmatrixis NULL

- if mat ri x is not properly aligned

11.4 Convolution

The vgConvolve, vgSeparableConvolve, and vgGaussianBlur functions define
destination pixels based on a weighted average of neighboring source pixels, a
process known as convolution. The set of weights, along with their relative
locations, is known as the convolution kernel. In the discussion below, width and
height refer to the dimensions of the source image.

VG_MAX_KERNEL_SIZE

The VG_NMAX_KERNEL_SI ZE parameter contains the largest legal value of the
width and height parameters to the vgConvolve function. All
implementations must define VG MAX_KERNEL_SI ZE to be an integer no
smaller than 7. If there is no implementation-defined limit, a value of
VG_NMAXI NT may be returned. The value may be retrieved by calling vgGeti:

VG nt maxKernel Si ze = vgGeti (VG MAX_KERNEL_SI ZE) ; I

VG_MAX_SEPARABLE KERNEL_SIZE

The VG_MAX_SEPARABLE_KERNEL _SI ZE parameter contains the largest legal
value of the size parameter to the vgSeparableConvolve function. All
implementations must define VG_MAX_SEPARABLE_KERNEL_SI ZE to be an
integer no smaller than 15. If there is no implementation-defined limit, a value of
VG_MAXI NT may be returned. The value may be retrieved by calling vgGeti:

VG nt maxSepar abl eKer nel Si ze = vgGeti (VG_MAX_SEPARABLE_KERNEL_SI| ZE) ; I

VG_MAX_GAUSSIAN_STD_DEVIATION

The VG_MAX_GAUSSI AN_STD DEVI ATI ON parameter contains the largest
legal value of the st dDevi ationX and st dDevi ati onY parameters to the

134

OpenVG 1.0 Specification 11.4 - Convolution

vgGaussianBlur function. All implementations must define
VG_MAX_GAUSSI AN_STD_DEVI ATI ON to be an integer no smaller than 128. If
there is no implementation-defined limit, a value of VG MAXI NT may be
returned. The value may be retrieved by calling vgGeti:

\VGi nt maxGaussi anSt dDevi ati on = vgGeti (VG MAX_GAUSSI AN _STD DEVI ATI ON) ; I

vgConvolve

The vgConvolve function applies a user-supplied convolution kernel to a
normalized source image src. The dimensions of the kernel are given by
kernel Wdth and kernel Hei ght; the kernel values are specified as
ker nel W dt h*ker nel Hei ght VGshorts in column-major order. That is, the
kernel entry (i, j) is located at position i*kernelHeight + j in the input sequence.
The shi ft X and shi ftY parameters specify a translation between the source
and destination images. The result of the convolution is multiplied by a scal e
factor, and a bi as is added.

The output pixel (x, y) is defined as:

s(205i<W20sJ-<h Kw—iz1).(hej—1) P(x +i —shiftX , y+j—shiftY)) +b,

where w = kernel Wdt h, h = kernel Hei ght, k;; is the kernel element at
position (i, j), s is the scal e, b is the bias, and p(x, y) is the source pixel at (x, y),
or the result of source edge extension defined by til i ngvbde, which takes a
value from the VGTi | i ngMbde enumeration (see Section 9.4.1). Note that the
use of the kernel index (w-i-1, h-j-1) implies that the kernel is rotated 180
degrees relative to the source image in order to conform to the mathematical
definition of convolution. Figure 23 depicts the flipping of the kernel relative to
the image pixels for a 3x3 kernel.

The operation is applied to all channels (color and alpha) independently.

voi d vgConvol ve(VA nmage dst, VG nage src,
VG nt kernel Wdth, VG nt kernel Hei ght,
VG nt shiftX, VGnt shifty,
const VGshort * kernel,
VG | oat scal e,
V& | oat bi as,
VGTi | i ngvbde tilinghvode)

135

OpenVG 1.0 Specification 11.4 - Convolution

px,y+2 px+1,y+2 px+2,y+ 20 10 00

2

px,y+1 px+1,y+1 px+2,y+1 * k21 kll kOl

Pry Prry [Proay kzz k12 koz

Figure 23: Convolution With a Flipped Kernel

ERRORS
VG _BAD HANDLE ERROR

if either dst or sr ¢ is not a valid image handle, or is not shared with the
current context

VG | MAGE_| N_USE_ERROR

if either dst or sr ¢ is currently a rendering target

VG | LLEGAL_ARGUVENT ERROR

if src and dst overlap

if ker nel W dt h or ker nel Hei ght is less than or equal to 0 or greater than
VG_MAX_KERNEL_SI ZE

if ker nel is NULL
if ker nel is not properly aligned

if ti |l i ngMode is not one of the values from the VGTi | i nghvbde
enumeration

vgSeparableConvolve

The vgSeparableConvolve function applies a user-supplied separable

convolution kernel to a normalized source image sr c. A separable kernel is a

136

OpenVG 1.0 Specification 11.4 - Convolution

two-dimensional kernel in which each entry kij is equal to a product kxi * ky; of
elements from two one-dimensional kernels, one horizontal and one vertical.

The lengths of the one-dimensional arrays ker nel X and ker nel Y are given
by kernel Wdth and kernel Hei ght, respectively; the kernel values are
specified as arrays of VGshor ts. The shi ft X and shi ft Y parameters specify a
translation between the source and destination images. The result of the
convolution is multiplied by a scal e factor, and a bi as is added.

The output pixel (x, y) is defined as:
S(20§i<w205/‘<h KX (i -1y kY = j—iy P (X +i = shiftX y+j—shiftY)) +b),

where w = kernel Wdth, h = kernel Hei ght, kx; is the one-dimensional
horizontal kernel element at position i, ky; is the one-dimensional vertical kernel
element at position j, s is the scal e, b is the bias, and p(x, y) is the source pixel at
(x, y), or the result of source edge extension defined by tili ngvbde, which
takes a value from the VGTi | i ngMbde enumeration (see Section 9.4.1). Note that
the use of the kernel indices (w-i-1) and (h-j-1) implies that the kernel is rotated
180 degrees relative to the source image in order to conform to the mathematical
definition of convolution.

The operation is applied to all channels (color and alpha) independently.

voi d vgSepar abl eConvol ve(VA mage dst, VA mage src,
VG nt kernel Wdth, VG nt kernel Hei ght,
VG nt shiftX, VG@nt shiftY,
const VGshort * kernel X,
const VGshort * KkernelY,
V& | oat scal e,
V& | oat bi as,
VGTi | i nghbde tilinghvode)

137

OpenVG 1.0 Specification 11.4 - Convolution

ERRORS
VG _BAD HANDLE ERROR

- if either dst or sr ¢ is not a valid image handle, or is not shared with the
current context

VG_| MAGE_| N_USE_ERROR

- if either dst or sr c is currently a rendering target
VG_| LLEGAL_ARGUMENT_ERRCR

- if src and dst overlap

- if ker nel W dt h or ker nel Hei ght is less than or equal to 0 or greater than
VG _MAX_SEPARABLE KERNEL_SI ZE

- ifkernel Xor kernel Yis NULL
- if ker nel Xor ker nel Y is not properly aligned

- iftilingMode is not one of the values from the VGTi | i ngMode
enumeration

vgGaussianBlur

The vgGaussianBlur function computes the convolution of a normalized
source image Src with a separable kernel defined in each dimension by the
Gaussian function G(x, s):

where s is the standard deviation.

The two-dimensional kernel is defined by multiplying together two one-
dimensional kernels, one for each axis:

1 _(25X2+2Vs ,2)
21y,
where s, and s, are the (positive) standard deviations in the horizontal and
vertical directions, given by the stdDevi ationX and stdDeviationY
parameters respectively. This kernel has special properties that allow for very
efficient implementation; for example, the implementation may use multiple
passes with simple kernels to obtain the same overall result with higher
performance than direct convolution. If st dDevi ati onX and st dDevi ati onY
are equal, the kernel is rotationally symmetric.

k(x,y)=G(x,5,)%G(y,s,)=

138

OpenVG 1.0 Specification 11.4 - Convolution

Source pixels outside the source image bounds are defined by ti | i nghbde,
which takes a value from the VGTi | i ngMbde enumeration (see Section 9.4.1)

The operation is applied to all channels (color and alpha) independently.

voi d vgGaussi anBl ur (VA mage dst, VA mage src,
VG | oat st dDevi ati onX,
VG | oat st dDevi ati onY,
VGTi | i nghbde tilinghode)

ERRORS

VG _BAD HANDLE ERROR

- if either dst or sr ¢ is not a valid image handle, or is not shared with the
current context

VG | MAGE_ | N_USE_ERROR

- if either dst or sr C is currently a rendering target
VG | LLEGAL ARGUVENT ERROR

- if src and dst overlap

- if stdDevi ati onXor st dDevi at i onY is less than or equal to 0 or greater
than VG _MAX_GAUSSI AN _STD DEVI ATI ON

- iftilingMode is not one of the values from the VGTi | i nghvbde
enumeration

11.5 Lookup Tables

vgLookup

The vgLookup function passes each image channel of the normalized source
image sr c through a separate lookup table.

Each channel of the normalized source pixel is used as an index into the
lookup table for that channel by multiplying the normalized value by 255 and
rounding to obtain an 8-bit integral value. Each LUT parameter should contain
256 VGubyt e entries. The outputs of the lookup tables are concatenated to form
an RGBA 8888 pixel value, which is interpreted as | RGBA 8888,
| RGBA_8888_PRE, sRCBA 8888, or sRGBA _8888_PRE, depending on the
values of out put Li near and out put Prenul ti pli ed.

The resulting pixels are converted into the destination format using the normal
pixel format conversion rules.

139

OpenVG 1.0 Specification 11.5 - Lookup Tables

voi d vgLookup(Vd nmage dst, VA nmage src,
const VGubyte * redLUT,
const VG@ubyte * greenLUT,
const VGubyte * bl uelLUT,
const VG@ubyte * al phalUT,
VGbool ean out put Li near,
VGoool ean out put Premul tipli ed)

ERRORS
VG BAD HANDLE ERROR

- if either dst or sr ¢ is not a valid image handle, or is not shared with the
current context

VG_| MAGE_| N_USE_ERROR

- if either dst or sr C is currently a rendering target
VG_| LLEGAL_ARGUMENT_ERRCR

- if src and dst overlap

- if any pointer parameter is NULL

vgLookupSingle

The vgLookupSingle function passes a single image channel of the normalized
source image src, selected by the sourceChannel parameter, through a
combined lookup table that produces whole pixel values. Each normalized
source channel value is multiplied by 255 and rounded to obtain an 8 bit integral
value.

The specified sour ceChannel of the normalized source pixel is used as an
index into the lookup table. If the source image is in a single-channel grayscale
(VG_IL_8, VGsL_8, or VG BW1) or alpha-only (VG A 8) format, the
sour ceChannel parameter is ignored and the single channel is used. The
| ookupTabl e parameter should contain 256 4-byte aligned entries in an
RGBA 8888 pixel value, which is interpreted as | RGBA 8888,
| RGBA_8888_PRE, sRGBA 8888, or sRGBA_8888_PRE, depending on the
values of out put Li near and out put Prenul ti pli ed.

The resulting pixels are converted into the destination format using the normal
pixel format conversion rules.

voi d vgLookupSi ngl e(VA mage dst, VA mage src,
const V@&uint * | ookupTabl e,
VG nmageChannel sour ceChannel ,
VGbool ean out put Li near,
VGoool ean out put Premul tipli ed)

140

OpenVG 1.0 Specification 11.5 - Lookup Tables

ERRORS
VG _BAD HANDLE ERROR

if either dst or sr ¢ is not a valid image handle, or is not shared with the
current context

VG_| MAGE_| N_USE_ERRCR

if either dst or sr ¢ is currently a rendering target

VG | LLEGAL ARGUMENT ERRCR

if src and dst overlap

if sr ¢ is in an RGB pixel format and sour ceChannel is not one of VG_RED,
VG_GREEN VG _BLUE or VG_ALPHA from the VA mageChannel
enumeration

if | ookupTabl e is NULL
if | ookupTabl e is not properly aligned

141

OpenVG 1.0 Specification 12 - Blending

12 Blending

As drawing takes place, the painted pixels that result from the paint
generation (stage 6) or image interpolation (stage 7) stages of the rendering
pipeline are blended into the existing pixels of the drawing surface. Blending is
performed using a subset of the standard Porter-Duff blending rules [PORT84]
along with several additional rules.

The source pixels are converted into the destination color space prior to
blending.

12.1 Blending Equations

A blending mode defines an alpha blending function a(a.., as) and a color
blending function c(cy., Cast, Gsre @ast). Given a non-premultiplied source alpha and
color tuple (R, Gir, By, 0sr) and a non-premultiplied destination alpha and color
tuple (R, Gast, Bast, 04t), blending replaces the destination with the blended tuple
(C(RSTC/ Rdst/ Osres adst)/ C(Gsrchdst/ Osres adst)/ C(Bsrcz Bdst/ Osres adst)/ a(asrcz adst))-

If either the source or destination is stored in a premultiplied format (i.e.,
pixels are stored as tuples of the form (a*R, a*G, a*B, a)), the alpha value is
conceptually divided out prior to applying the blending equations described
above. If the destination is premultiplied, the destination alpha value is
multiplied into each color channel prior to storage. If the destination format does
not store alpha values, an alpha value of 1 is used in place of ays.

12.2 Porter-Duff Blending

Porter-Duff blending defines an alpha value a(as, tist) = Osc*Fere + 0as*Fasr and
color ¢ (¢ e € ast Qsry Oast) = € se*Fope + ¢ 4*Fast, Where F,,. and F are defined by the
blend mode and the source and destination alpha values according to Table 13
below and ¢’ = axc is a premultiplied color value. For non-premultiplied colors,
we define the equivalent formula c(co, Cat, G Q) = (Osrc*Corc*Foe +
Qas*Cast*Fast) / 0(lsre, 0ast) (taking the value to be 0 where division by 0 would occur).

Porter-Duff blending modes are derived from the assumption that each
additional primitive being drawn is uncorrelated with previous ones. That is, if a
previously drawn primitive p occupies a fraction f, of a pixel, and a new
primitive g occupies a fraction f,, Porter-Duff blending assumes that a fraction
f,*f; of the pixel will be occupied by both primitives, a fraction f, - f,*f, = f, (1 - f;)
will be occupied by p only, and a fraction f, - f,*f, = f, (1 - f,) will be occupied by ¢
only. A total fraction of f, + f, - f,*f, of the pixel is occupied by the union of the
primitives.

142

OpenVG 1.0 Specification 12.2 - Porter-Duff Blending

Blend Mode Fo Fis
Src 1 0
Src over Dst 1 1 - o
Dst over Src 1- g 1
Src in Dst Ogst 0
Dst in Src 0 Olre

Table 13: Porter-Duff Blending Modes

12.3 Additional Blending Modes

A number of additional blending modes are available. These modes are a
subset of the SVG image blending modes. Note that the SVG “Normal” blending
mode is equivalent to the Porter-Duff “Src over Dst” mode described above. The
additional blend modes have the following effects:

VG _BLEND_MULTI PLY - Multiply the source and destination colors
together, producing the effect of placing a transparent filter over a
background. A black source pixel forces the destination to black, while a white
source pixel leaves the destination unchanged. If all alpha values are 1, this
reduces to multiplying the source and destination color values.

VG_BLEND_SCREEN - The opposite of multiplication, producing the effect
of projecting a slide over a background. A black source pixel leaves the
destination unchanged, while a white source pixel forces the destination to
white. If all alpha values are 1, this reduces to adding the source and
destination color values, and subtracting their product.

VG_BLEND_DARKEN - Compute (Src over Dst) and (Dst over Src) and take
the smaller (darker) value for each channel. If all alpha values are 1, this
reduces to choosing the smaller value for each color channel.

VG _BLEND_LI GHTEN - Compute (Src over Dst) and (Dst over Src) and take
the larger (lighter) value for each channel. If all alpha values are 1, this
reduces to choosing the larger value for each color channel.

The new destination alpha value for the blending modes defined in this
section is always equal to (. Oust) = Ose T 0a*(1 — 0s), as for Porter-Duff “Src
over Dst” blending. The formulas for each additional blending mode are shown
in Table 14. The right-hand column contains the pre-multiplied output values,
that is, the products of the new color value c(cy. Cist, @s as) and alpha value
a(0r, a4st). The source and destination color values c,. and cu are given in non-
premultiplied form.

143

OpenVG 1.0 Specification 12.3 - Additional Blending Modes

Blend Type c' (CsrC/ Casty Qsrey adst)
VG_BL END_MJLTI PLY Osrc*Cspe >('(1"adst) + adst*cdst*(l—asrc) T Olsrc*Cre *0igst*Cast
VG_BL END_SCREEN Osrc*Cspe + Olast*Cist = Olsrc *Cspc*Oist *Caist
VG BLEND DARKEN N Ge*Care + Olasg*Cast *(1=rc),
Ast*Cst + Osrc*Cspe >e(l"(ldst‘)
VG BLEND LI GHTEN MAX(Otsre*Core T Qast*Cast *(1=Olere),
Olgst™*Cast + Olsrc*Csre >F(l'adsi‘))

Table 14: Additional Blending Equations

12.4 Additive Blending

The Porter-Duff assumption of uncorrelated alpha described above does not
hold for primitives that are known to be disjoint (for example, a set of triangles
with shared vertices and edges forming a mesh, or a series of text glyphs that
have been spaced according to known metrics). In these cases, we expect no
portion of the pixel to be occupied by both primitives and a total fraction of f, +
f; to be occupied by the union of the primitives. The additive blending rule may
be used in this case. It sets the final alpha value of the blended pixel to the
clamped sum o0, Oast) = Min (0t aas, 1) and the color to ¢(Coe Cast) = Min((Otsr*Core +
Qast*Cast)/Min(ase + oay, 1), 1). If all alpha values are 1, this reduces to adding the
values of each source color channel and clamping the result.

12.5 Setting the Blend Mode

VGBlendMode
The V@Bl endMbde enumeration defines the possible blending modes:

t ypedef enum {
VG BLEND_SRC = 0x2000,
VG BLEND_SRC OVER = 0x2001,
VG BLEND DST_OVER = 0x2002,
VG BLEND_SRC | N = 0x2003,
VG BLEND DST_|I N = 0x2004,
VG BLEND MULTI PLY = 0x2005,
VG _BLEND_SCREEN = 0x2006,
VG _BLEND_ DARKEN = 0x2007,
VG BLEND_LI GHTEN = 0x2008,
VG BLEND_ADDI TI VE = 0x2009

} V@Bl endMode;

Use vgSeti with a parameter type of VG_BLEND_MODE to set the blend mode:

V@Bl endivbde npde;
vgSeti (VG BLEND MODE, node);

144

OpenVG 1.0 Specification 13 - Querying Hardware Capabilities

13 Querying Hardware Capabilities

OpenVG implementations may vary considerably in their performance
characteristics. A simple hardware query mechanism is provided to allow
applications to make informed choices regarding data representations, in order
to maximize their chances of obtaining hardware-accelerated performance.
Currently, OpenVG provides hardware queries for image formats and path
datatypes.

VGHardwareQueryType

The VGHar dwar eQueryType enumeration defines the set of possible
hardware queries. Currently these are restricted to queries regarding image
formats and path datatypes.

typedef enum {
VG _| MAGE_FORMAT QUERY
VG _PATH _DATATYPE_QUERY
} VGHar dwar eQuer yType;

0x2100,
0x2101

VGHardwareQueryResult

The VGHar dwar eQuer yResul t enumeration defines the return values from a
hardware query, indicating whether or not the item being queried is hardware
accelerated.

typedef enum {
VG_HARDWARE _ACCELERATED
VG_HARDWARE _UNACCEL ERATED

} VCGHar dwar eQuer yResul t;

0x2200,
0x2201

vgHardwareQuery

The vgHardwareQuery function returns a value indicating whether a given
setting of a property of a type given by key is generally accelerated in
hardware on the currently running OpenVG implementation.

The return value will be one of the values VG_HARDWARE ACCELERATED or
VG_HARDWARE _UNACCELERATED, taken from the VCGHar dwar eQuer yResul t
enumeration. The legal values for the setting parameter depend on the value of
the key parameter, as indicated by Table 15.

Value of key Allowable values for setting
VG _| MAGE_FORNMAT_QUERY VA mageFor mat (p. 109)
VG _PATH_DATATYPE_QUERY VGPat hDat at ype (p. 54)

Table 15: Query Key Enumeration Types

145

OpenVG 1.0 Specification 13 - Querying Hardware Capabilities

VGHar dwar eQuer yResul t vgHar dwar eQuer y(VGHar dwar eQuer yType key,
VG nt setting)

ERRORS
VG | LLEGAL ARGUVENT ERROR

- if key is not one of the values from the VGHar dwar eQuer yType
enumeration

- if set ti ng is not one of the values from the enumeration associated with
key

146

OpenVG 1.0 Specification 14 - Extending the API

14 Extending the API

OpenVG is designed to be extended using an extension mechanism modeled
after that of OpenGL and OpenGL ES. An extension may define new state
elements, new datatypes, new values for existing parameter types, and new
functions. Use of these features may alter the operation of the rendering
pipeline. However, an extension must have no effect on programs that do not
enable any of its features.

14.1 Extension Naming Conventions

An OpenVG extension is named by a string of the form OVG_type_name, where
type is either the string EXT or a vendor-specific string and name is a name
assigned by the extension author. A letter X added to the end of type indicates
that the extension is experimental.

Values (e.g., enumerated values or preprocessor #defi nes) defined by an
extension carry the suffix _type. Functions and datatypes carry the suffix type
without a separating underscore.

The openvg. h header file will define a preprocessor macro with the name
OVG_type_name and a value of 1 for each supported extension.

14.2 The Extension Registry

Khronos, or its designee, will maintain a publicly-accessible registry of
extensions. This registry will contain, for each extension, at least the following
information:

The name of the extension in the form OVG_type_name

An email address of a contact person

A list of dependencies on other extensions

A statement on the IP status of the extension

An overview of the scope and semantics of the extension
New functions defined by the extension

New datatypes defined by the extension

New values to be added to existing enumerated datatypes
Additions and changes to the OpenVG specification

New errors generated by functions affected by the extension
New state defined by the extension

Authorship information and revision history

14.3 Using Extensions

Extensions may be detected statically, by means of preprocessor symbols, or
dynamically, by means of the vgGetString function. Extension functions may be

147

OpenVG 1.0 Specification 14.3 - Using Extensions

included in application code statically by placing appropriate “#ifdet” directives
around functions that require the presence of a particular extension, and may
also be accessed dynamically through function pointers returned by
eglGetProcAddress or by other platform-specific means.

14.3.1 Accessing Extensions Statically

The extensions defined by a given platform are defined in the openvg. h
header file, or in header files automatically included by openvg. h. In order to
write applications that run on platforms with and without a given extension,
conditional compilation based on the presence of the extension’s preprocessor
macro may be used:

#i f def OVG _EXT_my_ext ensi on

vgMyExt ensi onFuncbeXT(...);
#endi f

14.3.2 Accessing Extensions Dynamically

OpenVG contains a mechanism for applications to access information about
the runtime platform, and to access extensions that may not have been present
when the application was compiled.

VGStringIlD

typedef enum {
VG_VENDOR = 0x2300,
VG _RENDERER = 0x2301
VG_VERSI ON = 0x2302,
VG_EXTENSI ONS = 0x2303

} VGStringl b

vgGetString

The vgGetString function returns information about the OpenVG
implementation, including extension information. The values returned may vary
according to the display (e.g., the EGLDi spl ay when using EGL) associated with
the current context. If no context is current, vgGetString returns NULL.

The combination of VG_VENDOR and VG_RENDERER may be used together as a
platform identifier by applications that wish to recognize a particular platform
and adjust their algorithms based on prior knowledge of platform bugs and
performance characteristics .

If name is VG_VENDOR, the name of company responsible for this OpenVG
implementation is returned. This name does not change from release to release.

148

OpenVG 1.0 Specification 14.3.2 - Accessing Extensions Dynamically

If nane is VG_RENDERER, the name of the renderer is returned. This name is
typically specific to a particular configuration of a hardware platform, and does
not change from release to release.

If name is VG_VERSI ON the version number of the specification implemented
by the renderer is returned as a string in the form major_number.minor_number.
For this specification, “1.0” is returned.

If nane is VG_EXTENSI ONS, a space-separated list of supported extensions to
OpenVG is returned.

For other values of nane, NULL is returned.

const V@ubyte * vgGet String(VGStringl D nane) I

eglGetProcAddress

Functions defined by an extension may be accessed by means of a function
pointer obtained from the EGL function egl Get ProcAddr ess. If EGL is not
present, the platform may define an alternate method of obtaining extension
function pointers.

14.4 Creating Extensions

Any vendor may define a vendor-specific extension. Each vendor should
apply to Khronos to obtain a vendor string and any numerical token values
required by the extension.

An OpenVG extension may be deemed a shared extension if two or more
vendors agree in good faith to ship an extension, or the Khronos OpenVG
working group determines that it is in the best interest of its members that the
extension be shared. A shared extension may be adopted (with appropriate
naming changes) into a subsequent release of the OpenVG specification.

149

OpenVG 1.0 Specification 15 - API Conformance

15 API Conformance

All OpenVG implementations are required to pass a conformance test suite.
The exact details of the conformance testing process are available in a separate
document. This chapter outlines the OpenVG conformance test philosophy and
provides information that may be useful in order to ensure conformant
implementations.

15.1 Conformance Test Principles

The OpenVG specification attempts to strike a balance between the needs of
implementers and application developers. While application developers desire a
stable platform that delivers predictable results, they also wish to avoid reduced
performance due to an excessively strict APl definition. By allowing some
flexibility in how the API is implemented, implementations may be optimized
for a wide variety of platforms with varying price, performance, and power
characteristics. The purpose of conformance testing is to ensure that
implementations with different internal approaches produce similar results.

15.1.1 Window System Independence

Because OpenVG does not mandate a specific window system or display
management API, the conformance test suite will isolate all display
dependencies in a module that may be customized for each platform. An EGL-
based implementation of this module will be provided, but implementers are
free to replace this implementation with one that is specific to their platform.

15.1.2 Antialiasing Algorithm Independence

It is anticipated that a wide variety of antialiasing approaches will be used in
the marketplace. Low-cost antialiasing remains a research topic, and new
algorithms continue to emerge. The conformance suite must allow for this
variation, while not allowing differences in antialiasing to cover up inadequacies
in other portions of the implementation such as matrix transformation or curve
subdivision.

15.1.3 On-Device and Off-Device Testing

Certain conformance tests require only a small memory footprint, and may be
run directly on the target device. Other tests operate by generating an image,
which must be copied off-device. A desktop tool is used to compare the
generated images against a set of reference images.

15.2 Types of Conformance Tests

Conformance tests fall into several classes, outlined below.

150

OpenVG 1.0 Specification 15.2.1 - Pipeline Tests

15.2.1 Pipeline Tests

A set of tests will be provided that attempt to isolate each pipeline stage by
means of suitable parameter settings. These tests will provide assurance that
each stage is functioning correctly.

15.2.2 Self-Consistency Tests

Certain portions of the API are required to produce exact results. For example,
setting and retrieving API state, image, paint, and path parameters, setting and
retrieving matrix values; error generation; and pixel copies are defined to have
exact results. The conformance suite will provide strict checking for these
behaviors.

15.2.3 Matrix Tests

The conformance suite will exercise various matrix operations and compare
the results against double-precision values. The comparison threshold will be set
to exclude implementations with insufficient internal precision.

15.2.4 Interior/Exterior Tests

Although antialiasing may have varying effects on shape boundaries, the
portions of the interior and exterior of shapes that are more than 1 2 pixels from
a geometric boundary should not be affected by that boundary. If a shape is
drawn using color paint, a set of known interior and exterior pixels may be
tested for equality with the paint color.

15.2.5 Positional Invariance

Drawing should not depend on absolute screen coordinates, except for minor
differences due to spatially-variant sampling and dither patterns when copying
to the screen. The conformance suite will include tests that verify the positional
independence of drawing.

15.2.6 Image Comparison Tests

To allow for controlled variation, the conformance suite will provide a set of
rendering code fragments, along with reference images that have been generated
using a high-quality implementation. Implementation-generated images will be
compared to these reference images using a fuzzy comparison system. This
approach is intended to allow for small differences in the accuracy of geometry
and color processing and antialiasing, while rejecting larger differences that are
considered visually unacceptable. The comparison threshold will be determined
by generating images with a variety of acceptable and unacceptable differences
and comparing them against the reference image.

151

OpenVG 1.0 Specification 16 - The VGU Utility Library

16 The VGU Utility Library

For convenience, OpenVG provides an optional utility library known as VGU.
Applications may choose whether to link to VGU at compile time; the library is
not guaranteed to be present on the run-time platform. VGU is designed so it
may be implemented in a portable manner using only the public functionality
provided by the OpenVG library. VGU functions may alter the error state of the
OpenVG context in which they run (i.e., the value returned by vgGetError), but
do not otherwise alter the OpenVG state when they complete without
generating a VGJ_OUT_OF_MEMORY_ERRCR VGU functions are defined in a
vgu. h header file.

VGU_VERSION_1_0

Each version of the VGU library will define constants indicating the set of
supported library versions. For the current version, the constant
VGU VERSI ON_1_0 is defined. Future versions will continue to define the
constants for all previous versions with which they are backward compatible.

#define VGU VERSION 1 0 1 1

VGUErrorCode

The VGUEr r or Code enumeration contains constants specifying possible errors
generated by VGU functions. Any VGU function may return
VGU_OUT_OF_MEMORY_ERROR, in which case the function may have caused
changes to the state of OpenVG or to drawing surface pixels prior to failure.

t ypedef enum {
VGU_NO_ERROR = 0,
VGU_BAD HANDLE ERROR = 0xF000,
VGU_| LLEGAL_ARGUVENT _ERROR = O0xF001,
VGU_QUT_OF_MEMORY_ERRCR = 0xF002,
VGU_PATH_CAPABI LI TY_ERROR = O0xF003,
VGU_BAD WARP_ERRCR = 0xF004

} VGUEr r or Code;

16.1 Higher-level Geometric Primitives

The V@UJlibrary contains functions that allow applications to specify a number
of higher-level geometric primitives to be appended to a path. Each primitive is
immediately reduced to a series of line segments, Bézier curves, and arcs.
Coordinates may overflow silently if they fall outside the range defined by the
path datatype, scale, and bias.

152

OpenVG 1.0 Specification 16.1.1 - Lines

16.1.1 Lines

vguline

vguLine appends a line segment to a path. This is equivalent to the following
pseudo-code:

LI NE(x0, yO, x1, yl):

MOVE_TO ABS x0, yO
LI NE_TO ABS x1, y1

VGUEr r or Code vgulLi ne(VGPat h pat h,
V& | oat x0, VG| oat yoO,
V& | oat x1, VGl oat yl)

ERRORS

VGU_BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABI LI TY_ERROR

- if VG_PATH_CAPABI LI TY_APPEND_TOis not enabled for pat h

16.1.2 Polylines and Polygons

vguPolygon

vguPolygon appends a polyline or polygon to a path. This is equivalent to the
following pseudo-code:

POLYGON(poi nts, count):

MOVE_TO _ABS poi nts[0], points[1]
for (i = 1; i < count; i++) {
LI NE_TO _ABS poi nts[2*i], points[2*i + 1]

}
if (closed) CLOSE PATH

There are 2* count coordinates in poi nt s.

VGUEr r or Code vguPol ygon(VGPat h pat h,
const V&loat * points, VG nt count,
V&oool ean cl osed)

153

OpenVG 1.0 Specification 16.1.2 - Polylines and Polygons

ERRORS

VGU_BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABI LI TY_ERROR

- if VG_PATH_CAPABI LI TY_APPEND_TOis not enabled for pat h

VGU_| LLEGAL_ARGUVENT_ERROR

- if poi ntsis NULL

- if poi nt s is not properly aligned

- if count is less than or equal to 0

16.1.3 Rectangles
vguRect

The vguRect function appends an axis-aligned rectangle with its lower-left
corner at (X, y) and a given Wi dt h and hei ght to a path. This is equivalent to
the following pseudo-code:

RECT(x, y, width, height):

MOVE_TO_ABS X, Y
HLINE_TO REL width
VLI NE_TO_REL hei ght
HLI NE_TO REL -width
CLOSE_PATH

VGUEr r or Code vguRect (VGPat h pat h,
V& |l oat x, V&I oat v,
V& | oat wi dth, VG| oat height)

ERRORS

VGJ_BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VGU PATH_CAPABI LI TY_ERROR

- if VG_PATH_CAPABI LI TY_APPEND_TOis not enabled for pat h

VGU | LLEGAL_ARGUVENT ERROR

- if wi dt h or hei ght are less than or equal to 0

154

OpenVG 1.0 Specification 16.1.4 — Round-Cornered Rectangles

16.1.4 Round-Cornered Rectangles
vguRoundRect

The vguRoundRect function appends an axis-alighed round-cornered
rectangle with the lower-left corner of its rectangular bounding box at (x, y) and
a given Wi dth, height, arcWdth, and arcHei ght to a path. This is
equivalent to the following pseudo-code:

ROUNDRECT(x, y, w, h, arcWdth, arcHeight):

MOVE_TO_ABS (x + arcWdth/2), vy

HLI NE_TO REL width — arcWdth

SCCWARC TO REL arcWdth/2, arcHeight/2, 0, arcWdth/2, arcHeight/2
VLI NE_TO REL hei ght — arcHei ght

SCCWARC TO REL arcWdth/2, arcHeight/2, 0, -arcWdth/2, arcHeight/2

HLI NE_TO REL -(width — arcWdt h)
SCCWARC _TO REL arcWdth/2, arcHeight/2, 0, -arcWdth/2, -arcHeight/2
VLI NE_TO_REL - (hei ght — arcHei ght)

SCCWARC TO REL arcWdth/2, arcHeight/2, 0, arcWdth/2, -arcHeight/2
CLOSE_PATH

If arcWdt h is less than 0, it is clamped to 0. If ar c W dt h is greater than
Wi dt h, its value is clamped to that of wi dt h. Similarly, ar cHei ght is clamped
to a value between 0 and hei ght . The arcs are included even when ar cW dt h
and/or ar cHei ght is 0.

VGUEr r or Code vguRoundRect (VGPat h pat h,

V& |l oat x, V&I oat v,

V& | oat wi dth, VG| oat height,

V& | oat arcWdth, V&Il oat arcHeight)

ERRORS

VGUJ_BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABI LI TY_ERROR

- if VG_PATH_CAPABI LI TY_APPEND_TOis not enabled for pat h

VGU_| LLEGAL_ARGUVENT_ERROR

- if wi dt h or hei ght is less than or equal to 0

155

OpenVG 1.0 Specification 16.1.4 — Round-Cornered Rectangles

(x+width, y+height
/)\0

arcWidth

arcHeight /

V)

Figure 24: Round Rectangle Parameters

16.1.5 Ellipses

vguEllipse

vguEllipse appends an axis-aligned ellipse to a path. The center of the ellipse
is given by (cX, cy) and the dimensions of the axis-aligned rectangle enclosing
the ellipse are given by W dt h and hei ght . The ellipse begins at (cx + width/2,
cy) and is stroked as two equal counter-clockwise arcs. This is equivalent to the
following pseudo-code:

ELLI PSE(cx, cy, wi dth, height):

MOVE_TO_ABS cx + width/2, cy
SCCWARC TO REL width/2, height/2, 0, -width, 0
SCCWARC TO REL width/2, height/2, 0, wdth, 0
CLOSE_PATH

VGUEr r or Code vguEl |'i pse(VGPat h pat h,
V& | oat cx, VG| oat cy,
V& | oat wi dth, VG| oat height)

156

OpenVG 1.0 Specification 16.1.5 - Ellipses

ERRORS

VGU_BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABI LI TY_ERROR

- if VG_PATH_CAPABI LI TY_APPEND_TOis not enabled for pat h

VGU_| LLEGAL_ARGUVENT_ERROR

- if wi dt h or hei ght is less than or equal to 0

16.1.6 Arcs

VGUArcType

The VGUAr cType enumeration defines three values to control the style of arcs
drawn by the vguArc function:

VGUJ_ARC_OPEN - arc segment only
VGU_ARC_CHORD - arc, plus line between arc endpoints
VGU_ARC_PI E - arc, plus lines from each endpoint to the ellipse center.

Arc Chord Pie

Figure 25: VGQUAr cType Values

vguArc

vguArc appends an elliptical arc to a path, possibly along with one or two line
segments, according to the arcType parameter. The startAngle and
angl eExt ent parameters are given in degrees, proceeding counter-clockwise
from the positive X axis. The arc is defined on the unit circle, then scaled by the
width and height of the ellipse; thus, the starting point of the arc has coordinates

157

OpenVG 1.0 Specification 16.1.6 - Arcs

(x + cos(startAngle)*w/2, y + sin(startAngle)*h/2) and the ending point has
coordinates (x + cos(startAngle + angleExtent)*w/2, y + sin(startAngle +
angleExtent)*h/2).

If angl eExt ent is negative, the arc will proceed clockwise; if it is larger than
360 or smaller than -360, the arc will wrap around itself. The following pseudo-
code illustrates the arc path generation:

ARC(x, Yy, w, h, startAngle, angleExtent, arcType):

|l ast = startAngl e + angl eExt ent
MOVE_TO ABS x+cos(startAngle)*w 2, y+sin(startAngle)*h/2
if (angl eExtent > 0) {
angle = startAngle + 180
while (angle < last) {
SCCWARC TO ABS w2, h/2, 0, x+cos(angle)*w 2, y+sin(angle)*h/2
angl e += 180
}
SCCWARC TO ABS w/ 2, h/2, 0, x+cos(last)*w 2, y+sin(last)*h/2
} else {
angle = startAngle — 180
while (angle > last) {
SCWARC TO ABS W 2, h/2, 0, x+cos(angle)*w 2, y+sin(angle)*h/2
angle -= 180

SCWARC TO ABS W 2, h/2, 0, x+cos(last)*w 2, y+sin(last)*h/2
}

if arcType == VGU_ARC PI E
LI NE_TO ABS x, y

if arcType == VAU ARC PIE || arcType == VAU _ARC CHORD
CLOSE_PATH

VGUEr r or Code vguAr c(VGPat h pat h,

V& | oat x, V&I oat v,

V& | oat wi dth, VG| oat height,

VG| oat startAngle, VG| oat angl eExtent,
VGUAr cType arcType)

158

OpenVG 1.0 Specification 16.1.6 - Arcs

ERRORS

VGU_BAD HANDLE ERROR

- if pat h is not a valid path handle, or is not shared with the current context
VGU_PATH_CAPABI LI TY_ERROR

- if VG_PATH_CAPABI LI TY_APPEND_TOis not enabled for pat h

VGU_| LLEGAL_ARGUVENT_ERROR

- if wi dt h or hei ght is less than or equal to 0

- if ar cType is not one of the values from the VGQUAr c Ty pe enumeration

b
v
angleExtent
A
v
v startAngle
=
Lol sy >
V
=
v
unit circle
\
- >

width

Figure 26: vguArc Parameters

16.2 Image Warping

VGU provides three utility functions to compute 3x3 projective transform
matrices. The first two compute the transformation from an arbitrary
quadrilateral onto the unit square, and vice versa. The third computes the
transformation from an arbitrary quadrilateral to an arbitrary quadrilateral. The
output transformation is stored into mat r i X as 9 elements in the order { sx, shy,
wy, shx, sy, w;, tx, ty, w, } (using the nomenclature of Section 6.3).

159

OpenVG 1.0 Specification 16.2 - Image Warping

In all cases, if there is no projective mapping that satisfies the given
constraints, or the mapping would be degenerate (i.e., non-invertible),
VGU_BAD_WARP_ERRCRIs returned and mat r i X is unchanged.

Formulas for computing projective warps may be found in [HECKS89] and
[WOLB90].

vguComputeWarpQuadToSquare

The vguComputeWarpQuadToSquare function sets the entries of matrix to a
projective transformation that maps the point (sx0, sy0) to (0, 0); (sx1, syl) to
(1, 0); (sx2,sy2) to (0, 1); and (sx3, sy3) to (1, 1). If no non-degenerate matrix
satisfies the constraints, VGUJ BAD WARP_ ERROR is returned and matri X is
unchanged.

VGUEr r or Code vguConput eWar pQuadToSquar e(V& | oat sx0, V& | oat syO,
V& | oat sx1, V&Il oat syl,
VG | oat sx2, V&I oat sy2,
VG | oat sx3, V&I oat sy3,
V& | oat * matri x)

ERRORS

VGU_| LLEGAL_ARGUVENT ERROR
- ifmatrixis NULL

- if mat ri X is not properly aligned
VGJ_BAD WARP_ERROR

- if no non-degenerate transformation satisfies the constraints

vguComputeWarpSquareToQuad

The vguComputeWarpSquareToQuad function sets the entries of matrix to a
projective transformation that maps the point (0, 0) to (dx0, dy0); (1, 0) to (dx1,
dyl); (0, 1) to (dx2, dy2); and (I, 1) to (dx3, dy3). If no non-degenerate matrix
satisfies the constraints, VGJ BAD WARP_ERROR is returned and matri X is
unchanged.

VGUEr r or Code vguConput eWar pSquar eToQuad(V& | oat dx0, V& | oat dyoO,
V& | oat dx1, V&Il oat dyil,
VG| oat dx2, VG| oat dy2,
V& | oat dx3, V&Il oat dy3,
VGl oat * matri x)

160

OpenVG 1.0 Specification

ERRORS

VGU_| LLEGAL_ARGUMENT_ERRCR
- ifmatrixis NULL

- if mat ri x is not properly aligned
VGU_BAD_WARP_ERROR

16.2 - Image Warping

- if no non-degenerate transformation satisfies the constraints

vguComputeWarpQuadToQuad

The vguComputeWarpQuadToQuad function sets the entries of matrix to a
projective transformation that maps the point (sx0, sy0) to (dx0, dy0); (sx1, sy1) to
(dx1, dy1); (sx2, sy2) to (dx2, dy2); and (sx3, sy3) to (dx3, dy3). If no non-degenerate
matrix satisfies the constraints, VGUJ_BAD_ WARP_ERRCR is returned and mat ri x

is unchanged.

VGUEr r or Code vguConput eWar pQuadToQuad(V& | oat
V& | oat
V& | oat
V& | oat
VG | oat
V& | oat
V& | oat
V& | oat
V& | oat

dxo,
dx1,
dx2,
dx3,
sxO0,
sx1,
SX2,
Sx3,

V& | oat
V& | oat
V& | oat
V& | oat
V& | oat
VG | oat
V& | oat
V& | oat

* matrix)

dyo,
dy1,
dy2,
dy3,
syO,
syl,
sy2,
sy3,

ERRORS

VGU | LLEGAL_ARGUVENT ERROR
- ifmatrixis NULL

- if mat ri x is not properly aligned
VGJ_BAD WARP_ERROR

- if no non-degenerate transformation satisfies the constraints

161

OpenVG 1.0 Specification 17 - Appendix A: Mathematics of Ellipses

17 Appendix A: Mathematics of Ellipses

The following sections are informative only. It contains mathematics
pertaining to the representation of ellipses that may be of use to implementers.
Some of the material is adapted from [SVGF04].

17.1 The Center Parameterization

A common parameterization of an ellipse is in terms of the ellipse center point
(cx, cy), horizontal and vertical radii v and rv, rotation angle , and starting and
ending angles 01 and 62 between 0 and 360 degrees. The parameters are listed in
Table 16.

The elliptical arc may be evaluated in terms of an angular parameter 6 that
ranges from 61 to 62:
cx
cy

An ellipse in the center parameterization may be viewed as a unit circle,
parameterized as (x, y) = (cos(), sin(d)) that has been placed through an affine
transformation consisting of a rotation and a non-uniform scale:

cos¢p —sing| | rhcos6

sin¢p cos¢

flex,cy,rh,rv,¢,0)=

rvsin @

X rhcos(¢p) -rvsin(¢p) cx| | cos(0)
y| =| rhsin(¢p) rvcos(¢p) cy| | sin(9)

1 0 0 1 1
(cx, cy) The center point of the ellipse
rh, ro The radii of the unrotated ellipse

The counter-clockwise angle of the
ellipse relative to the x axis, measured
prior to scaling by (rh, rv)

01 Angle of initial point (as measured on
the unscaled circle)

62 Angle of final point (as measured on
the unscaled circle)

Table 16: Center Ellipse Parameters

162

OpenVG 1.0 Specification 17.2 - The Endpoint Parameterization

17.2 The Endpoint Parameterization

OpenVG paths use the endpoint parameterization of elliptical arcs as defined
in SVG. An elliptical arc segment is defined in terms of its endpoints (x0, y0), (x1,
y1), radii vh and rv, rotation angle , large arc flag fA, and sweep flag fS. These
parameters are listed in Table 17.

(x0, yo) The initial endpoint of the arc

(x1, y1) The final endpoint of the arc

rh, ro The radii of the unrotated ellipse

rot The counter-clockwise angle of the

ellipse relative to the x axis, measured
prior to scaling by (rh, rv)

fA Large arc flag: 1 if more than 180
degrees of the arc is to be traversed (as
measured on the unscaled circle), 0
otherwise

fs Sweep flag: 1 if the arc is to be
traversed in the counter-clockwise
direction, 0 otherwise

Table 17: Endpoint Ellipse Parameters

17.3 Converting from Center to Endpoint Parameterization

Conversion from a center parameterization to an endpoint parameterization
simply requires evaluation the initial and final endpoints of the arc, and
determining the values of the large arc and sweep flags:

g =f(cx,cy,rh,l”V,¢,91)
Y1
X2 =f(cx,cy,rh,l”V,¢,92)
Ya
_| 1 if]6,—0,|>180degrees
fA_ :
0 otherwise
ol 1 ir0,20,20
510 otherwise

163

OpenVG 1.0 Specification 17.4 — Converting from Endpoint to Center Parameterization

17.4 Converting from Endpoint to Center Parameterization

Given an endpoint representation of an ellipse as the set of parameters (x0, y0),
(x1, y1), rh, rv, ,fS, and fA, we wish to determine the center point (cx, cy) and the
initial and final angles 61 and 62.

An ellipse with center point (cx, cy), radii v and rv, and rotation angle rot
satisfies the implicit equation (x)* + (y")* = 1, where x” = ((x - cx)*cos(rot) + (y -
cy)*sin(rot))/rh and vy~ = (-(x - cx)*sin(rot) + (y — cy)*cos(rot))/rv. The transformation
from (x, y) to (x’, y') simply maps the desired ellipse into a unit circle centered at
the origin.

To determine the center points of the pair of ellipses with common radii and
rotation angle that pass through the two given points (x,, y,) and (x;, vi), the
plane is first transformed into a suitably scaled and rotated coordinate system
such that the equation of each ellipse becomes (x - cx’)’ + (v - cy’)’ = 1. Then the
problem is reduced to finding the centers (cx,’, cyo) and (cx;’, cy:) of the two unit
circles whose circumferences pass through two given points. Finally, the center
points are placed through an inverse transformation to obtain solutions in the
original coordinate system.

The center points of the two unit circles that pass through points (xo, 1) and
(x1, 1) are given by (x,, + Ay*d, v, F Ax*d), where x,, = (xo + X1)/2, Y = (Yo + y1)/2,
Ax = (X - x1) , Ay = (yo - 1), and d = VAAAX® + AyY) - ¥4). If d is infinite or
imaginary, no solution exists due to the input points being coincident or too far
apart, respectively.

The angles 01 and 62 may be found by finding the slope of the endpoints on
the circle and computing arctangents.

164

OpenVG 1.0 Specification 17.4 — Converting from Endpoint to Center Parameterization

The following code illustrates the process of computing the ellipse centers. The
findUnitCircles function is called by findEllipses following inverse
transformation of the original ellipse parameters.

#i ncl ude <mat h. h>

#i f ndef M_PI
#define M Pl 3.14159265358979323846
#endi f

/[* Gven: Points (x0, y0) and (x1, yl)
* Return: TRUE if a solution exists, FALSE otherw se
* Circle centers are witten to (cx0, cy0) and (cx1, cyl)
*/
static VGbool ean
findUnitCircl es(double x0, double y0, double x1, double y1,
doubl e *cx0, double *cyO,
doubl e *cx1, double *cyl)

{
/* Conpute differences and averages */
doubl e dx = x0 — x1;
double dy = y0 — y1
double xm = (x0 + x1)/2
double ym= (y0 + y1)/2

doubl e dsq, disc, s, sdx, sdy;

/* Solve for intersecting unit circles */

dsqg = dx*dx + dy*dy;

if (dsq == 0.0) return VG FALSE; /* Points are coincident */
disc = 1.0/dsq — 1.0/4.0;

if (disc < 0.0) return VG FALSE; /* Points are too far apart */
s = sqrt(disc);

sdx = s*dx;
sdy = s*dy;
*cx0 = xm + sdy;
*cy0 = ym — sdx;
*cx1l = xm — sdy;
*cyl = ym + sdx;

return VG _TRUE;

165

OpenVG 1.0 Specification 17.4 — Converting from Endpoint to Center Parameterization

/*
*
*

*

*

G ven: Ellipse parameters rh, rv, rot (in degrees),
endpoi nts (x0, y0) and (x1, y1)
Return: TRUE if a solution exists, FALSE otherw se
Ellipse centers are witten to (cx0, cy0) and (cxl, cyl)
/

VGbool ean

fi

ndEl | i pses(doubl e rh, double rv, double rot,
doubl e x0, doubl e yO, double x1, double y1,
doubl e *cx0, double *cyO, double *cx1, double *cyl)

doubl e COS, SIN, xOp, yOp, x1lp, ylp, pcx0, pcyO, pcx1l, pcyl;

/* Convert rotation angle from degrees to radians */
rot *= M PI/180.0;

/* Pre-conpute rotation matrix entries */
COs = cos(rot); SIN = sin(rot);

[* Transform (x0, y0) and (x1, yl) into unit space */
[* using (inverse) rotate, followed by (inverse) scale */

x0p = (x0*COS + y0*SIN)/rh;
yOp = (-x0*SIN + y0*COS)/rv;
x1lp = (x1*COS + y1*SIN)/rh;
ylp = (-x1*SIN + y1*COS)/ rv;

if (!findUnitCrcles(x0p, yOp, x1p, ylp,
&pcx0, &pcy0, &pexl, &pcyl)) {
return VG _FALSE
}

[* Transform back to original coordinate space */
[* using (forward) scale followed by (forward) rotate */

pcx0 *= rh; pcy0 *= rv;
pcxl *= rh; pcyl *= rv;

*cx0 = pcx0*COS — pcyO*SIN
*cy0 = pcx0*SIN + pcy0* COS
*cx1l = pcx1*COS — pcyl*SIN
*cyl = pcx1*SIN + pcyl* COS

return VG _TRUE;

166

OpenVG 1.0 Specification 17.5 - Implicit Representation of an Ellipse

17.5 Implicit Representation of an Ellipse

An ellipse (or any conic section) may be written in the implicit form:
AX+Bx y+Cy2+Dx+E y+F=0

This equation describes an ellipse (or circle) if B> -4 A C < 0 (and certain other
degeneracies do not occur). The center of the ellipse is located at:

(ex,cpy)= (2CD—-BE,2AE—-BD)

B'—4A4C

The ellipse may be re-centered about (0, 0) by substituting x «x+cx, y «y+cy
to obtain an implicit equation with D = E = 0:

AE%CDZ—BDE+

. F|=0
B'=44C

Ax2+Bxy+Cy2+

For a centered ellipse, the constant term must be equal to -1 since the entire
formula has the form of (x")* + (y")* - 1 where x“and y~ contain no constant terms.
Thus in order to determine the radius and axes of a centered ellipse we only
need to be concerned with equations of the form:

AX+Bx y+Cy’=1=0

The angle of rotation is given by:

0, if B=0
i if B£0and A=C
0= 1 1 and A=
1, o B)
2‘[an 4 C) , otherwise

Applying an inverse rotation by substituting x —x cos(-0) +y sin(-0) and
Yy <y cos(-6) —x sin(-0), we obtain a further simplification to an unrotated form:

167

OpenVG 1.0 Specification 17.5 - Implicit Representation of an Ellipse

where:
Ap’+C y’=1=0 if p=0
B .
4= A+3, if B#0and A=C
%(A+C+K(A—C)), otherwise
C, if B=0
A—é if B#O0and A=C
C= > i and A=
%(A+C—K(A—C)), otherwise
| 2
whereK=“1+L2
| 4=0)

The radii of the centered, unrotated ellipse are given by:

rh=

rv=

1 R
| A el

17.6 Transformation of Ellipses

As previously noted, an ellipse may be viewed as the result of a scale, rotation,
and translation applied to the unit circle:

X rhcos(¢p) -rvsin(¢p) cx| | cos(0)
y| =| rhsin(¢p) rvcos(¢p) cy| | sin(0)
1 0 0 1 1

The resulting ellipse satisfies an implicit equation generated by placing each
point on the ellipse through an affine transformation M that is the inverse of the
transformation above. The resulting points lie on the unit circle, and therefore
satisfy the implicit equation x* + y* = 1.

168

OpenVG 1.0 Specification 17.6 - Transformation of Ellipses

If M is defined as:
-1
My, My My, rhcos(¢p) -rvsin(¢p) cx
M= m, m,, m,|=| rhsin(¢p) rvcos(¢p) cy
0 0 1 0 0 1

then the implicit equation for the ellipse is:

(mgyx +my, y+m02)2+(m10x+m11 y+m12)2— 1=0

which may be written in standard form as:
Ax’+Bx y+Cy’+Dx+E y+F=0

where:
2 2
A=myy+m),
B=2(m00m01+m10m“)
C=m§1+m?1
D=20mmmm+mmmn)
E=2(m01m02+m11m12)

F=m&+mi—1

The center, rotation angle, and radii of the ellipse may be determined using the
formulas from the previous section.

In practice, it may be simpler to represent a transformed ellipse as the affine
transformation mapping an arc of the unit circle into it. The ellipse may be
rendered by concatenating its transform with the current transform and

rendering the circular arc. It may be transformed by simply concatenating the
transforms.

169

OpenVG 1.0 Specification 18 - Appendix B: Header Files

18 Appendix B: Header Files

This section defines minimal C language header files for the type definitions
and functions of OpenVG and the VGU utility library. The actual header files
provided by a platform vendor may differ from those shown here.

openvg.h

/'k*'k*'k*'k*'k*'k*'k*'k*'k*'k*'k*'k*'k*'k*'k*'k*'k*'k*-k*-k*-k*-k*-k*-k***********************
*

*
* Sanpl e inpl ementation of openvg.h, version 1.0.1 g
* *
* Copyright © 2005-2007 The Khronos G oup *
* *
* *

Rk R S S S kS S S kI kO

/

#i f ndef _OPENVG H
#defi ne _OPENVG H

#i fdef __ cpluspl us
extern "C' {
#endi f

#i ncl ude <khronos_types. h>
#defi ne OPENVG VERSION 1 0 1

typedef khronos_f| oat VG | oat ;
typedef khronos_int8_t VCbyt e;
typedef khronos_uint8 t VGubyte;
typedef khronos_intl16_t VGshort;
typedef khronos_int32_t VG nt;
typedef khronos_uint32_t VGQuint;
typedef khronos_uint32_t VGoitfield;

typedef enum {
VG FALSE = 0,
VG TRUE =1
} VCGbool ean;

#defi ne VG_MAXSHORT ((VGshort) ((~((unsigned)0)) >> 1))
#define VG MAXINT ((VG nt) ((~((unsigned)0)) >> 1))

typedef VG@ui nt VGHandl e;
#define VG | NVALI D_HANDLE ((VGHandl e) 0)

typedef enum {

VG_NO_ERROR = 0,

VG _BAD_HANDLE_ERROR = 0x1000,
VG_| LLEGAL_ARGUMENT ERROR = 0x1001,
VG_OUT_OF_MEMORY_ERROR = 0x1002,
VG_PATH_CAPABI LI TY_ERROR = 0x1003,
VG_UNSUPPORTED | MAGE_FORMAT ERROR = 0x1004,
VG_UNSUPPORTED PATH_FORMAT ERROR = 0x1005,

170

OpenVG 1.0 Specification 18 - Appendix B: Header Files

VG_| MAGE_|I N_USE_ERROR = 0x1006,
VG_NO_CONTEXT_ERROR = 0x1007
} VCErr or Code;
typedef enum {
/* Mbde settings */
VG_MATRI X_MODE = 0x1100,
VG _FI LL_RULE = 0x1101,
VG | MAGE_QUALI TY = 0x1102,
VG_RENDERI NG_QUALI TY = 0x1103,
VG_BLEND_MODE = 0x1104,
VG_| MAGE_MODE = 0x1105,
/* Scissoring rectangles */
VG_SCl SSOR_RECTS = 0x1106,
/* Stroke paranmeters */
VG_STROKE_LI NE_W DTH = 0x1110,
VG_STROKE_CAP_STYLE = Ox1111,
VG _STROKE_JO N_STYLE = 0x1112,
VG STROKE M TER LIM T = 0x1113,
VG_STROKE_DASH_PATTERN = 0x1114,
VG_STROKE_DASH_PHASE = 0x1115,
VG _STROKE_DASH_PHASE RESET = 0x1116,

/* Edge fill color for VG TILE FILL tiling node */
VG TI LE_FI LL_COLOR = 0x1120,

/* Color for vgd ear */
VG _CLEAR _COLOR = 0x1121,

/* Enabl e/ di sabl e al pha maski ng and sci ssoring */

VG_MASKI NG = 0x1130,
VG_SCI SSORI NG = 0x1131,
/* Pixel layout information */

VG_PI XEL_LAYOUT = 0x1140,
VG_SCREEN_LAYQUT = 0x1141,

/* Source format selection for image filters */
VG _FI LTER_FORVAT_LI NEAR 0x1150,
VG _FI LTER_FORVAT_PREMULTI PLI ED 0x1151,

/* Destination wite enable mask for image filters */

VG _FI LTER_CHANNEL_MASK = 0x1152,
/* Inplenentation limts (read-only) */

VG_MAX_SCI SSOR_RECTS = 0x1160,
VG_MAX_DASH_COUNT = 0x1161,
VG_MAX_KERNEL_SI ZE = 0x1162,
VG_MAX_SEPARABLE KERNEL_SI ZE = 0x1163,
VG_MAX_COLOR_RAMP_STOPS = 0x1164,
VG_MAX_| MAGE_W DTH = 0x1165,
VG MAX_| MAGE HEI GHT = 0x1166,
VG MAX_| MAGE PI XELS = 0x1167,
VG MAX_| MAGE BYTES = 0x1168,

171

OpenVG 1.0 Specification

VG_MAX_FLOAT
VG_MAX_GAUSSI AN_STD _DEVI ATI ON
} VGPar anilype;

typedef enum {
VG_RENDERI NG_QUALI TY_NONANTI ALI ASED
VG_RENDERI NG_QUALI TY_FASTER
VG_RENDERI NG_QUALI TY_BETTER

} VGRenderingQuality;

typedef enum {
VG_PI XEL_LAYOUT _UNKNOMN
VG_PI XEL_LAYQUT_RGB_VERTI CAL
VG_PI XEL_LAYQUT_BGR_VERTI CAL
VG_PI XEL_LAYQUT_RGB_HORI ZONTAL
VG_PI XEL_LAYQUT_BGR_HORI ZONTAL
} VGPi xel Layout ;

typedef enum {
VG_MATRI X_PATH_USER_TO_SURFACE
VG_MATRI X_| MAGE_USER TO_SURFACE
VG _MATRI X_FI LL_PAI NT_TO_USER
VG_MATRI X_STROKE_PAI NT_TO_USER
} VGwat ri xMode;

typedef enum {
VG_CLEAR MASK
VG _FI LL_MASK
VG_SET_MASK
VG _UNI ON_ MASK
VG _| NTERSECT MASK
VG _SUBTRACT MASK

} VGvaskOper ati on;

#def i ne VG_PATH_FORVAT STANDARD 0

typedef enum {
VG _PATH_DATATYPE_S 8
VG_PATH_DATATYPE_S 16
VG_PATH_DATATYPE_S_ 32
VG_PATH_DATATYPE_F

} VGPat hDat at ype;

typedef enum {
VG_ABSCLUTE
VG_RELATI VE

} VGPat hAbsRel ;

typedef enum {
VG_CLOSE_PATH
VG_MOVE_TO
VG LI NE_TO
VG _HLI NE_TO
VG VLI NE_TO
VG _QUAD TO
VG CUBI C TO

18 - Appendix B: Header Files

0x1169,
O0x116A

0x1200,
0x1201,
0x1202 /* Default */

0x1300,
0x1301,
0x1302,
0x1303,
0x1304

0x1400,
0x1401,
0x1402,
0x1403

0x1500,
0x1501,
0x1502,
0x1503,
0x1504,
0x1505

WN PO

<< 1),
<< 1),
<< 1),
<< 1),
<< 1),
<< 1),
<< 1),

NN AN AN~~~
OOk wWNE O

172

OpenVG 1.0 Specification

18 - Appendix B: Header Files

VG_SQUAD_TO =(7 << 1),

VG_SCUBI C_TO =(8 << 1),

VG_SCCWARC_TO = (9 <<1,

VG_SCWARC_TO = (10 << 1),

VG_LCCWARC_TO = (11 << 1),

VG _LCWARC_TO = (12 << 1)

} VGPat hSegnent ;
typedef enum {

VG_MOVE_TO_ABS = VG_MOVE_TO | VG ABSOLUTE,
VG_MOVE_TO_REL = VG_MOVE_TO | VG _RELATI VE,
VG LI NE_TO ABS = VG LINE_TO | VG ABSOLUTE,
VG LI NE_TO_REL = VG_LI NE_TO | VG _RELATI VE,
VG _HLI NE_TO_ABS = VG HLINE_TO | VG ABSOLUTE,
VG HLI NE_TO_REL = VG HLINE_TO | VG RELATI VE,
VG VLI NE_TO_ABS = VG VLINE_TO | VG ABSOLUTE,
VG VLI NE_TO _REL = VG VLINE_TO | VG RELATI VE,
VG_QUAD_TO_ABS = VG_QUAD_TO | VG _ABSOLUTE,
VG_QUAD_TO_REL = VG_QUAD_TO | VG _RELATI VE,
VG_CUBI C_TO_ABS = VG CUBIC TO | VG ABSOLUTE,
VG _CUBI C_TO _REL = VG CUBIC TO | VG RELATI VE,
VG_SQUAD_TO_ABS = VG _SQUAD TO | VG ABSOLUTE,
VG _SQUAD_TO_REL = VG _SQUAD TO | VG RELATI VE,
VG_SCUBI C_TO_ABS = VG SCUBI C_TO | VG ABSOLUTE,
VG_SCUBI C_TO_REL = VG _SCUBI C_TO | VG RELATI VE,
VG_SCCWARC_TO_ABS = VG_SCCWARC TO | VG ABSOLUTE,
VG_SCCWARC_TO_REL = VG_SCCWARC TO | VG _RELATI VE,
VG_SCWARC_TO_ABS = VG_SCWARC TO | VG ABSOLUTE,
VG_SCWARC_TO_REL = VG_SCWARC TO | VG RELATI VE,
VG_LCCWARC_TO_ABS = VG_LCCOWARC TO | VG ABSOLUTE,
VG _LCCWARC TO REL = VG _LCOWARC TO | VG RELATI VE,
VG _LCWARC_TO_ABS = VG LOWARC TO | VG ABSOLUTE,
VG _LCWARC_TO_REL = VG LOWARC TO | VG RELATI VE

} VGPat hCommand,;

typedef VGHandl e VGPat h;

typedef enum {

VG PATH CAPABI LI TY_APPEND_FROM = (1 << 0),
VG_PATH_CAPABI LI TY_APPEND_TO = (1 << 1),
VG_PATH_CAPABI LI TY_MODI FY = (1 << 2),
VG _PATH_CAPABI LI TY_TRANSFORM FROM = (1 << 3),
VG _PATH_CAPABI LI TY_TRANSFORM TO = (1 << 4),
VG _PATH_CAPABI LI TY_| NTERPOLATE_FROM = (1 << 5),
VG_PATH_CAPABI LI TY_| NTERPOLATE_TO = (1 << 6),
VG _PATH_CAPABI LI TY_PATH LENGTH = (1 << 7),
VG _PATH_CAPABI LI TY_PQO NT_ALONG PATH = (1 << 8),
VG_PATH_CAPABI LI TY_TANGENT _ALONG PATH = (1 << 9),
VG _PATH_CAPABI LI TY_PATH BOUNDS = (1 << 10),
VG _PATH_CAPABI LI TY_PATH TRANSFORVED BOUNDS = (1 << 11),

VG_PATH_CAPABI LI TY_ALL
} VGPat hCapabiliti es;

(1 <<12) - 1

typedef enum {
VG_PATH_FORVAT
VG_PATH_DATATYPE

0x1600,
0x1601,

173

OpenVG 1.0 Specification 18 - Appendix B: Header Files

VG_PATH_SCALE = 0x1602,
VG_PATH_BI AS = 0x1603,
VG_PATH_NUM_SEGVENTS = 0x1604,
VG_PATH_NUM_COCRDS = 0x1605
} VGPat hPar anilype;
typedef enum {
VG_CAP_BUTT = 0x1700,
VG_CAP_ROUND = 0x1701,
VG_CAP_SQUARE = 0x1702
} VGCapStyl e;
typedef enum {
VG JO N_M TER = 0x1800,
VG_JO N_ROUND = 0x1801,
VG JO N_BEVEL = 0x1802
} VQ&oi nStyl e;
typedef enum {
VG_EVEN_ODD = 0x1900,
VG_NON_ZERO = 0x1901
} VGFi || Rul e;
typedef enum {
VG_STROKE_PATH = (1 << 0),
VG _FI LL_PATH = (1 << 1)
} VGPai nt Mode;
typedef VGHandl e VGPai nt ;
typedef enum {
/* Col or paint paraneters */
VG_PAI NT_TYPE = 0x1A00,
VG_PAI NT_COLOR = Ox1A01,
VG_PAI NT_COLOR_RAMP_SPREAD_MCODE = 0x1A02,
VG_PAI NT_COLOR_RAMP_PREMULTI PLI ED = 0x1A07,
VG_PAI NT_COLOR_RAMP_STOPS = 0x1A03,
/* Linear gradient paint paraneters */
VG_PAI NT_LI NEAR_GRADI ENT = O0x1A04,
/* Radi al gradient paint paraneters */
VG_PAI NT_RADI AL_GRADI ENT = Ox1A05,

/* Pattern paint paranmeters */
VG _PAI NT_PATTERN_TI LI NG_MODE = 0x1A06
} VGPai nt Par anType;

typedef enum {

VG_PAI NT_TYPE_COLOR = 0x1B00,
VG_PAI NT_TYPE_LI NEAR_GRADI ENT = 0x1BO1,
VG _PAI NT_TYPE_RADI AL_GRADI ENT = 0x1B02,
VG_PAI NT_TYPE_PATTERN = 0x1B03

} VGPai nt Type;

typedef enum {

174

OpenVG 1.0 Specification 18 - Appendix B: Header Files

VG_COLOR_RAMP_SPREAD PAD = 0x1Q00,
VG_COLOR_RAMP_SPREAD_REPEAT = 0x1001,
VG_COLOR_RAMP_SPREAD_REFLECT = 0x1002

} VGCol or RanpSpr eadMbde;

typedef enum {
VG TI LE_FI LL = 0x1D00,
VG _TI LE_PAD = 0x1DO01,
VG _TI LE_REPEAT = 0x1D02,
VG Tl LE_REFLECT = 0x1D03

} VGITi | i ngMode;

typedef enum {
/* RGB{A X} channel ordering */
VG_sRCGBX_8888 = 0,
VG_sRGBA_8888 = 1,
VG_sRGBA _8888_PRE = 2,
VG_sRGB_565 = 3
VG _sRGBA 5551 = 4,
VG _sRGBA 4444 = b5,
VG sL_8 = 6,
VG | RGBX_8888 = 7,
VG | RGBA 8888 = 8,
VG_| RGBA_8888_PRE = 9,
VG IL_8 = 10,
VG A 8 = 11,
VG BW 1 = 12,
/* {A X} RGB channel ordering */
VG_sXRGB_8888 = 0] (1 << #6),
VG_sARGB_8888 = 1] (1 << ¥6),
VG_sARGB_8888_PRE = 2| (1 << ¥6),
VG _sARGB_1555 = 4] (1 << 6),
VG _sARGB_4444 = 5] (1 << 6),
VG | XRCGB_8888 = 7] (1 << 6),
VG _| ARGB_8888 = 8] (1 << ¥9),
VG_| ARGB_8888_PRE = 9] (1 << ¥9),
/* BGR{A X} channel ordering */
VG_sBGRX_8888 = 0] (1<<7),
VG_sBGRA_ 8888 = 1] (1<<7),
VG_sBGRA_8888_PRE = 2| (1<<7)),
VG _sBCR 565 = 3| (1<<7),
VG _sBCGRA 5551 = 4] (1<<7),
VG _sBGRA 4444 = 5| (1<<7)),
VG | BGRX_8888 = 7] (1<<7),
VG | BGRA 8888 = 8] (1<<7),
VG_| BGRA_8888_PRE = 9| (1<<7),

/* {A, X} BGR channel ordering */

175

OpenVG 1.0 Specification 18 - Appendix B: Header Files

VG_sXBGR_8888 = 0] (1<<86) | (1<<07),
VG_sABGR_8888 = 1] (1<<86) | (1<<7),
VG_sABGR_8888_PRE = 2] (1<<86) | (1<<7),
VG_sABGR_1555 = 4] (1<<6) | (1<<7),
VG _sABCR 4444 = 5| (1<<6) | (1<<7),
VG _| XBGR_8888 = 7| (1<<6) | (1<<7),
VG _| ABGR 8888 = 8| (1<<6) | (1<<7),
VG _| ABGR 8888 _PRE = 9| (1<<6) | (1<<7)
} VG nmageFor mat ;
typedef VGHandl e VA nmage;
typedef enum {
VG_| MAGE_QUALI TY_NONANTI ALI ASED = (1 << 0),
VG | MAGE_QUALI TY_FASTER = (1 << 1),
VG | MAGE_QUALI TY_BETTER = (1 << 2)
} VA mageQual ity;
typedef enum {
VG _| MAGE_FORNVAT = Ox1EO00,
VG_| MAGE_W DTH = Ox1EO01,
VG_| MAGE_HEI GHT = Ox1E02
} VA magePar anType;
typedef enum {
VG_DRAW | MAGE_NORVAL = 0x1FO00,
VG_DRAW | MAGE_MULTI PLY = 0x1FO01,
VG_DRAW | MAGE_STENCI L = 0x1F02
} VA mageMode;
typedef enum {
VG_RED = (1 << 3),
VG_GREEN = (1 << 2),
VG_BLUE = (1 << 1),
VG_ALPHA = (1 << 0)
} Vd mageChannel ;
typedef enum {
VG_BLEND_SRC = 0x2000,
VG _BLEND_SRC OVER = 0x2001,
VG _BLEND DST_OVER = 0x2002,
VG BLEND SRC I N = 0x2003,
VG BLEND DST I N = 0x2004,
VG _BLEND MULTI PLY = 0x2005,
VG _BLEND_SCREEN = 0x2006,
VG_BLEND_DARKEN = 0x2007,
VG _BLEND_LI GHTEN = 0x2008,
VG_BLEND_ADDI Tl VE = 0x2009
} VGBI endMode;
typedef enum {
VG_| MAGE_FORVAT_QUERY = 0x2100,
VG_PATH_DATATYPE_QUERY = 0x2101

} VGHar dwar eQuer yType;

typedef enum {

176

OpenVG 1.0 Specification

18 - Appendix B: Header Files

VG_HARDWARE_ACCELERATED = 0x2200,
VG_HARDWARE_UNACCELERATED = 0x2201
} VCGHar dwar eQuer yResul t ;
typedef enum {
VG_VENDOR = 0x2300,
VG_RENDERER = 0x2301,
VG_VERSI ON = 0x2302,
VG_EXTENSI ONS = 0x2303

} VGStringl D

/* Function

Pr ot ot ypes */

#i f ndef VG _API _CALL
#define VG _API _CALL extern

#endi f
VG APl _CALL

VG APl _CALL
VG APl _CALL

/ *
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VGEr r or Code vgGCet Error (void);

voi d vgFl ush(voi d);
voi d vgFi ni sh(voi d);

Cetters and Setters */

voi d vgSetf (VGParanilype type, V& | oat val ue);

voi d vgSeti (VGParaniType type, VG nt val ue);

voi d vgSet fv(VGPar anifype type, VG nt count,
const V&Il oat * val ues);

voi d vgSeti v(VGParaniType type, VG nt count,
const VG nt * val ues);

VG | oat vgCet f (VGPar amType type);

VG | oat * val ues);
VG nt * val ues);

VG nt vgGet i (VGPar anifype type);
VG nt vgGet Vect or Si ze(VGPar aniType type);
voi d vgGet f v(VGPar anType type, VG nt count,
voi d vgGeti v(VGPar anType type, VG nt count,
voi d vgSet Par anet er f (VGHandl e obj ect,
VG nt paranfype,
VG | oat val ue);
voi d vgSet Par anmet eri (VGHandl e obj ect,
VG nt paraniype,
VG nt val ue);
voi d vgSet Par anet er f v(VGHandl e obj ect,
VG nt par amlype,
VG nt count, const
voi d vgSet Par anet eri v(VGHandl e obj ect,
VG nt paranfype,
VG nt count, const
VG | oat vgCet Par anet er f (VGHandl e obj ect,

VG nt paranfype);
VG nt vgGet Paranet eri (VGHandl e obj ect,
VG nt paranmlype);

VG | oat * val ues);

VG nt * val ues);

VG nt vgGet Par anet er Vect or Si ze(VGHandl e obj ect,
VG nt par anifype);

voi d vgCet Par anet er f v(VGHandl e obj ect,

177

OpenVG 1.0 Specification

VG APl _CALL

VG nt paranfype,

V@ nt count, VG| oat * val ues);
voi d vgGCet Par anet eri v(VGHandl e obj ect,

VG nt paraniype,

V@ nt count, VG nt * val ues);

/* Matrix Manipul ati on */

VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL

voi d vgLoadl dentity(void);

voi d vgLoadMatri x(const V& loat * m;

voi d vgGetMatri x(V&loat * m;

voi d vgMul t Matri x(const V&l oat * m;

voi d vgTransl ate(V& |l oat tx, V&Iloat ty);
voi d vgScal e(V& | oat sx, V&I oat sy);

voi d vgShear (V& | oat shx, V&I oat shy);
voi d vgRot at e(VG | oat angl e) ;

/* Masking and d earing */

VG APl _CALL
VG APl _CALL

[* Pat hs */
VG APl _CALL

VG APl _CALL
VG _API _CALL
VG APl _CALL
VG APl _CALL

VG APl _CALL
VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

voi d vghvask(VA mage mask, VGvaskOperation operati on,
V@nt x, V@Gnt y, V@nt width, VGnt height);
void vgCear(VGnt x, V@nt y, VGnt width, VG nt height);

VGPat h vgCr eat ePat h(VG nt pat hFor mat ,
VGPat hDat at ype dat at ype,
V& | oat scal e, V&I oat bias,
VG nt segnent Capaci t yHi nt,
VG nt coor dCapaci t yHi nt,
V&oitfield capabilities);
voi d vgd ear Pat h(VGPat h path, VGitfield capabilities);
voi d vgDestroyPat h(VGPat h pat h);
voi d vgRenmpbvePat hCapabi |l i ti es(VGPat h pat h,
VGoitfield capabilities);
VGhitfield vgGet Pat hCapabi liti es(VGPath path);
voi d vgAppendPat h(VGPat h dst Path, VGPath srcPath);
voi d vgAppendPat hDat a(VGPat h dst Pat h,
VG nt nunSegnent s,
const VG@ubyte * pat hSegnents,
const void * pathData);
voi d vghodi fyPat hCoor ds(VGPat h dst Path, VG nt startl ndex,
VG nt nunBSegnent s,
const void * pathData);
voi d vgTransf or nPat h(VGPat h dst Pat h, VGPath srcPath);
VGhool ean vgl nt er pol at ePat h(VGPat h dst Pat h,
VGPat h start Pat h,
VGPat h endPat h,
VG | oat anount);
VG | oat vgPat hLengt h(VGPat h pat h,
VG nt start Segnent,
voi d vgPoi nt Al ongPat h(VGPat h pat h,
VG nt start Segnent,
V& | oat di st ance,
V&l oat * x, V& loat * vy,
VG| oat * tangent X, V& | oat
voi d vgPat hBounds(VGPat h pat h,
VG loat * mnX, VG&I|loat * mnY,
VG| oat * width, V&Il oat * height);

178

18 - Appendix B: Header Files

VG nt nunBSegnents) ;

VG nt nunSegnent s,

* tangentY);

OpenVG 1.0 Specification

VG APl _CALL

VG APl _CALL

[* Paint */
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG APl _CALL
VG _API _CALL

/* | mages */

VG APl _CALL
VG APl _CALL
VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL
VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

VG APl _CALL

18 - Appendix B: Header Files

voi d vgPat hTr ansf or redBounds(VGPat h pat h,
V&l oat * m nX, V&I oat
V&l oat * width, V&I oat
voi d vgDrawPat h(VGPat h path, VCGbitfield paint Mbdes);

* mnY,
* hei ght);

VGPai nt vgCr eat ePai nt (voi d) ;

voi d vgDestroyPai nt (VGPai nt pai nt);

voi d vgSet Pai nt (VGPai nt paint, VGbitfield paintMdes);
VGPai nt vgCet Pai nt (VGPai nt Mode pai nt Mbde) ;

voi d vgSet Col or (VGPai nt pai nt, VQuint rgba);

VQui nt vgGet Col or (VGPai nt paint);

voi d vgPai nt Patt ern(VGPai nt paint, VA nage pattern);

VG mage vgCr eat el mage(VA nageFor mat f or mat ,
V@ nt width, VG nt height,
V&itfield all owedQuality);
vgDest r oyl mage(VG mage i mage) ;
vgd ear | mage(VA mage i mage,
VG nt x, VG@nt vy,
vgl mageSubDat a(VA nage i nage,
const void * data, VG nt dataStride,
VA mageFor mat dat aFor mat ,
V@nt x, V@Gnt y, V@nt width, VGnt height);
vgGet | mageSubDat a(V@ mage i mage,
void * data, VG nt dataStride,
VG mageFor mat dat aFor mat
VG nt x, V@nt vy,
VG nt width, VG nt height);
VG mage vgChi | dl mage(VA nmage parent,
VG nt x, VG nt
VA mage vgGet Par ent (VA nage i mage) ;
voi d vgCopyl mage(VA nage dst, VG nt
VA mage src, VG nt
VG nt width, VG nt
VGbool ean dither);
vgDr awl mage(VA nage i mage) ;
vgSet Pi xel s(VG nt dx, VG nt dy,
VA mage src, VG nt sx, VG nt sy,
VG nt width, VG nt height);
vgWit ePi xel s(const void * data, V@ nt dataStride,
VG mageFor mat dat aFor mat ,
VG nt dx, VG nt dy,
VG nt width, VG nt height);
vgGet Pi xel s(VA nmage dst, VG nt dx, VG nt dy,
VG nt sx, VG nt sy,
VG nt width, VG nt height);
vgReadPi xel s(void * data, VG nt dataStri de,
VA mageFor mat dat aFor mat ,
V@ nt sx, VG nt sy,
V@ nt width, VGnt height);
vgCopyPi xel s(VG nt dx, VG nt dy,
V@ nt sx, VG nt sy,
V@ nt width, VG nt height);

voi d
voi d
VG nt width, VG nt height);
voi d

voi d

y, VG nt width, VG nt height);

dx, VG nt dy,
sx, VG nt sy,
hei ght,

voi d

voi d

voi d

voi d

voi d

voi d

179

OpenVG 1.0 Specification 18 - Appendix B: Header Files

/* Image Filters */
VG_API _CALL voi d vgCol or Matri x(VA mage dst, VA nage src,
const V& loat * matrix);
VG APl _CALL voi d vgConvol ve(Vd nage dst, VG nage src,
VG@ nt kernel Wdth, VG nt kernel Hei ght,
VG nt shiftX, VG nt shifty,
const VGshort * kernel,
VG | oat scal e,
VG | oat bi as,
VGTi | i ngvbde tilingMode);
VG APl _CALL voi d vgSepar abl eConvol ve(VA nage dst, VA mage src,
VG nt kernel W dt h,
VG nt ker nel Hei ght,
VG nt shiftX, VG nt shiftY,
const VGshort * kernel X,
const VGshort * kernel,
VG | oat scal e,
VG | oat bi as,
VGTi | i ngvbde tilinghWode);
VG APl _CALL voi d vgGaussi anBl ur (VA nmage dst, VG mage src,
VG | oat st dDevi ati onX,
V& | oat stdDevi ationY,
VGTi | i ngMbde tilingMode);
VG APl _CALL void vgLookup(VGA nage dst, VA namge src,
const VG@ubyte * redLUT,
const VQubyte * greenlLUT,
const VQubyte * bl uelLUT,
const VQubyte * al phalLUT,
VGbool ean out put Li near,
VGhool ean out put Premul tiplied);
VG APl _CALL voi d vgLookupSi ngl e(VA nmage dst, VA mage src,
const V&uint * | ookupTabl e,
VA mageChannel sour ceChannel ,
VGhool ean out put Li near,
VGhool ean out put Prenul tiplied);

[* Hardware Queries */
VG _API _CALL VGHar dwar eQuer yResul t vgHar dwar eQuer y(VGHar dwar eQuer yType key,
V@ nt setting);

/* Renderer and Extension |Information */
VG APl _CALL const VGubyte * vgGetString(VGStringl D nane);

#i fdef __ cpl uspl us
} /* extern "C' */
#endi f

#endif /* _OPENVG H */

180

OpenVG 1.0 Specification 18 - Appendix B: Header Files

vgu.h

/**
* *
* Sanpl e inplementation of vgu.h, version 1.0.1 *

* *

* Copyright © 2005-2007 The Khronos G oup *

* *

* *

Rk S S kb Sk R R S S Rk O b Sk kR R R ok kR O R R R Sk I

/

#i f ndef _VGU H
#define _VGU H

#i fdef __ cpl uspl us

extern "C' {

#endi f

#i ncl ude <vg/ openvg. h>
#define VGQU VERSION 1 0 1
#i f ndef VGU_API _CALL
#define VGU_API _CALL extern
#endi f

typedef enum {

VGU_NO_ERROR = 0,
VGU _BAD HANDLE ERROR = 0xFO000,
VGU | LLEGAL_ARGUMENT _ERROR = 0xFO001,
VGU_QUT_OF MEMORY_ERROR = 0xF002,
VGU_PATH_CAPABI LI TY_ERROR = 0xFO003,
VGU_BAD WARP_ERROR = OxF004
} VQUErr or Code;
typedef enum {
VGU_ARC_OPEN = O0xF100,
VGU_ARC_CHORD = OxF101,
VGU_ARC PI E = O0xF102
} VGQUAr cType;

VGU_API _CALL VGUError Code vguLi ne(VGPat h pat h,
VG | oat x0, V&Il oat yO,
VG | oat x1, V&Il oat yl);

VGU_API _CALL VGUError Code vguPol ygon(VGPat h pat h,
const V& loat * points, VG nt count,
VGhool ean cl osed);

VGU_API _CALL VGUError Code vguRect (VGPat h pat h,
VG| oat x, V&I oat vy,
VG| oat wi dth, V&I oat height);

VGU_API _CALL VGUError Code vguRoundRect (VGPat h pat h,
VG| oat x, V&I oat vy,
VG| oat width, V&I oat height,
V& | oat arcWdth, VG| oat arcHeight);

181

OpenVG 1.0 Specification 18 - Appendix B: Header Files

VGU_API _CALL VGUError Code vguEl li pse(VGPat h pat h,
VG| oat cx, V&Il oat cy,
VG| oat wi dth, V&I oat height);

VGU_API _CALL VGUError Code vguArc(VGPat h pat h,
VGl oat x, V&Il oat vy,
VG | oat wi dth, V&I oat height,
VG| oat startAngle, V&I oat angl eExtent,
VGUAr cType ar cType);

VGU_API _CALL VGUError Code vguConput eWar pQuadToSquar e(VG | oat sx0, V& | oat syO,
V& | oat sx1, V& | oat syil,
V& | oat sx2, V& | oat sy2,
VG | oat sx3, V& | oat sys3,
V&l oat * matrix);

VGU_API _CALL VGUError Code vguConput eWar pSquar eToQuad(VG | oat dx0, V& | oat dyO,
VG | oat dx1, V& | oat dyl,
VG | oat dx2, V& | oat dy2,
VG | oat dx3, V& | oat dy3,
VG loat * matrix);

VGU_API _CALL VGUError Code vguConput eWar pQuadToQuad(V& | oat dx0, VG| oat dyO,
V& | oat dx1, V& | oat dyil,
V& | oat dx2, V& | oat dy2,
VG | oat dx3, V& | oat dy3,
VG | oat sx0, V&I oat syO,
VG| oat sx1, V& | oat syl,
VG | oat sx2, V& | oat sy2,
VG | oat sx3, V&Il oat sy3,
VG loat * matrix);

#i fdef __cpl uspl us
} /* extern "C" */
#endi f

#endi f /* #ifndef _VGQU H */

182

OpenVG 1.0 Specification 19 - Bibliography

19 Bibliography
ADOB99 Adobe Systems Incorporated: PostScript Language Reference Manual
(third edition), Addison-Wesley, Reading, MA, 1999.

ADOBO6a Adobe Systems Incorporated: PDF Reference (sixth edition):
http:/ /www.adobe.com/devnet/acrobat/pdfs/pdf reference.pdf

ADOBO06b Macromedia, Inc., Macromedia Flash Developer Center:
http:/ /www.adobe.com/devnet/flash

FvDFH95 Foley J., A. van Dam, S. Feiner and]J. Hughes, Computer Graphics:
Principles and Practice (second edition), Addison-Wesley, Reading, MA, 1995.

HECKS89 Heckbert, Paul, Fundamentals of Texture Mapping and Image Warping,
Master’s thesis, UCB/CSD 89/516, CS Division, U.C. Berkeley, June 1989.

ITU90 Recommendation ITU-R BT.709, Basic Parameter Values for the HDTV
Standard for the Studio and for International Programme Exchange (1990), ITU,
Geneva, Switzerland.

PORT84 Porter, T. and T. Duff, “Compositing Digital Images,” Computer
Graphics 18(3):253-259 (proc. SIGGRAPH 1984), July 1984.

POYNO3 Poynton, Charles, Digital Video and HDTV Algorithms and Interfaces,
Morgan Kaufmann, San Francisco, 2003.

sRGB99 IEC 61966-2-1, Multimedia systems and equipment — Colour
measurement and management — Part 2-1: Default RGB colour space — sRGB:
http//fwww.w3.org/Graphics/Color/sRGB.html

SUNO04 Sun Microsystems, Inc., Java 2D API Home Page:
http:/ /java.sun.com/products/java-media/2D

SVGF05 W3C Recommendation, Scalable Vector Graphics (SVG) Full 1.2
Specification: http:/ /www.w3.org/TR/SVG12

SVGT06 W3C Recommendation, Scalable Vector Graphics (SVG) Tiny 1.2
Specification: http:/ /www.w3.org/TR/SVGMobilel2

WOLB90 Wolberg, G., Digital Image Warping, IEEE Computer Society Press,
Washington, D.C., 1990.

WYSZ00 Wyszecki, G. and W. S. Stiles, Color Science: Concepts and
Methods, Quantitative Data and Formulae, Wiley-Interscience, New York, 2000.

183

http://www.w3.org/TR/SVGMobile12/
http://www.w3.org/TR/SVG12
http://java.sun.com/products/java-media/2D/
http://www.w3.org/Graphics/Color/sRGB.html
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference.pdf

OpenVG 1.0 Specification 20 - Document History

20 Document History

Version 1.0 ratified August 2005

Version 1.0.1 ratified January 2007

Changes from version 1.0 (by section number):

.« 32 -
« 341 -
+ 52 -

clarification: VGbool ean is an enumeration
provide further explanation of linear pixel formats
new behavior: restrict values of count parameter in vgGet/Set*v,

vgGet/SetParameter*v; describe error behavior of getters

+ 521 -

change default value of VG FILTER FORVAT_LINEAR and

VG_RENDERI NG_QUALI TY; add VG_SCREEN _LAYQUT parameter; add
VG_STROKE_DASH_PHASE_RESET parameter

« 6.2 - define behavior of VG_SCREEN_LAYQUT parameter

+ 8345 - clarify join behavior for smooth segments following line segments

+ 84 - change behavior of elliptical arcs with one radius equal to 0

« 85 - typo: VG_PATH _FORMAT_STANDARD is passed to vgCreatePath, not
vgAppendPathData

« 852 - clarification: conversion of path segments from relative to absolute form

takes place during rendering

+ 86.7-8 -

new behavior: vgTransformPath and vglnterpolatePath promote HLI NE

and VLI NE segments to general (2-coordinate) form; the parameterization of transformed
elliptical arc segments is undefined

+ 8611 -
length

- 871 -

- 873 -

- 874 -

« 8745 -

. 9 -

clarification: normalization of tangents; approximate computation of path

clarification: implicit closure takes place during rendering

clarification: definition and illustration of the miter length

clarification: stroke generation takes place in user coordinates.

Add new behavior controlled by VG_STROKE_DASH_PHASE_RESET

paint coordinates must be evaluated within 1/8 of a pixel; clarify source of

user transform Tu

+ 933 -

add VG_PAI NT_COLOR_RAMP_PREMULTI PLI ED flag to control whether

gradient colors are interpolated in premultiplied form

+ 933 -

new behavior: count must be a multiple of 5 in vgSetParameter for color

ramp stops (see 5.2); simplify description of rules for repeat and reflect pad modes

+ 102 -
+ 105 -

add new values to VA mageFor nat enumeration
clarification: vgImageSubData clamps premultiplied color values to their

corresponding alpha values

+ 108 -

clarify behavior of VG _DRAW | MAGE_NCRVAL when the source has an

alpha channel; new behavior: when a projective transformation is enabled, vgDrawImage
always uses VG_DRAW | MAGE_NORVAL mode; clarify behavior when a linear source
image is used in VG_DRAW | MAGE_MJULTI PLY mode

« 1091 -

clarification: vgWritePixels clamps premultiplied color values to their

corresponding alpha values

« 124 -
« 1432 -

clarification: input color values are clamped at 1
clarify display dependency of vgGetString; vgGetString(VG_VERSI ON)

returns the specification version.

184

OpenVG 1.0 Specification 20 - Document History

+ 161.6 - typo:error in vguArc pseudo-code
- 18 - remove enumerated values VG PATH DATATYPE | NVALID and
VG_| MAGE_FORMAT | NVALI D

21 Acknowledgments
This specification was developed by the Khronos OpenVG working group:

* Andrzej Mamona, AMD, Chair + Woo-Seon Kim (%1 9-41), LG Electronics
* Daniel Rice, Google, Specification Editor * Yong-Moo Kim (7c1 %Pr), LG Electronics
+ Koichi Mori (# {%—), Nokia, Past Chair * Masaki Hamada (;&H ##if), Mitsubishi Electric
* Neil Trevett, NVIDIA, Past Chair * Hiroyasu Negishi ({R/F 1#&), Mitsubishi Electric
* Gary Pallett, NVIDIA * Vladimir Levantovsky, Monotype Imaging
* Mike Agar, ALT Software ¢ Chris Tremblay, Motorola

+ Espen Amodt, ARM + Hwanyong Lee (°] £-&), HUONE

* Frode Heggelund, ARM * Junyoung Lee (°] +%), HUONE

* Borgar Ljosland, ARM * Hyunchan Sung(’d &%}, HUONE

¢ Ed Plowman, ARM ¢ Tomi Aarnio, Nokia

* TK Chan (Bf4#), AMD « Tolga Capin, Nokia

¢ Chris Grimm, AMD ¢ Suresh Chitturi, Nokia

¢ Marko Laiho, AMD * Sila Kayo, Nokia

¢ Petri Nordlund, AMD * Clay Montgomery, Nokia

¢ Kimihiko Sato, AMD * Tero Pihlajakoski, Nokia

* Robert Simpson, AMD e Kari Pulli, Nokia

¢ Mika Tuomi, AMD * Jani Vaarala, Nokia

* Keisuke Kiri (filH: #ith), DMP Rakesh Jain, NVIDIA

« Eisaku Oobuchi (K %/F), DMP * Tom McReynolds, NVIDIA

* Jacob Strom, Ericsson ¢ Chris Wynn, NVIDIA

¢ Claude Knaus, Esmertec * Mathias Agopian, PalmSource

» Kimball, ETRI + Toshiki Hijjri (b F/#c), Panasonic

+ Kwang-Ho Yang (% %4 %), ETRI + Andy Methley, Panasonic

* Brian Murray, Freescale * Angus Dorbie, Qualcomm

* Yoshikazu Saka (¢ #F0), Fujitsu * Keechang Lee (¢] 71%), Samsung

* Tero Sarkkinen, Futuremark * Jitaek Lim (9 A ®}), Samsung

» Mark Callow, HI Corporation * Jon Leech, SGI

* Naoya Yamamoto (ILI4< [EH1), HI Corporation * Thomas Tannert, SGI

* Antti Hatald, Hybrid Graphics ¢ Rémi Arnaud, SONY

* Harri Holopainen, Hybrid Graphics ¢ Axel Mamode, SONY

* Petri Kero, Hybrid Graphics * Chris Campbell, Sun Microsystems

* Ville Miettinen, Hybrid Graphics * Jerry Evans, Sun Microsystems

+ Kalle Raita, Hybrid Graphics * Sean Ellis, Superscape

* Jussi Rasanen, Hybrid Graphics * Robert Palmer, Symbian

¢ Christofer Akersten, Ikivo * Bill Pinnell, Symbian

¢ Ola Andersson, Ikivo * Lane Roberts, Symbian

* Ben Bowman, Imagination Technologies * Jay Abbott, Tao Group

* Simon Fenney, Imagination Technologies * Bryce Johnstone, Texas Instruments

* Mohit Mehta, Imagination Technologies ¢ Tom Olson, Texas Instruments

* Alex Walters, Imagination Technologies * San-Soo Kim (4 2F7), Wow4M

* Randy Xu, Intel * Sung-Jae Kim (%! A3 Al), Wow4M

+ Hang-Shin Cho (= #+41), LG Electronics

185

OpenVG 1.0 Specification 21 - Acknowledgments

Special thanks to Jussi Rédsdnen of Hybrid Graphics; Petri Nordlund, Robert Simpson,
and Mika Tuomi of AMD (formerly Bitboys); and Tuomas Lukka, Jarno Paananen, and
Sami Tammilehto of the former Bitboys Technology Research Group for creating the
reference implementations; and to those who contributed to the conformance test suite:
Hwanyong Lee, Junyoung Lee, and Hyunchan Sung of HUONE, TK Chan, Robert
Simpson, Valtteri Rantala, Sami Tammilehto, Mika Tuomi, and Miikka Kangasluoma of
AMD; and Jussi Réasédnen and Kalle Raita of Hybrid Graphics.

Thanks are also due to the external reviewers who helped to improve the specification.

22 Indices

Index of Tables

Table 1: Naming and Typographical Conventions............cccccccceeiviininicincinccnnne. 3
Table 2: Pixel Format CONVersions...........cccocociiiiniiiiiiiniiiiccincccecccennnes 12
Table 3: State Elements of a Context...........cccccccovvniiiiiiiiiniiccciiccnnnl7
Table 4: Default Parameter Values for a Context............ccccocoeiiiiiiiiinniiiiininien, 26
Table 5: VGMaskOperation EQUations............ccccccceveevinieinieininieinmmeeieceneceenees 43
Table 6: Client-Side Path Segment Commands...........cccoceceveuerneciniinncnncccnennae. 53
Table 7: Client-Side Path Coordinate Datatypes............cccccoeoieiviiiiiiinniniiiiniaens 54
Table 8: VGPathParamType Datatypes..........cccccocciiiiniiiiiiiiiiiimccccieceenes 63
Table 9: Corresponding Angles and Miter Limits...........ccccccociiiiiiiiiniminnenes 82
Table 10: VGPaintParamType Defaults...........ccccccoiiiiiniiiiiiicccccceceeee 93
Table 11: Symbols Used in Image Format Names............ccccccovueiiiinniinciccnnnnnes 110
Table 12: Image Format Pixel Sizes...........ccccccoviiiiniiiniiiniiiiiiicmiccicciiccces 111
Table 13: Porter-Duff Blending Modes.............ccccccuviiiniiiiniiniiiiciicceicciecees 141
Table 14: Additional Blending Equations.............cccccoccoiviiiiniiiniiiminiiciniciiecenes 142
Table 15: Query Key Enumeration Types..........cccceeivieininiiinieiniiiiiimmcceeennes 143
Table 16: Center Ellipse Parameters............cccccoeueiviriineiniiininiiiniiieciniecieeenes 160
Table 17: Endpoint Ellipse Parameters............ccccoeevvrueinieinincnineinieiienenieeeneenes 161

Index of Figures

Figure 1: The OpenVG Pipeline..........ccccccooiiiiiiininiiiiiiccceeeeereeeeeeeennes 4
Figure 2: VGPixelLayout Values...........cccccooiiiiiiiiiiiiinccccneccceeesiomeceenes 32
Figure 3: Coordinates, Transformation, Clipping, and Scissoring..............cc.c....... 34
Figure 4: Smooth Curve Construction...........ccooeuiuiiiiiiiiiiiiniiccccnes 438
Figure 5: Elliptical ATCS........ccccoiiiiiiiiiiiiiiiiicc 50
Figure 6: Segment Reference Points.............cccccoeiiiiiiiiiiiiiiccccs 51
Figure 7: Segment Type Marker Layout...........ccccoviiiiinniiiiiiicens 54
Figure 8: Even/Odd Fill Rule...........cccccooiiiiiiiiiiiiiicccemce 76

OpenVG 1.0 Specification 22 - Indices

Figure 9: Creating Holes with Subpaths.............ccccccoiiiniiiiie 77
Figure 10: Implicit Closure of Filled Paths..........cc.cccoeioiniiinniiniiiiicnes 78
Figure 11: Stroked Paths Have No Implicit Closure.........c.cccoeeeinciniininiiinnnnne. 78
Figure 12: Each Stroke Applies a Single Layer of Paint...........cccccoeeviinninnind! 79
Figure 13: ENd Cap Styles........ccoveiiiiinieiniiiiciiceccceteeet e 80
Figure 14: End Cap Styles with Additional Geometry Highlighted....................... 80
Figure 15: Line Join Styles.........ccccoiiiiiiiiiiiiiiiiccccimm e 81
Figure 16: Line Join Styles with Additional Geometry Highlighted....................... 81
Figure 17: Dash Pattern and Phase Example............ccccccocciiiiniiiiiiniiimmicccne 83
Figure 18: Radial Gradient FUNCHON...........cccccoiiiiiiiiiiiicicccccccce 98
Figure 19: Color Ramp Pad Modes..........ccccoviuiiiniiiiiinicciececeeeeeeome 101
Figure 20: Linear Gradients............ccccccuviiiiiiniiiiniiniiiiiccccccecceeces 103
Figure 21: Centered and Non-Centered Radial Gradients...........cccccccccvviiniinnes 104
Figure 22: Color Ramp used for Gradient Examples...........cc.ccccoeiiniiniiiinnnnnes 104
Figure 23: Convolution With a Flipped Kernel.............cccccoeciviiiiniinninniinnne 134
Figure 24: Round Rectangle Parameters............cccceceevieuininiiiniiiimcnnieinieiieeenes 154
Figure 25: VGUATrCType Values.........cccccoveiniiiiiniciniiiiicicieieeeeecseeencenenen, 155
Figure 26: VGUATC Parameters.............ccccuviviiiininiiiiiicicineicceeec s 157
Alphabetical Index

186

ENdianness........ccuoeeviiieeiiiciiecieeeeeeeeee e 53,112

15511 B 1 (O 5,76,77,79, 88

Flash.....ooooeiiieeeeeee e 1,183
(@) DR Gradient paint......................... 4,90, 93,98, 99, 124, 174
EGL_OPENVG_APL.....ccoveieieieieeieeeseseeeeeeeeenns Handles....16, 28, 29, 44, 58, 60, 62, 64-71, 73-75, 88, 90-
EGL_OPENVG _BIT.......oosrovvoooeeenreeeooemresreereinnenns 92, 95,106, 115-123, 126, 128, 134, 136, 138-141, 153-
EGL_OPENVG_IMAGE 155, 157, 159
eglBind APL... Image warping....
EGLBoolean............cccceevevervennnnn Java2D.................
EGLClLientBuffer...........cccccovvveieiieicceeeee e Khronos_float..........ccceeveeveeieeceeeceeeeeeveeeeeveene
EGLCONfig.....coveviriiiiiiicccececs khronos_int16_t.
EGLContext khronos_int32_t
eglCreateContext Khronos_int8_t.........cccceieviviiciniiiniiiin,
eglCreatePbufferFromClientBuffer....................... 2,20 khronos_types.h......cccccocciniiiinnicciccne 7,8,170
eglCreateWindowSurface...........c.cccccocucuvinannen. .2,19,20 | khronos_uint32_t.
eglDestroyContext. Khronos_tint8_t..........cccceuviiiciiiniccinicciiicne
EGLDisplay...........c...... NativeWindowType
EGLENUML.....c.coviiiiieiieieeeeeeeee e ere e OpenGL......ocooeviniiiinicieenee 2,10, 16, 33, 36, 147
eglGetCurrentContext...........cocccvviviiveriniccncincnnes 2,20 OPENVG_VERSION_1_O....ccoovvvervreerieereeenenn. 1,7,170
EGLINt.....oiiiiiiieiiceeeeeeeeeeeeeene openvg.h......ccccoeiiiiiniiiiicns 7,147,148,170, 181
eglMakeCurrent Pattern paint.....6, 16, 24, 80, 82-84, 86, 89, 90, 105, 106,
EGLSUITACE......cieieieeieiiiciereieeeeee e 108, 115, 124, 125,179
eglSwapBuffers..........ccccooviiiiiiini 2,21 | POStSCIIPL...cceiiiiiiiiiiiccicc s 1,183
Ellipses....7, 8, 46,49, 51, 58, 71, 156, 157, 162-169, 184, = Premultiplied alpha.....9, 12, 13, 23, 45, 90, 94, 95, 100-

187

OpenVG 1.0 Specification

103, 106, 107,111, 112, 118, 123, 126, 131, 132, 142,
143,171,184

Scaling..........cccoeueuennnas 11,13, 34, 35, 79, 86, 87,162,163
Scissoring.................. 6,17,23, 41, 45,123,127,128,171
Shearing.........cccocvviiivniniciiiiicns 34,35, 79, 86, 87
Single-buffered rendering............ccccccccocuviriiciiinnnee. 19
Smooth segments............cccooveiiiiiiiiiinnnn 48, 53,184
SEOPS..eviiiicrici e 100-104, 184
Surface coordinates..........ccceeeueen. 5, 33-35, 86-90, 122
SVG.ocee e 1, 53, 86, 143, 163, 183
Tiling of images........ 5,14, 22,26,93,106-108, 135-139,
171,175, 180

Transformations.....5, 6, 16, 17, 30, 32-36, 38-40, 68, 74,
79, 86, 87, 90, 122-125, 150, 159-162, 164, 165, 168, 169,
184

Translation...................... 33-35, 39, 40, 86, 135, 137, 168
User coordinates..........cccoevveeeeeeeeeeeenne.. 5,33,70,79, 80
VG_A 8., 110,112,113, 140,175
VG_ABSOLUTE........coooeieeeeieeeerenens 54, 55,172,173
VG_ALPHA......ccoiieieeeeees 26,132,133,141, 176

VG_BAD_HANDLE_ERROR..18, 28, 29, 44, 62, 64-68,
70,71, 73-75, 88, 91, 92, 95, 106, 116-123, 126, 128, 134,
136, 138-141, 170

VG_BLEND_ADDITIVE..........ccccocivnniininnns 144,176
VG_BLEND_DARKEN.......ccccececvrirrrririmnnn 143,144,176
VG_BLEND_DST _IN......cccooeviiiiiiiiiiiicnnnnns 144,176
VG_BLEND_DST_OVER.........ccccuivueivriirinns 144,176
VG_BLEND_LIGHTEN..........ccccccceruimnnne 143,144,176
VG_BLEND_MODE...................... 3,22, 24, 26,144,171
VG_BLEND_MULTIPLY.......ccccevereiunee .143,144,176
VG_BLEND_SCREEN.........ccccccevuiuinniinnnn 143,144,176
VG_BLEND_SRC........ccccvvvueiirrremininnne 24, 26,144,176
VG_BLEND_SRC_IN.....ccceceuririviriiiririririecnes 144,176
VG_BLEND_SRC_OVER..........cccccucuu.. 24, 26,144,176
VG_BLUE.......cooiinininnnnee 26,133,141, 176
VG_BW_1....110, 112, 113, 118, 119, 126, 128, 132, 140,
175

VG_CAP BUTT.....ccocovviiiiiiriiiiiiis
VG_CAP_ROUND.......cccevviviriirimiiccne

VG_CAP_SQUARE
VG_CLEAR_COILOR
VG_CLEAR_MASK ..o
VG_CLOSE_PATH. 51, 52, 54, 55, 66, 69, 70, 78, 83, 84,
153-156, 158, 172
VG_COLOR_RAMP_SPREAD_PAD......... 93,101,175
VG_COLOR_RAMP_SPREAD_REFLECT......101, 175
VG_COLOR_RAMP_SPREAD_REPEAT........ 101,175
VG_CUBIC_TO.......ccccoosueunee 51, 52,55, 69, 83,172,173
VG_DRAW_IMAGE MULTIPLY.6, 122,124,176, 184
VG_DRAW_IMAGE NORMAL.....6, 26,122-124, 176,
184

VG_DRAW_IMAGE STENCIL............. 6,122,124,176

22 — Indices
VG_EVEN_ODD....cooooiiiiiiiieeeeeeeieeeeeeeeeeens 26,87,174
VG_EXTENSIONS.....cooooeeeeeeeeeeeeeeeeeeeee 148,149,177
VG_FALSE.. .8, 26,41, 42, 45, 69, 84,131, 165, 166, 170
VG_FILL_MASKiiiieeeeeeeeeeeeeeeeeeeeeeeees 43,44,172
VG_FILL_ PATH.....covovvvieieinneens 88, 89,91, 124,174
VG_FILL_RULE......ocoovieveeieeeens 22,26,87, 88,171
VG_FILTER_CHANNEL,_MASK.......... 23,26,132, 171
VG_FILTER_FORMAT_LINEAR..23, 26,131,171, 184
VG_FILTER_FORMAT PREMULTIPLIED.....23, 131,
132,171
VG_GREEN.........omooooooeeoeoeeeeeeeeeeeen 26,133, 141, 176
VG_HARDWARE_ACCELERATED.............. 145,177
VG_HARDWARE_UNACCELERATHD......... 145,177
VG_HLINE_TO........... 52,53, 55, 68, 154, 155, 172, 173

VG_ILLEGAL_ARGUMENT_ERROR....18, 24, 25, 28,
29,37, 38, 44,45, 61, 66, 67,71, 73-75, 88, 92, 115, 117-
120, 122, 126-130, 134, 136, 138-141, 146, 170

VG_IMAGE_FORMAT..........cccouuueee 116,145, 176, 185
VG_IMAGE_FORMAT_INVALID........ccccccecrueueunne 185
VG_IMAGE_FORMAT_QUERY........cccccccoueenee 145,176
VG_IMAGE_HEIGHT.........ccccccevvurrinnnn. 116,117,176
VG_IMAGE_IN_USE_ERROR.......16, 18, 44, 106, 117-
123,126,128, 134, 136, 138-141, 171

VG_IMAGE_MODE...........cccccoeuu.. 22,26,122-124,171

VG_IMAGE_QUALITY. .22, 26,106, 113-115, 123, 171,
176

VG_IMAGE_QUALITY_BETTER.....106, 113, 114, 176
VG_IMAGE_QUALITY_FASTER......26, 106, 113, 114,
176
VG_IMAGE_QUALITY_NONANTIALIASED.....106,
113-115,176
VG_IMAGE_WIDTH.......c.ccececvviviviiiiricninnenne 116,176
VG_INTERSECT_MASKcovvviiririmiiicnenns 43,172
VG_INVALID_HANDLE........ 2,15, 44, 60, 91-93, 106,
115,170
VG_JOIN_BEVEL.......ccccooiiiiiiiiniiiicnne, 85,174
VG_JOIN_MITER 26, 85, 89, 174
VG_JOIN_ROUND........ccooviiriiiimiiiiiicinne, 85,174
VG_LCCWARC_TO......ccooiiiiiiiiicnanes 52,55,173
VG_LCWARC_TO......ccoiiiiiiiiciiriennes 52, 55,173

VG_LINE_TO.51, 52, 55, 68-70, 72, 78, 83, 84, 153, 158,
172,173

VG_IL 8. 110, 113, 132, 140, 175
VG_IRGBA_8888................. 110, 112, 113, 118, 126, 175
VG_IRGBA_8888_PRE........ 110, 112, 113, 118, 126, 175
VG_IRGBX_8888.......ccccererrerrrrimerenene 110, 112, 113, 175
VG_MASKING........cooviiiiiiiiiiiinnns 23,26,42,171

VG_MATRIX_FILL_PAINT_TO_USER..27, 36, 87, 88,
90,172
VG_MATRIX_IMAGE_USER TO_SURFACE. .27, 36-
38,172
VG_MATRIX_MODE..........cccoevvvrrrninne 22,26,36,171

188

OpenVG 1.0 Specification

VG_MATRIX_ PATH_USER_TO _SURFACE.....27, 36,
87-89,172
VG_MATRIX_STROKE_PAINT_TO_USER.27, 36, 89,
90,172

VG_MAX_COLOR_RAMP_STOPS..5, 23, 27, 101-103,
171

VG_MAX_DASH_COUNT............ 4,23,27,85,86,171
VG_MAX_FLOAT......ccccveiimiiniieenne 1,9,23,27,172
VG_MAX_IMAGE BYTES......... 5,23,27,114, 115,171
VG_MAX_IMAGE_HEIGHT.....5, 23, 27,114, 115, 171
VG_MAX_IMAGE_PIXELS....... 5,23,27,114, 115,171
VG_MAX_IMAGE WIDTH......5, 23, 27,114, 115, 171
VG_MAX KERNEL _SIZE.......... 6,23,27,134,136,171
VG_MAX_SCISSOR_RECTS............... 3,23,27,41,171
VG_MAX SEPARABLE KERNEL SIZE....... 6,23,27,
134,138, 171

VG_MAXINT.. .1, 9,41, 85,101, 114, 115, 134, 135, 170
VG_MAXSHORT.....ccoeviiririeieinirieieerenieceenene 1,9,170
VG_MOVE_TO. .51-53, 55, 70, 72, 78, 83, 153-156, 158,
172,173

VG_NO_ERROR........cceviriiiiiiriniiiiceeins 18,170
VG_NON_ZERO......ccccoiiviiiriiisiecicans 87,174
VG_OUT_OF_MEMORY_ERROR................ 17,18, 170

VG_PAINT_COLOR.......... 93-95, 97,101-103, 174, 184
VG_PAINT_COLOR_RAMP_SPREAD_MOPDE.....93,

102,103,174
VG_PAINT_COLOR_RAMP_STOPS.93, 102, 103, 174
VG_PAINT_LINEAR_GRADIENT.............. 93, 98, 174

VG_PAINT_PATTERN_TILING_MODE. .93, 108, 174
VG_PAINT_RADIAL_GRADIENT......93, 99, 100, 174
VG_PAINT_TYPE.............. 93, 94, 98-100, 106, 108, 174
VG_PAINT_TYPE_COLOR................... 93, 94,106, 174
VG_PAINT_TYPE _LINEAR _GRADIENT. .94, 98, 174
VG_PAINT_TYPE_PATTERN............ 94,106, 108, 174
VG_PAINT_TYPE_RADIAL_GRADIENT.9%4, 99, 100,
174

VG_PATH_BIAS......oooierecinnccrrieenene 63, 64,174
VG_PATH_CAPABILITY_ALL................... 59, 60,173
VG_PATH_CAPABILITY_APPEND_FROM.....59, 60,
65,173
VG_PATH_CAPABILITY_APPEND_TO.....59, 60, 65,
66, 153-155, 157, 159, 173
VG_PATH_CAPABILITY_ERROR.....18, 65-68, 70, 71,
73-75,170
VG_PATH_CAPABILITY_INTERPOLATE_FROM....
59, 60, 70,173
VG_PATH_CAPABILITY_INTERPOLATE_TO.....59,
60, 70,173

VG_PATH_CAPABILITY_MODIFY......59, 60, 67, 173
VG_PATH_CAPABILITY_PATH_BOUNDS.....59, 60,
74,173
VG_PATH_CAPABILITY_PATH_LENGTH.....59, 60,

22 — Indices
70,71, 173
VG_PATH_CAPABILITY PATH_TRANSFORMBD
BOUNDS......ooiiiiieeeeeeeeeeeeeeeeeeeeee e 59,60, 75,173
VG_PATH_CAPABILITY POINT _ALONG_PATH...
59,60,72,73,173
VG_PATH_CAPABILITY_TANGENT_ALONG_PA
THoueooeeeeeeeeeeeeeeeeeeeee s 59, 60,72,73,173

VG_PATH_CAPABILITY_TRANSFORM_FROM..59,
60, 68, 173
VG_PATH_CAPABILITY_TRANSFORM_TO. .59, 60,
68,173

VG_PATH_DATATYPE......53, 54, 63, 66, 67, 145,172,
173,176,185

VG_PATH_DATATYPE F......cccocovvvviiiiiinane.
VG_PATH_DATATYPE_INVALID

VG_PATH_DATATYPE_S_8
VG_PATH_FORMAT......3, 50, 60, 63, 66, 172, 173, 184
VG_PATH_FORMAT_STANDARD.......3, 50, 60,172,
184

VG_PATH_NUM_COORDS..........ccccevuvuune .63, 64,174
VG_PATH_NUM_SEGMENTS..................... 63, 64,174
VG_PATH_SCALE........ccocoviiiriininiciirerennn 63,174
VG_PIXEL_LAYOUT...........cceeuuee. 23,26,32,171,172

VG_PIXEL_LAYOUT_BGR_HORIZONTAL....32,172
VG_PIXEL_LAYOUT_BGR_VERTICAL........... 32,172
VG_PIXEL_LAYOUT_RGB_HORIZONTAL....32,172
VG_PIXEL_LAYOUT_RGB_VERTICAL........... 32,172

VG_PIXEL_LAYOUT_UNKNOWN............. 26,32,172
VG_QUAD_TO.....ccooviuirrinnns 52,55, 69, 83,172,173
VG_RED.....cocviiiniinincinceee e 26,133, 141, 176
VG_RELATIVE 54, 55, 66,172,173
VG_RENDERER........cccocectoimmienrceniennn 148, 149,177

VG_RENDERING_QUALITY. 22, 26, 31,171, 172, 184
VG_RENDERING_QUALITY_BETTER......26, 31,172
VG_RENDERING_QUALITY_FASTER........... 31,172
VG_RENDERING_QUALITY_NONANTIALIASED.
31,172

VG_RGBA_s8888_PRE....... 110,112, 113, 118, 126, 175

VG_SCCWARC_TO................ 52, 55, 155, 156, 158, 173
VG_SCISSOR_RECTS.........ccooeiiiiinnn 22,26,41,171
VG_SCISSORING.......ccovmeiiricnnnne 23, 26,41, 45,171
VG_SCUBIC_TO.....ccooviiiiiiiiiinicnne 52,55, 69,173
VG_SCWARC_TO......ccceoeiiiriiimnnnnn 52,55, 158,173
VG_SET_MASKccoiiiiiiiiiiiinieecens 43,172
VG_sL 8......cccceuee. ..110, 112, 113, 132, 140, 175
VG_SQUAD_TO......ccooviviiiriieiinicinenne 52,55,173
VG_sRGB_565.........ccccovuvirivmiiiiiinnnns 110, 112,113, 175

VG_sRGBA_4444
VG_sRGBA_5551

110,113,175
110,113,175

189

OpenVG 1.0 Specification

VG_sRGBA_8888................. 110,112,113, 118,126,175
VG_sRGBX_8888.........cccuveiniiirinnnns 110,112,113, 175
VG_STROKE_CAP_STYIE................ 22,26,85,89,171

VG_STROKE_DASH_PATTERN. 22, 24, 26, 85, 86, 89,
171

VG_STROKE_DASH_PHASE...22, 26, 86, 89,171, 184
VG_STROKE_JOIN_STYLE............... 22,26,85,89,171
VG_STROKE_LINE_WIDTH............. 22,26, 84,89,171
VG_STROKE_MITER_LIMIT............ 22,26,85, 89,171
VG_STROKE_PATH.......cccccceevviriiinnnn. 87-89, 91,174
VG_SUBTRACT_MASK......ccomreiirncnreeenne
VG_TILE_FILL.......cccceoeuvnnnnee
VG_TILE_FILL_COLOR.........ccccvevrmne.
VG_TILE_PAD.......ccccoceoviviiiiiiiiniiiiininns
VG_TILE_REFLECT..............
VG_TILE_REPEAT......cccooiiiirienceeeeee
VG_TRUE...§, 41, 42, 69, 89, 93,101, 121, 131, 165, 166,
170

VG_UNION_MASK......ccooveiirrereinererecreeenenns 43,172
VG_UNSUPPORTED_IMAGE_FORMAT_ERROR.....
18,115, 118, 119, 127,129, 170
VG_UNSUPPORTED_PATH_FORMAT_ERROR..18,

61,170

VG_VENDOR.......ccooiiiieinreeeeenreeeeneenene 148,177
VG_VERSION.......ccocevvmeremniiicncnne 148, 149,177,184
vgAppendPath................ 4,58, 59, 65,178
vgAppendPathData...................... 4,58, 59, 66,178,184

VGbitfield...1, 8, 26, 61, 62, 64, 65, 88, 91, 115, 170, 178,
179

VGBlendMode.........coovvevrieeeeeeereeenn. 6,14, 26,144,176
VGboolean.....1, 8,14, 26, 70, 86, 93, 102, 103, 121, 140,
153, 165, 166, 170, 178-181, 184

VGDYte. ... 1,7,170
VGCapStyle........cccvviniiiniiinnes 3,4,14,26,84,85,174
vgChildImage.........ccccvueeucueunnee 6,16,115, 120,123,179
VgClear........coocviviiiiiiiiiiias 3,22,44, 45,171,178
vgClearImage.........ccccccucueueiciciiiicicccicncans 5,117,179
vgClearPath..........cccooooviiiiimi, 3,57,60, 62,178
VGCOIOrMatriX......oveeceiciiiecieiriec e 6,133, 180
VGColorRampSpreadMode....... 5,14, 93,101-103, 175
VECONVOIVE......cooiiiicicirnie e 6,134,135,180
vgCopylmage........cccovrieiiiiiicn 6,121,179
VGCOPYPIXElS....cocoiiiiiiiiciciricccccae 6,130,179
vgCreatelmage................. 5,114,115, 123,127,129, 179
vgCreatePaint............ccceviiiiiiiiiicinn 4,91,179
vgCreatePath. 3,50, 57,59-61, 178, 184
vgDestroylmage............... 5,115, 116, 120, 127,129, 179
vgDestroyPaint

vgDestroyPath..........ccccccviininncn. 3,57,59, 60, 62,178
vgDrawlmage................... 5, 6,35,90,122-124,179, 184
vgDrawPath............. 4,5, 80, 87-90,123,179

VGErrorCode.........ccooccuviniicininiicnnas 2,14,18,171,177

22 — Indices

VGFIlIRUlE........covoveviiiericriererennn 4,14,26,87,88,174
VEFINISh. ... 2,21,90,177
VGfloat.....1, 3, 8, 18, 23-27, 29, 37-40, 45, 61, 63, 64, 70,

73-75, 84-87, 89, 93-95, 97, 98, 100, 103, 133, 135, 137,
139, 153-156, 158, 160, 161, 170, 177-182

VEFIUSRL ..o, 2,21,177
vgGaussianBlur....................... 4 6,134,135, 138,139, 180
vgGet.....2,9, 22, 23, 25,27, 32, 41, 85, 86,101, 114, 115,
134,135,177, 184

vgGetColor

vgGetError

vgGetlmageSubData
VgGetMatriX......ccovviiiiiiicicie e 2,38,178
vgGetPaint........cccooviiiiiiiiniiice, 5,88,92,179
vgGetParameter......2, 22, 23, 27, 28, 58, 62, 92,103, 116
vgGetParameterf............ccccooovvimrnnne 28,29, 63,064,177
vgGetParameterfv..........ccccoovccuinccnnns 28,29,97,177
vgGetParameteri......28, 29, 63, 64, 66, 67,116, 117, 177
vgGetParameteriv...........cccooovviiiiiiicnnn. 28, 29,178
vgGetParameterVectorSize........................ 2,28,29,177
vgGetParent.........ccoovvviiiiiiniie 6,121,179
vgGetPathCapabilities 4,58, 64, 65,178
vgGetPixels.........cccviiiiiviicniiiiiins 6,127-129, 179
vgGetString.........ooevvvivniviiininnns 7,147-149, 180, 184
vgGetVectorSize..........coovvviiiniiiiiiiiiinnn, 2,25,177

VGHandle.....2, 15, 22, 27-29, 58, 91, 113, 170,173, 174,
176-178

vgHardwareQuery.........cccccccvvrrnnncne. 6,145, 146, 180
VGHardwareQueryResult........ 6,114,145, 146,177,180
VGHardwareQueryType.......... 6,14,145, 146,176, 180
VGImage.....5, 15, 19, 20, 27, 44, 106, 108, 113, 115-121,
123, 126-129, 133, 135, 137, 139, 140, 176, 178-180
VGImageChannel.....6, 14, 132, 133, 140, 141, 176, 180
VGImageFormat5, 14, 109, 111, 115-119, 126-129, 145,
176,179,184

VGImageMode.........ccccoiiirimnnnnnnnnn. 6,14,26,122,176
VGImageParamType. 5,14,116,176
VGImageQuality........cccccoovvurnnes 5,14, 26,113-115,176
vglmageSubData...................... 5,117-119, 127,179, 184

VGint. 1, 8,9, 24-27, 29, 41, 44, 45, 57, 61, 63, 64, 66, 67,
70, 73, 85, 86,101, 114-121, 126-130, 134, 135, 137, 146,
153, 170, 177-181

vglnterpolatePath..................... 4,58, 59, 67-70,178, 184
4,14,26, 85,174
2,36,37,87,178

vgLoadMatriX........ccocvieucirccnnnace. 2,3,36,37,87,178

vgLooKUP......coviiiic 6,139, 140, 180

6,140,180

VEMasK......cooiiiiiiii 3,42-44,178

VGMaskOperation................. 3,14, 42-44,172,178, 186

2,14,26,36,172
4,58,59,67,178

190

OpenVG 1.0 Specification

vgMultMatriX........ccocoveeiiiniiiniiieicnnn. 2,36,38,87,178
VGPaint...4, 15, 27, 90-92, 94, 95, 98, 100, 103, 106, 108,
116,124,174,179

VGPaintMode...........cccveuvne.. 4,14,88,91,92,174,179
VGPaintParamType...................... 5,14,92,93,174,186
vgPaintPattern...........ccocovuniiinnnns 5,106, 108, 179
VGPaintType 5,14,93,94,174
VGParamType........ccccoovvvinnininnns 2,14,22-25,172,177
VGPath....... 3,15,19, 27, 50, 58, 60-68, 70, 73-75, 87-89,
153-156, 158, 173,178,179, 181, 182

VGPathAbsRel 3,14,54,55,57,172
vgPathBounds...........ccccoccuiinnnnnn 4,58,59,73,74,178
VGPathCapabilities............. 3,14, 59, 60, 62, 64, 65,173
VGPathCommand...........cccocouvveerrennennns 3,14, 55, 66,173
VGPathDatatype .3, 14, 54, 57, 60, 61, 63, 145,172,178
vgPathLength........cccccovviniuvinicinnes 4,58-60,70,72,178
VGPathParamType.........ccccocueuunne 3,14, 62,63,174,186
VGPathSegment............ccccceueuemnee. 3,14,54,55,57,173
vgPathTransformedBounds.................. 4,59, 73-75,179
VGPixelLayout..........cccccueueeee 2,14,26,31,32,172,186
vgPointAlongPath 4,58-60, 71-73, 82,84, 178
vgReadPixels.........cccoovcucirnicicicccans 6,128,129, 179
vgRemovePathCapabilities 4,58, 64, 65,178
VGRenderingQuality.........ccccoceccrcccunnnee 2,14,31,172
vgRotate. ..o 3, 36,40,178
VESCale....ooiiiiiicicc s 3,36,39,178
vgSeparableConvolve..................... 6,134,136, 137,180
vgSet....... 2,3,22-25,27,31, 32,36, 41, 42, 45, 80, 84-89,
114, 122,144,177

VESetCOlOT ... 5,94,95,179
vgSetPaint..........ccocvviiiiiiiiniiienn 5, 88,91, 93,179
vgSetParameter............. 2,22-24,27,28,90,92,102,184
vgSetParameterf............cccoooeiiiiiiiiinnnn, 27,28,177
vgSetParameterfv........... 27,28, 94,95, 98-100, 103, 177
vgSetParameteri........... 27,28, 94,98-100,103, 108, 177
vgSetParameteriv..........cccoovvvviiiiinccnnnnnn. 27,28,177

22 — Indices

VgSetPiXels........ccooeiiiiiiiniiiiis 6,125-127,179
VESNEA......c.oiiicieiicciirc e 3,36,39,178
VGshort............... 1,7,9,135,137,170,180
VGStringID.........ccccoeirvnenecne. 7,14,148, 149,177,180
VGTilingMode......5, 14, 93, 106-108, 135-139, 175, 180
vgTransformPath............... 4,58,59, 67,68, 87,178, 184
vgTranslate.......cccoooviiiiiniiii, 2,36,39,178
VGU_ARC_CHORD......c.coevveveerreerenne. 3,157,158, 181
VGU_ARC_OPEN......oooiiieiiiiieeeeeeeeeereeenens 157,181
VGU_ARC_PIE....ooovereiereieceeeereereeieenns 157,158,181
VGU_BAD_HANDLE ERROR. 152-155, 157, 159, 181
VGU_BAD WARP_ERROR.............. 152,160, 161, 181

VGU_ILLEGAL_ARGUMENTI_ERROR.152, 154, 155,
157,159-161, 181

VGU_NO_ERROR........ccoemiiicreriicieieeccaenes 152,181
VGU_OUT_OF_MEMORY_ERROR................ 152,181
VGU_PATH_CAPABILITY_EKRROR.......152-155, 157,
159, 181

VGU_VERSION_1_0.....ccvumimimcrriicciemecrcenes 7,152,181
VUL 7,152,181
VGUAIC.......ccovuune. 7,58, 157-159, 182, 185, 187
VGUArcType.....ccouveeeencne 7,14,157-159, 181, 182, 187
VGubyte............. 1,7,57, 66,139, 140, 149, 170, 178, 180
vguComputeWarpQuadToQuad................. 7,161,182
vguComputeWarpQuadToSquare................ 7,160,182
vguComputeWarpSquareToQuad................ 7,160,182
VGUEILPSe......coovviiiiiiiiiiiccc 7,58, 156, 182
VGUErrorCode...7, 14, 152-156, 158, 160, 161, 181, 182
VGuint.......coocvvvieincnne, 1, 8,15, 95, 140,170, 179, 180
vguLine.......cooovviiiii 7,58,153, 181
VGUPOLYZON......cviiiiiiciciie e, 7,58,153, 181
VGURECE ..., 7,58,154, 181
vguRoundRect........c.ccoevvuiiiiiiininnnnn, 3,7,58,155, 181
vgWritePixels..........cccoovvuiiiiiiinnnnn. 6,126,127,179, 184
VLINE_TO.......cccceceuuee. 52,53, 55, 68,154, 155, 172, 173

191

	1 Introduction
	1.1 Feature Set
	1.2 Target Applications
	SVG Viewers
	Portable Mapping Applications
	E-book Readers
	Games
	Scalable User Interfaces
	Low-Level Graphics Device Interface

	1.3 Target Devices
	1.4 Design Philosophy
	1.5 Naming and Typographical Conventions
	1.6 Library Naming

	2 The OpenVG Pipeline
	2.1 Stage 1: Path, Transformation, Stroke, and Paint
	2.2 Stage 2: Stroked Path Generation
	2.3 Stage 3: Transformation
	2.4 Stage 4: Rasterization
	2.5 Stage 5: Clipping and Masking
	2.6 Stage 6: Paint Generation
	2.7 Stage 7: Image Interpolation
	2.8 Stage 8: Blending and Antialiasing

	3 Constants, Functions and Data Types
	3.1 Versioning
	OPENVG_VERSION_1_0

	3.2 Primitive Data Types
	VGbyte
	VGubyte
	VGshort
	VGint
	VGuint
	VGbitfield
	VGboolean
	VGfloat

	3.3 Floating-Point and Integer Representations
	VG_MAXSHORT
	VG_MAXINT
	VG_MAX_FLOAT

	3.4 Colors
	3.4.1 Linear and Non-Linear Color Representations
	3.4.2 Color Space Definitions
	3.4.3 Premultiplied Alpha
	3.4.4 Color Format Conversion

	3.5 Enumerated Data Types
	3.6 Handle-based Data Types
	VGHandle
	VG_INVALID_HANDLE

	4 The Drawing Context
	4.1 Errors
	VGErrorCode
	vgGetError

	4.2 Manipulating the Context Using EGL
	4.2.1 EGLConfig Attributes
	EGL_OPENVG_BIT
	EGL_ALPHA_MASK_SIZE

	4.2.2 EGL Functions
	eglBindAPI
	eglCreateContext
	eglCreateWindowSurface
	eglCreatePbufferFromClientBuffer
	eglMakeCurrent
	eglGetCurrentContext
	eglDestroyContext
	eglSwapBuffers

	4.3 Forcing Drawing to Complete
	vgFlush
	vgFinish

	5 Setting API Parameters
	5.1 Context Parameter Types
	VGParamType

	5.2 Setting and Querying Context Parameter Values
	vgSet
	vgGet and vgGetVectorSize
	5.2.1 Default Context Parameter Values

	5.3 Setting and Querying Object Parameter Values
	vgSetParameter
	vgGetParameter and vgGetParameterVectorSize

	6 Rendering Quality and Antialiasing
	6.1 Rendering Quality
	VGRenderingQuality

	6.2 Additional Quality Settings
	VGPixelLayout

	6.3 Coordinate Systems and Transformations
	6.4 Coordinate Systems
	6.5 Transformations
	6.5.1 Homogeneous Coordinates
	6.5.2 Affine Transformations
	6.5.3 Projective (Perspective) Transformations

	6.6 Matrix Manipulation
	VGMatrixMode
	vgLoadIdentity
	vgLoadMatrix
	vgGetMatrix
	vgMultMatrix
	vgTranslate
	vgScale
	vgShear
	vgRotate

	7 Scissoring, Masking, and Clearing
	7.1 Scissoring
	VG_MAX_SCISSOR_RECTS
	Specifying Scissoring Rectangles

	7.2 Alpha Masking
	VGMaskOperation
	vgMask

	7.3 Fast Clearing
	vgClear

	8 Paths
	8.1 Moves
	8.2 Straight Line Segments
	8.3 Bézier Curves
	8.3.1 Quadratic Bézier Curves
	8.3.2 Cubic Bézier Curves
	8.3.3 G1 Smooth Segments
	8.3.4 C1 Smooth Segments
	8.3.5 C2 Smooth Segments
	8.3.6 Converting Segments From Quadratic to Cubic Form

	8.4 Elliptical Arcs
	8.5 The Standard Path Format
	VG_PATH_FORMAT_STANDARD
	8.5.1 Path Segment Command Side Effects
	8.5.2 Segment Commands
	8.5.3 Coordinate Data Formats
	VGPathDatatype

	8.5.4 Segment Type Marker Definitions
	VGPathAbsRel
	VGPathSegment
	VGPathCommand

	8.5.5 Client-Side Path Example

	8.6 Path Operations
	8.6.1 Storage of Paths
	VGPath

	8.6.2 Creating and Destroying Paths
	VGPathCapabilities
	vgCreatePath
	vgClearPath
	vgDestroyPath

	8.6.3 Path Queries
	VGPathParamType
	Path Format
	Path Datatype
	Path Scale
	Path Bias
	Number of Segments
	Number of Coordinates

	8.6.4 Querying and Modifying Path Capabilities
	vgGetPathCapabilities
	vgRemovePathCapabilities

	8.6.5 Copying Data Between Paths
	vgAppendPath

	8.6.6 Appending Client-Side Data to a Path
	vgAppendPathData

	8.6.7 Modifying Path Data
	vgModifyPathCoords

	8.6.8 Transforming a Path
	vgTransformPath

	8.6.9 Interpolating Between Paths
	vgInterpolatePath

	8.6.10 Length of a Path
	vgPathLength

	8.6.11 Position and Tangent Along a Path
	The Tangents of a Path Segment
	vgPointAlongPath

	8.6.12 Querying the Bounding Box of a Path
	vgPathBounds
	vgPathTransformedBounds

	8.7 Interpretation of Paths
	8.7.1 Filling Paths
	Creating Holes in Paths
	Implicit Closure of Filled Subpaths

	8.7.2 Stroking Paths
	8.7.3 Stroke Parameters
	End Cap Styles
	Line Join Styles
	Miter Length
	Dashing

	8.7.4 Stroke Generation
	8.7.5 Setting Stroke Parameters
	VGCapStyle
	VGJoinStyle
	VG_MAX_DASH_COUNT
	Setting the Dash Pattern

	8.7.6 Non-Scaling Strokes

	8.8 Filling or Stroking a Path
	VGFillRule
	VGPaintMode
	vgDrawPath
	Filling a Path
	Stroking a Path
	Filling and Stroking a Path

	9 Paint
	9.1 Paint Definitions
	VGPaint
	9.1.1 Creating and Destroying Paint Objects
	vgCreatePaint
	vgDestroyPaint

	9.1.2 Setting the Current Paint
	vgSetPaint
	vgGetPaint

	9.1.3 Setting Paint Parameters
	VGPaintParamType
	VGPaintType

	9.2 Color Paint
	Setting Color Paint Parameters
	vgSetColor
	vgGetColor

	9.3 Gradient Paint
	9.3.1 Linear Gradients
	Setting Linear Gradient Parameters

	9.3.2 Radial Gradients
	Setting Radial Gradient Parameters

	9.3.3 Color Ramps
	VG_MAX_COLOR_RAMP_STOPS
	VGColorRampSpreadMode
	Setting Color Ramp Parameters
	Formal Definition of Spread Modes

	9.3.4 Gradient Examples

	9.4 Pattern Paint
	vgPaintPattern
	9.4.1 Pattern Tiling
	VGTilingMode
	Setting the Pattern Tiling Mode

	10 Images
	10.1 Image Coordinate Systems
	10.2 Image Formats
	VGImageFormat

	10.3 Creating and Destroying Images
	VGImage
	VGImageQuality
	VG_MAX_IMAGE_WIDTH
	VG_MAX_IMAGE_HEIGHT
	VG_MAX_IMAGE_PIXELS
	VG_MAX_IMAGE_BYTES
	vgCreateImage
	vgDestroyImage

	10.4 Querying Images
	VGImageParamType
	Image Format
	Image Width
	Image Height

	10.5 Reading and Writing Image Pixels
	vgClearImage
	vgImageSubData
	vgGetImageSubData

	10.6 Child Images
	vgChildImage
	vgGetParent

	10.7 Copying Pixels Between Images
	vgCopyImage

	10.8 Drawing Images to the Drawing Surface
	VGImageMode
	vgDrawImage
	VG_DRAW_IMAGE_NORMAL
	VG_DRAW_IMAGE_MULTIPLY
	VG_DRAW_IMAGE_STENCIL

	10.9 Reading and Writing Drawing Surface Pixels
	10.9.1 Writing Drawing Surface Pixels
	vgSetPixels
	vgWritePixels

	10.9.2 Reading Drawing Surface Pixels
	vgGetPixels
	vgReadPixels

	10.10 Copying Portions of the Drawing Surface
	vgCopyPixels

	11 Image Filters
	11.1 Format Normalization
	11.2 Channel Masks
	VGImageChannel

	11.3 Color Combination
	vgColorMatrix

	11.4 Convolution
	VG_MAX_KERNEL_SIZE
	VG_MAX_SEPARABLE_KERNEL_SIZE
	VG_MAX_GAUSSIAN_STD_DEVIATION
	vgConvolve
	vgSeparableConvolve
	vgGaussianBlur

	11.5 Lookup Tables
	vgLookup
	vgLookupSingle

	12 Blending
	12.1 Blending Equations
	12.2 Porter-Duff Blending
	12.3 Additional Blending Modes
	12.4 Additive Blending
	12.5 Setting the Blend Mode
	VGBlendMode

	13 Querying Hardware Capabilities
	VGHardwareQueryType
	VGHardwareQueryResult
	vgHardwareQuery

	14 Extending the API
	14.1 Extension Naming Conventions
	14.2 The Extension Registry
	14.3 Using Extensions
	14.3.1 Accessing Extensions Statically
	14.3.2 Accessing Extensions Dynamically
	VGStringID
	vgGetString
	eglGetProcAddress

	14.4 Creating Extensions

	15 API Conformance
	15.1 Conformance Test Principles
	15.1.1 Window System Independence
	15.1.2 Antialiasing Algorithm Independence
	15.1.3 On-Device and Off-Device Testing

	15.2 Types of Conformance Tests
	15.2.1 Pipeline Tests
	15.2.2 Self-Consistency Tests
	15.2.3 Matrix Tests
	15.2.4 Interior/Exterior Tests
	15.2.5 Positional Invariance
	15.2.6 Image Comparison Tests

	16 The VGU Utility Library
	VGU_VERSION_1_0
	VGUErrorCode
	16.1 Higher-level Geometric Primitives
	16.1.1 Lines
	vguLine

	16.1.2 Polylines and Polygons
	vguPolygon

	16.1.3 Rectangles
	vguRect

	16.1.4 Round-Cornered Rectangles
	vguRoundRect

	16.1.5 Ellipses
	vguEllipse

	16.1.6 Arcs
	VGUArcType
	vguArc

	16.2 Image Warping
	vguComputeWarpQuadToSquare
	vguComputeWarpSquareToQuad
	vguComputeWarpQuadToQuad

	17 Appendix A: Mathematics of Ellipses
	17.1 The Center Parameterization
	17.2 The Endpoint Parameterization
	17.3 Converting from Center to Endpoint Parameterization
	17.4 Converting from Endpoint to Center Parameterization
	17.5 Implicit Representation of an Ellipse
	17.6 Transformation of Ellipses

	18 Appendix B: Header Files
	openvg.h
	vgu.h

	19 Bibliography
	20 Document History
	21 Acknowledgments
	22 Indices
	Index of Tables
	Index of Figures
	Alphabetical Index

