Spring Security

Reference Documentation

Ben Alex
Luke Taylor

Spring Security: Reference Documentation
by Ben Alex and Luke Taylor

3.0.2.RELEASE

Spring Security

Table of Contents

= = o= SRS X
(I TS 0 S g (= o PR 1
O 11 T [F o1 o o PRSPPI 2
N T TS o TS U 1 Y 2
L2, HISIOMY oo 4
1.3. Rel@ase NUMDEINGcoviiiiiiii e 4
1.4, Getting SPriNg SECUNTYccooiuurieeiiiieiee ittt e ettt e e e bbb e s nbreeeean 5
ProjeCt MOGUIESooiiiiiiieieeee et 5
Core-spring-sSecurity-Core.jar e eee e 5
Web - spring-security-web.jar ..o, 5
Config-spring-security-config.jar ... 5
LDAP-spring-security-ldap.jar ..., 6

ACL -spring-security-acl.jar . 6
CAS-spring-security-cas-client.jar ...cccooveevveeeiiiiiciinnnnnnn. 6
OpenID - spring-security-openid.jar ...cccoocceveeeiiiiiiiiieneeeeeeeeinns 6

Checking OUL thE SOUICEueiiiiie et e et e e 6

2. Security Namespace COnfigUIELIONuuuuurureruiuiiiiiniiierninrninrnrrn——————————————— 7
2280 T 1 14 [o 1 o o SR 7
Design Of the NAMESPACEcceiieiiieiiiiie ettt 8

2.2. Getting Started with Security Namespace Configurationc.ccceeeeviiveeeeinnneennn 8
web. X Configurationooociiiiiiie e 8

A Minimal <htt p> Configurationcccoiiieiiee e 9
What does aut 0- confi g INCIUAE?uveviiiiiiiiiiieieiiieceiveeeeeeeeveeeeeereeeennns 10

Form and BasiC LOgin OPLioNSeeveiiiiieeiiiiiie e 11

Using other Authentication Providerscoocvveeiiiiieiiiiieeeeeeeee e 12
Adding a Password ENCOEYccooiuiiiiiiiiiieeiiiiee e 13

2.3. AdvanCed WED FEAIUIESceeiiiiiiieeiiiiie ettt et e 14
Remember-Me AUthentiCationccueeiiiiiiie i 14
Adding HTTP/HTTPS Channel SECUNLYceveiiiiiiieeiiiiiee e 14
SESSION MANBGEMENL ..ottt e e re e e e 14
DELeCting TIMEOULSccoiiuriiieiiiiiie e ettt et e e e e e anee 14
Concurrent SesSioN CONEFOluveeireeiiiiiiiieie e e e 15

Session Fixation Attack ProteCtionooccueeeeiiiiieeiiiiiiee e 15

L0707 011 I o oo TR 16
Attribute EXChangecovvvvviiiiii 16

Adding in YOur OWN FIEErS ..c..oooiiieee e 17
Setting a Custom Aut henti cati onEnt r yPoi Ntcoceevviiieeeiiinnnen. 19

2.4, MEINOU SECUITY ...vviieiiiiieeeeiie et e et e e es 19
The <gl obal - met hod-security>Elementooocieeeeciiiiciiieeee, 19
Adding Security Pointcuts using pr ot ect - poi nt cutcoeeccvvvveeeenn. 20

2.5. The Default AccessDECISIONMENAQETuuuurrurrrrrrenirrrnnernrerrnerrerrennr———.. 20
Customizing the AccessDeciSIONMaNageYcccvvveeerieeeeiiceiee e eeeeee e 21

2.6. The Authentication Manager and the Namespaceoccvvvveiiiieeeniiieee s 21

3.0.2.RELEASE Spring Security i

Spring Security

3. SAMPIE APPLICALIONS ..eeeeieei it e e e e e s e e e e e e e e e e e e e e aaaeea s 23

3.1, TULOrial SAMPIE .o e e a e e e 23

3.2, CONLACES ... 23

3.3, LDAP SAMPIE ...ttt et e e e e s 24

34, CAS SAMPIE ...t 24

3.5. Pre-Authentication SamMPIEoiiiiiiiie e 25

4. Spring SECUrity COMMUNITYveriieeeeiiiiiiiieeeeeee e s s seitre e e e e e e e s ssstrre e e eeeeesssnanreraeeeaaeesananes 26

I B S W T I = o (1 o PRSP 26

L = T olo] 0. 11 Vo T 1V A= o I 26

4.3, Further INfOrmMationcooi i e e e 26

[1. Architecture and IMplEMENTELIONccueiiiiiiie e 27

o = oo v Y= = SRR 28

5.1. RUNtIME ENVIFONMENToiiiiiiiiiieiiiiiee ettt 28

5.2. COre COMPONENESoeeeiiiiiieeeeet ettt s e e e e e s e eeaeba s e s e e e s e eeatta s s eeeeeeeeesnsnaseeeaeeeneres 28

SecurityContextHolder, SecurityContext and Authentication Objects 28

Obtaining information about the CUrrent USESccccccceeennrnmnrnnnnnnnnnnnnnnn. 29

The USErDEIAISSEIVICE ..eeiviieiiiiiieeeiee ettt e e e e e ee e e e e e e 29

GrantedAULNONITYooiiiiieieeiie e 30

SUMIMIBIY .ttt e e ettt e e ettt e et e e e e e s e bbb e e et e e e e e s e bbb ee e e e e e e e aeanbbebeeeeaeeesans 30

5.3, AULNENTICALIONvviiiiiiiiiee ittt e e s snreeeeeas 30

What is authentication in Spring SECUMtY?cooeiiiiiiiiiiiiieceeeeeeccee e, 30

Setting the SecurityContextHolder Contents Directlycccccccvvvvivinnninininnnnnnnnn. 32

5.4. Authentication in a Web AppliCaLIONoociiiiiiiiiiiee e 33

ExceptionTranslationFiltercoooueiiiiiiie e 33

AUthenti CatiONENLIYPOINTcuviiiiiiiiie e e e 34

Authentication MEChANISMc.uiiiiiiiiiee e 34

Storing the Securi t yCont ext between reqUESESceevveeeviiciiiiieeee e e, 34

5.5. Access-Control (Authorization) in Spring SECUNityccoovvvvviviiiiie, 35

Security and AOP AGVICEooiiiiiiieeiiie et 35

Secure Objects and the Abst ract Securitylnterceptorccocceeeiinnenn. 36

What are Configuration AttribDULES?eeeiiiiiiiieiic e 36

RUNASMENAGEYcce i 37

AfterlNVoCatioNMaNagESccuvvieiiee e 37

Extending the Secure Object Modelccovvvvviiiiiiiiiiiiee, 38

L ST o o= 4 1 o o IR SOTSRRRR 38

B. OB SEIVICES .. uuutiiiiiiee e e s ettt ettt e e e e ettt et e e e e e e e ettt eeeaeessa e sebeeeeeaaeeesaannsesaeeeaeeesaannenes 40
6.1. The Aut hent i cati onManager , Provi der Manager and

Aut hent i cat i ONPrOVI DEI'S ... 40

DaocAut hent i cati ONProVi Derooccviiiiiiiieeieee e 41

6.2. User Det ai | sServi ce Implementalionsc.cccceveveveveiiiiiiieeececeeeeeeeeeeeeeeeee 41

IN-Memory AULNENTICALIONooiiiiiieiie e 42

JADCDAOI IMPI e 42

AULNOTTEY GIOUPS ...evvieeiiieeie ettt e e e 43

6.3. PassWord ENCOOINGvveeirieeiiiiiiiiiiee e e st e e e e e s e s e e e e e e s e rae e e e e e e s e ennenes 43

WHat IS @ NASN? .. 43

3.0.2.RELEASE Spring Security iv

Spring Security

Adding Salt t0 @ HESNeuiiiiiiie e ——————— 43

Hashing and AUtNENtICALIONcocoeiiiiiiiiieee e 44

IRV oI N o] o 1= o = o U) 45
7. The Security Filter CRainoooiiiiiii e e e e 46
7.1. Del egati NGFi | 1 5 ProXY . 46

7.2 Fi 1 185 CRAi NPI OXY coooiiiiiiieiiieee ettt 46
Bypassing the Filter Chaincooiviiiiiiiiiecc e 48

AT = 1 = O o =] o PP 48

7.4. Use with other Filter-Based Frameworkseeeeiiiiiiiiiiii e 49

8. C0re SECUNTY FIITEIS . oo e e e e e e e ee e e e e e e e eannes 50
8L FilterSecurityl NEEer CePL Or .. 50

8.2. ExceptionTransl ati OnNFi [ter ..o 51

Aut henti cati ONENtryPOI Nt ..o 52
AccessDeni edHaNdl €5 ... 52

8.3. SecurityContextPersistenceFilter . 52
SecurityCont exXt REPOSI 1 OFY oo 53

8.4. User nanmePasswor dAut henticationFilter ..., 53
Application Flow on Authentication Success and Failurecccccovciveeeiinnenn. 54

9. Basic and Digest AULNENEICALIONccoiiuiiiiiiiiiiie et 56
9.1. Basi CAut henti cati ONFi | T er ..oiiiiiiiiii e 56
CONFIQUIBLION ...eeieiiiiiieeee e e e e e e s re e e e e e e s e e antbrneeeeaeeeaanns 56
9.2.DigestAuthenticationFilter ... 57
CONFIQUIBLION ...ttt e e e e e e e s e e e e e e e e nan 58

10. Remember-Me AUthentiCationuuuviieeeiiiiiiiec e 59
0 @Y= V= SRR 59
10.2. Simple Hash-Based ToKen APProachceeeviiciiiieiieiie e 59
10.3. Persistent TOKEN APPIOaCHccuuiiiiiiiee e a e 60
10.4. Remember-Me Interfaces and Implementationscccccceciiienninnnennnnnennnnnnnnn. 60
TokenBasedRememMBerMESErVICESueiiiiieiiiiiieeee e 61
PersistentTokenBasedRememberMeSErviCesoovvvveiiiiieee e 61

11, SESSION MENAGEMENTeeiiiiiiiiiie ettt et e e et e e e s sbe e e e e st e e e e e sabb e e e e anneeeas 62
11.1. SessioNManagemMENtIIItercovviieiiiiiee e 62
11.2. Sessi onAut henticati ONStrat €gY .ccceeeviiciiiieeeee e, 62
I T 0 ot 1 5 > Tox YA o 11 (o 63

12. ANONYMOUS AULNENTICELIONeeeiiiiiieeiiieie e 65
R T Y= V= SRR 65
12.2. CONFIGUIALTON .eeiiiiiiiieeiitee ettt e e st e e e et e e e e e e e nnnees 65
12.3. Aut henti cat i ONTrUSt RESOI VeI ...ooiiiiiiiiiiiiiiie e 66

VR AN U 4o = o o PSPPI 68
13. AUthOriZation ATCHITECIUNEcoiiiiiiiiiiie e e e e 69
G I 11 o 1= SRR 69
13.2. Pre-Invocation Handlingooooiiiiiioiiiiiic e 69

The AcCCeSSDECISIONMENAGESc.uvviieiiiiiie ettt 69
Voting-Based AccessDecisionManager Implementationsccccceeeeeeeviiinnneen, 70

ROI EVOL B e 71

3.0.2.RELEASE Spring Security v

Spring Security

Aut henti cat @dVOL €5 ...ueeiiiiiiiie e 71

CUSIOM VOLEN'S ...ceeiiiiiiiiieiiiet ettt 72

13.3. After Invocation Handlingcceeeveieviiieieiiiieeeeeeeeeeeeeeeeeeeeee e ee e e e e eeees 72

14. Secure Object IMPIEMENTALIONSciiiiiiiiiiiiiie e e e e e eneeeeeeeeeens 74
14.1. AOP Alliance (MethodInvocation) Security INtErCEPLOrccovvvveeeiiiiireeenine 74
Explicit MethodSecuritylnterceptor Configurationcccceeeviieeeeiniiieeeesnineenn. 74

14.2. Aspectd (JoinPoint) Security INEFCEPLONvvviieieeei i e e 74

15. Expression-Based ACCESS CONLIOIcoiiiiiiiiieee e e e e e e raae e e e e e 77
ST B @ Y= V= SRR 77
Common Built-1N EXPreSSIONSceiiiiaeiiiiiiiiieeee e e e eiieeeeeeee e e s eseieeeeeeeeeeseenes 77

15.2. Web SeCurity EXPrESSIONScccoiuiiiiiiiiiiie ettt 77
15.3. Method SeCUrity EXPrESSIONScoovviiieiiiiiieeiiieee e et e et e st e e 78

@Pr e and @POST ANNOLBLIONSccuuiiiiriieeieie e e et e e e ee e e e era e e eeaans 78

Access Control using @r eAut hori ze and @Post Aut hori ze 78

Filteringusing @PreFi I ter and @ostFiltercoooveeeeeeeiiiiciiiieeeeenn, 79

BUITE-TN EXPIrESSIONS ...t ettt e e e e e st e e e e e e e e eneneeeeeeas 79

The Per i ssi onEval uat or interfaceccccvieevieeiiiiiciieee e 79

V. AAGItiONa] TOPICS ...eeeeiitiiie ettt e e et e e et e e e asb e e e s enbbn e e e s annneee s 81
16. Domain ObjeCt SECUMTY (ACLS) ..uviiiiiiiiieeiiiie ettt 82
L16. 1. OVEIVIBW ..oeteieeiiieiee ettt ettt ettt e ettt e e s bt e e e snbb e e e s nnbae e e e s nnnee s 82
16.2. KEY CONCEPLS .ovveiiei e eieeeetieie ettt e e e e e et et e e e e e e e e e e aab i a e e e e e e e e eeernneeees 83
16.3. GEING SLArtedceeveeeeeeeeeeeeeeeeeeeeeeee e 85

17. Pre-AuthentiCation SCENAIIOSuuuriiieeeiiiiiiieiee e e e e e et ee e e e e s s s e e e e e e e s s snnnaaeeeeeeeas 87
17.1. Pre-Authentication Framework ClaSSeSevvieeeiiiiciviiiiriee e seciiieree e e 87
AbstractPreAuthenti catedProcessiNgFiItercuevviviiiiiini e 87
AbstractPreAuthenti catedA uthenticationDetal | SSOUrCeocvvveeeiivieeeeiiiiieeeene, 88
J2eeBasedPreA uthenti catedWebA uthenticationDetailsSource 88
PreAuthenticatedA uthenticationProvidercovveiiiiiiiiiiiie e 88
Http403ForbiddenENtryPOINtcviiiiiiiee e 88

17.2. Concrete IMpIeMENTaiONSevveiiiiieee e 89
Request-Header Authentication (SIteminder)cccceivieie i 89
Siteminder Example Configurationccccveveeeeei i 89

J2EE Container AUtNENtICAIONccoiiiiiieiiiiiie e 90

18. LDAP AULNENEICEIIONeeiiiiiieiiieiee et e e e e e e e e eeeeaee e e e e e e e ns 91
ST B @ Y= 1 SR 91
18.2. Using LDAP With SPring SECUNMTYccuvvieiiiiiiieiiiiiee e 91
18.3. Configuring @an LDAP SEIVENcooiuiiiiiiiiiie et 91
Using an Embedded TESt SEIVENuevviieiiicciiee e a e 92

Using Bind AUthentiCationc.ueeiiiiiii i 92

0o |1 o AN U 11 0 1 = 92

18.4. IMPlemMENtalion ClASSEScoiiieiiii e e e e e e et r e e e e e e e s enenneeeeeaee s 93
LdapAuthenticator Implementationscccueveiiiiiieeniieee e 93

CommOoN FUNCLIONAIITYccooiiiiiieiiiiiie et 94
BiNAAULNENEICALONeoiiiiiiiieiiieie e 9
PasswordCompariSONAUthENtiCaLOrccvvvvieeeeee e 9

3.0.2.RELEASE Spring Security Vi

Spring Security

Active Directory AUthentiCationccccceeviiciiieiiiee e, o7}

Connecting to the LDAP SEIVESuviiieiiie ettt 94

LDAP Search ODJECEScoeiiiiiiie et 9

Fi |t er BasedLdapUser Sear Ch ... 95
LdapAULthOrtiESPOPUIBLOTevieiiiiieie et 95

Spring Bean Configurationoooiireeeiiiiiee e 95

LDAP Attributes and Customized UsSerDetailSc.eevevviiiviiiiiiiee e, 96

19. JSP Tag LIBrariEscuveeieiie et a e e e a e 98
19.1. Declaring the Taglib ..., 98
19.2. The QUL DO i Z@ Tag «iiveeeiiiiieiie et 98
19.3. The aut hent i Cat i ONTAG ..uvviiiiiiiie e 99
19.4. The accesSCONt r Ol | 1 ST Tag «ovvveeiiiiiiie e 99

20. Java Authentication and Authorization Service (JAAS) Providercccccvveeeeeeiiinneee, 100
20.1. OVEIVIBIW ..eeiiiee ettt et e ettt e e e et e e e e st e e e e ante e e e e e nbaeeeennteeeeans 100
20.2. CONFIGQUIBLION .eeeiiiee ittt s e e e e e e e et e e e e e e e s s eaanrraeeeaeeas 100
JAAS CallbaCkHANAIESooieiiiiiie e 101

JAAS AULNOTITYGIaINTESeeiiiiiiiieee it 101

21, CAS AULNENEICALION ..evieieiiiiiiiiiiiee et e e e e e e e et e e e e e e e s snnnreaeereaeeesans 102
201, OVEIVIEW ooveiiieieeeee ettt e e e e et e e e e e e e et e e e e e e e s aeabtbaeeeeaeesssnnnsbaneneaaeeeeanns 102
20.2. HOW CAS WOTKS ...coiiiiiiiie ittt 102
21.3. Configuration of CAS CHENteveviiiiiiiiiee e 102

22. X.509 AULNENEICALIONeveeeiiiiiie et e s e e e e e e e e s e e e enneeeeeennneeeas 105
220, OVEIVIBIW .eiiiiee e ciiiee ettt e e st e e et e e e et e e e e s st e e e e snneaeeeaansaeeeeannsaeeeeansnneenns 105
22.2. Adding X.509 Authentication to Your Web Applicationcccccvveeiiiieeennne. 105

22.3. Setting UP SSL iN TOMCELcoeiiiiiieeiiiieie e 106

23. Run-As Authentication REPIACEMENTovviiiieiiiiiceee e 107
23,1 OVEIVIBIW .ttt et e e ettt e e e et e e e e enbte e e e e anteeeeeanneeeeeanneeeeans 107

b2 T ©o o 11 = (o) o [P 107

A. Security DataDase SCREMALocoiiiiiiiii s 109
AL USEN SCREIME ...t e e e e e e st r e e e e e s s aensnrereeeaaeeeaans 109
GrOUP AULNOITIESeiiiiiiiee ettt e st e e e e e e e e ane 109

A.2. Persistent Login (Remember-Me) SChemMaccevveeiiiiiiiiiiieicee e 110
y N R O S o 0= o= PP 110
HYPErSONIC SOL ...uiuiiiiiii s anannnnnnnnnnnnnnnnnnnnnnnnns 110
POSIGIESQL ... ieiee it ettt e e e e e e e e e e e e e e e e nbr e e e e nnreeaeaas 111

B. The SeCUrity NAIMESPECEccciiuiiiieiiiieie ettt e e s et e e e st e e e e e e e e e e s anneeeeeaae 113
B.1. Web Application Security - the <ht t p> Elementcccoceevviiiie i 113
SR L P> AHDULES .o 113
Servl et-api - Provi Si ON .o 113

Pat N-LYPE (o, 114

| OWBT CaSE- CONMPANT SONS oiiiiiiiiiiiiiieee et e e e e e e e e e e e neeeneee s 114

==Y I 0 PP 114
ENETY-POI N -1 BT e 114
access-deci sion-manager-ref . 114
ACCESS-UENI - PAYGE ..ooiiieiteieee e a e 114

3.0.2.RELEASE Spring Security vii

Spring Security

ONCE- PO - I BUUEST ittt e e a e e e e et b e e e e e eeeees 114
CI AL €= SESSI DN oiiiiiiiiie ettt e et e e st e e e s e e e e e snbeeeeeans 114
<access-deni ed-handl er> ... 114
The<intercept-url > Element ..o 115
o= L A= G o RS 115
L1=3 0 2o Lo 115
2 Lo o 1= ST 115
Fequi res-channel .. 115
L I A= = TSR R R OURPPRRRT 115
The <port - mappi NGS> Element ... 116
The <f orm 1 0gi N> EIeMentoooiiiiiiiiee e 116
o To [T o =V [T PP TP PP 116
| OQi N-ProcesSSi NG- Ul v 116
defaul t-target-Url e 116
al ways-use-defaul t-target ... 116
authentication-failure-url ..., 116
aut henti cation-success-handler-ref ..., 117
authentication-failure-handler-ref ..o, 117
The <ht t p- basi C> ElemMentoooiiiiiiiii e 117
The <remenber - ME> EleMENtccviiiiiiiiie e 117
dat @- SOUM Ce- T Bf s 117
token-repository-ref ., 117
SN Vi CBS- T B i e s 117
tOKEN-TEPOSI L OrY-T el e 117
The Key ALNDULE ... 118
token-val i di ty-SeCoNdSccccoiiiiiiei i 118
USEI - SErVi Ce-T f e 118
The <sessi on- managenent > Elementcoovvvvvvviiiiiiiiiccvccceeeeeeeeeeeeeee e 118
SesSi oNn-fixati ON-Prot CLT ON ..o 118
The <concurrency-control > Elementccooeeiiiiiieiiiiieece e 118
The max- sessi ONS atribute ..., 118
The expi red-url atributec..ccooeiiiiiiii e 119
Theerror-if-maxi mum exceeded atributeccccevvivveiiiiiiee i, 119
Thesession-regi stry-alias andsessi on-regi stry-ref
L1 01 (=R P 119
The <anonymDUS> EIEMENT ... 119
The <X509> EIaMENt ..o 119
The subj ect - pri nci pal -regex attribute ..o, 119
Theuser-servi ce-ref atribute ..., 119
The <openi d-logi n> Element ... 119
The <l 0gOUL > ElEMENt ...oooiiiiiee e e 120
The |l ogout - Url atrDULEceviiiei e 120
Thel ogout - success- url atributeccceeviiiiiiieiii e 120
Thei nval i dat e- Sessi oNn atributeccceeviiiiiiiiiiie e 120
The<custom filter> Elementccccooiiiiiiiiii e 120

3.0.2.RELEASE Spring Security viii

Spring Security

B.2. AULNENTICAHION SEIVICES ...ttt 120
The <aut henti cati on- manager > Elementcccccccooiiviiiiiiience e, 120
The<aut henti cati on-provi der > Elementcccccocvnvninininninnininnnnnnn, 120

Using <aut hent i cati on- provi der > torefer to an
Aut henti cati onProvi der Beancccccceeviiiiiiiiiiiee e 121
B.3. MENOU SECUNMTYeveieeiiiiiee et e e 121
The <gl obal - met hod- security>Elementcccccceeeiiiiiiiiiienie e, 121
Thesecur ed- annot ati ons andj sr 250- annot at i ons Attributes........ 121
Securing Methods using <prot ect-poi ntcut >cccceeni, 121
The<after-invocation-provider>Elementcccccccceriiiiinnnennn. 122
LDAP NamMeSPaCe OPLIONScooiuurieeiiiiiieeaaiiie e e et e e e e s s e e e e e e snneeeeenees 122
Defining the LDAP Server using the <I dap- server > Element 122
The <l dap-provi der> Elementcccccceveee i 122
The <l dap-user-servi ce> Elementcccooiiiieiiei e, 123

3.0.2.RELEASE Spring Security iX

Spring Security

Preface

Spring Security provides a comprehensive security solution for J2EE-based enterprise software
applications. Asyou will discover asyou venture through this reference guide, we havetried to provide
you a useful and highly configurable security system.

Security isan ever-moving target, and it'simportant to pursue acomprehensive, system-wide approach.
In security circles we encourage you to adopt "layers of security”, so that each layer tries to be as
secure as possible in its own right, with successive layers providing additional security. The "tighter"
the security of each layer, the more robust and safe your application will be. At the bottom level you'll
need to deal with issues such as transport security and system identification, in order to mitigate man-
in-the-middle attacks. Next you'll generally utilisefirewalls, perhapswith VPNs or | P security to ensure
only authorised systems can attempt to connect. In corporate environments you may deploy aDMZ to
separate public-facing servers from backend database and application servers. Y our operating system
will also play a critical part, addressing issues such as running processes as non-privileged users and
maximising file system security. An operating system will usually also be configured with its own
firewall. Hopefully somewhere along the way you'll betrying to prevent denial of service and bruteforce
attacks against the system. An intrusion detection system will also be especially useful for monitoring
and responding to attacks, with such systems able to take protective action such as blocking offending
TCP/IP addresses in real-time. Moving to the higher layers, your Java Virtual Machine will hopefully
be configured to minimize the permissions granted to different Java types, and then your application
will add its own problem domain-specific security configuration. Spring Security makes this latter area
- application security - much easier.

Of course, you will need to properly address all security layers mentioned above, together with
managerial factors that encompass every layer. A non-exhaustive list of such managerial factors would
include security bulletin monitoring, patching, personnel vetting, audits, change control, engineering
management systems, data backup, disaster recovery, performance benchmarking, load monitoring,
centralised logging, incident response procedures etc.

With Spring Security being focused on helping you with the enterprise application security layer,
you will find that there are as many different requirements as there are business problem domains. A
banking application has different needs from an ecommerce application. An ecommerce application
has different needs from a corporate sales force automation tool. These custom requirements make
application security interesting, challenging and rewarding.

Please read Part |, “Getting Started”, in its entirety to begin with. This will introduce you to the
framework and the namespace-based configuration system with which you can get up and running quite
quickly. To get more of an understanding of how Spring Security works, and some of the classes you
might need to use, you should then read Part |1, “Architecture and Implementation”. The remaining
parts of this guide are structured in a more traditiona reference style, designed to be read on an as-
required basis. We'd also recommend that you read up as much as possible on application security issues
in general. Spring Security is not a panacea which will solve all security issues. It is important that
the application is designed with security in mind from the start. Attempting to retrofit it is not a good
idea. In particular, if you are building a web application, you should be aware of the many potential
vulnerabilities such as cross-site scripting, request-forgery and session-hijacking which you should be

3.0.2.RELEASE Spring Security X

Spring Security

taking into account from the start. The OWASP web site (http://www.owasp.org/) maintains a top ten
list of web application vulnerabilities aswell as alot of useful reference information.

We hope that you find this reference guide useful, and we welcome your feedback and suggestions.

Finally, welcome to the Spring Security community.

3.0.2.RELEASE Spring Security Xi

Part |. Getting Started

The later parts of this guide provide an in-depth discussion of the framework architecture and
implementation classes, which you need to understand if you want to do any serious customization.
In this part, we'll introduce Spring Security 3.0, give a brief overview of the project's history and
take a dightly gentler look at how to get started using the framework. In particular, we'll look at
namespace configuration which provides a much simpler way of securing your application compared
to the traditional Spring bean approach where you have to wire up al the implementation classes
individually.

WEell also take a look at the sample applications that are available. It's worth trying to run these
and experimenting with them a bit even before you read the later sections - you can dip back into
them as your understanding of the framework increases. Please also check out the project website
[http://static.springsource.org/spring-security/site/index.html] as it has useful information on building
the project, pluslinks to articles, videos and tutorials.

http://static.springsource.org/spring-security/site/index.html
http://static.springsource.org/spring-security/site/index.html

Spring Security

1. Introduction

1.1 What is Spring Security?

Spring Security provides comprehensive security services for J2EE-based enterprise software
applications. There is a particular emphasis on supporting projects built using The Spring Framework,
which is the leading J2EE solution for enterprise software development. If you're not using Spring for
devel oping enterprise applications, we warmly encourage you to takeacloser look at it. Somefamiliarity
with Spring - and in particular dependency injection principles - will help you get up to speed with
Spring Security more easily.

People use Spring Security for many reasons, but most are drawn to the project after finding the
security features of J2EE's Servlet Specification or EJB Specification lack the depth required for typical
enterprise application scenarios. Whilst mentioning these standards, it'simportant to recognise that they
arenot portableat aWAR or EAR level. Therefore, if you switch server environments, it istypically alot
of work to reconfigure your application's security in the new target environment. Using Spring Security
overcomes these problems, and also brings you dozens of other useful, customisable security features.

Asyou probably know two major areas of application security are “authentication” and “authorization”
(or “access-control”). These are the two main areas that Spring Security targets. “Authentication” is
the process of establishing a principal is who they claim to be (a “principa” generally means a user,
device or some other system which can perform an action in your application). “ Authorization” refers
to the process of deciding whether a principal is allowed to perform an action within your application.
To arrive at the point where an authorization decision is needed, the identity of the principal has already
been established by the authentication process. These concepts are common, and not at all specific to
Spring Security.

At an authentication level, Spring Security supports a wide range of authentication models. Most of

these authentication models are either provided by third parties, or are developed by relevant standards

bodies such asthe Internet Engineering Task Force. In addition, Spring Security providesits own set of

authentication features. Specifically, Spring Security currently supports authentication integration with

all of these technologies:

* HTTP BASIC authentication headers (an IEFT RFC-based standard)

» HTTP Digest authentication headers (an |IEFT RFC-based standard)

o HTTP X.509 client certificate exchange (an |IEFT RFC-based standard)

» LDAP (a very common approach to cross-platform authentication needs, especialy in large
environments)

» Form-based authentication (for simple user interface needs)

» OpenlD authentication

» Authentication based on pre-established request headers (such as Computer Associates Siteminder)

* JA-SIG Central Authentication Service (otherwise known as CAS, which is a popular open source
single sign on system)

e Transparent authentication context propagation for Remote Method Invocation (RMI) and
Httplnvoker (a Spring remoting protocol)

3.0.2.RELEASE Spring Security 2

Spring Security

» Automatic "remember-me" authentication (so you can tick a box to avoid re-authentication for a
predetermined period of time)

» Anonymous authentication (allowing every call to automatically assumeaparticular security identity)
* Run-as authentication (which is useful if one call should proceed with a different security identity)
» Java Authentication and Authorization Service (JAAS)

» JEE container autentication (so you can still use Container Managed Authentication if desired)

» Kerberos

» Java Open Source Single Sign On (JOSSO) *

* OpenNM S Network Management Platform *

* AppFuse*

* AndroMDA *

* MuleESB *

 Direct Web Request (DWR) *

* Grails*

» Tapestry *

o Jlrac*

* Jasypt*

* Roller*

* Elastic Path *

» Atlassian Crowd *

* Your own authentication systems (see below)

(* Denotes provided by a third party; check our integration page [http://acegisecurity.org/
powering.html] for links to the latest details)

Many independent software vendors (1SV's) adopt Spring Security because of this significant choice of
flexible authentication models. Doing so allows them to quickly integrate their solutions with whatever
their end clients need, without undertaking a lot of engineering or requiring the client to change their
environment. If none of the above authentication mechanisms suit your needs, Spring Security is an
open platform and it is quite simple to write your own authentication mechanism. Many corporate users
of Spring Security need to integrate with "legacy" systems that don't follow any particular security
standards, and Spring Security is happy to "play nicely" with such systems.

Sometimes the mere process of authentication isn't enough. Sometimes you need to also differentiate
security based on the way a principal isinteracting with your application. For example, you might want
to ensure requests only arrive over HTTPS, in order to protect passwords from eavesdropping or end
users from man-in-the-middle attacks. Thisis especially helpful to protect password recovery processes
from brute force attacks, or simply to make it harder for people to duplicate your application's key
content. To help you achieve these goal's, Spring Security fully supports automatic "channel security”,
together with JCaptcha integration for human user detection.

I rrespective of how authentication was undertaken, Spring Security provides adeep set of authorization
capabilities. There are three main areas of interest in respect of authorization, these being authorizing
web requests, authorizing whether methods can beinvoked, and authorizing accessto individual domain

3.0.2.RELEASE Spring Security 3

http://acegisecurity.org/powering.html
http://acegisecurity.org/powering.html
http://acegisecurity.org/powering.html

Spring Security

object instances. To help you understand the differences, consider the authorization capabilities found
in the Servlet Specification web pattern security, EJB Container Managed Security and file system
security respectively. Spring Security provides deep capabilitiesin all of these important areas, which
we'll explore later in this reference guide.

1.2 History

Spring Security began in late 2003 as“ The Acegi Security System for Spring”. A question was posed on
the Spring Developers mailing list asking whether there had been any consideration given to a Spring-
based security implementation. At the time the Spring community was relatively small (especialy
compared with the size today!), and indeed Spring itself had only existed as a SourceForge project from
early 2003. The response to the question was that it was a worthwhile area, although a lack of time
currently prevented its exploration.

With that in mind, a ssmple security implementation was built and not released. A few weeks later
another member of the Spring community inquired about security, and at the time this code was offered
to them. Several other requests followed, and by January 2004 around twenty people were using the
code. These pioneering users were joined by others who suggested a SourceForge project wasin order,
which was duly established in March 2004.

In those early days, the project didn't have any of its own authentication modules. Container Managed
Security was relied upon for the authentication process, with Acegi Security instead focusing on
authorization. This was suitable at first, but as more and more users requested additional container
support, the fundamental limitation of container-specific authentication realm interfaces became clear.
There was also arelated issue of adding new JARS to the container's classpath, which was a common
source of end user confusion and misconfiguration.

Acegi Security-specific authentication services were subsequently introduced. Around a year later,
Acegi Security became an official Spring Framework subproject. The 1.0.0 final release was published
in May 2006 - after more than two and a half years of active use in numerous production software
projects and many hundreds of improvements and community contributions.

Acegi Security became an official Spring Portfolio project towards the end of 2007 and was rebranded
as “ Spring Security”.

Today Spring Security enjoys a strong and active open source community. There are thousands of
messages about Spring Security on the support forums. Thereis an active core of devel opers who work
on the code itself and an active community which also regularly share patches and support their peers.

1.3 Release Numbering

It is useful to understand how Spring Security release numbers work, as it will help you identify
the effort (or lack thereof) involved in migrating to future releases of the project. Officialy, we
use the Apache Portable Runtime Project versioning guidelines, which can be viewed at http: //
apr . apache. or g/ ver si oni ng. ht m . Wequotetheintroduction contained on that pagefor your
convenience:

3.0.2.RELEASE Spring Security 4

Spring Security

“Versions are denoted using astandard triplet of integers: MAJOR.MINOR.PATCH. Thebasicintentis
that MAJOR versions are incompatible, large-scal e upgrades of the API. MINOR versions retain source
and binary compatibility with older minor versions, and changes in the PATCH level are perfectly
compatible, forwards and backwards.”

1.4 Getting Spring Security

Y ou can get hold of Spring Security in several ways. You can download a packaged distribution from
the main Spring download page [http://www.springsource.com/downl oad/community ?project=Spring
%20Security], download individual jars (and sample WAR files) from the Maven Central repository (or
a SpringSource Maven repository for snapshot and milestone releases) or, aternatively, you can build
the project from source yourself. See the project web site for more details.

Project Modules

In Spring Security 3.0, the codebase has been sub-divided into separate jars which more clearly separate
different functionaltiy areas and third-party dependencies. If you are using Maven to build your project,
then these are the modules you will add to your pom xni . Even if you're not using Maven, we'd
recommend that you consult thepom xmi filesto get anideaof third-party dependenciesand versions.
Alternatively, agood ideais to examine the libraries that are included in the sample applications.

Core-spring-security-core.jar

Contains core authentication and access-contol classes and interfaces, remoting support and basic
provisioning APIs. Required by any application which uses Spring Security. Supports standalone
applications, remote clients, method (service layer) security and JDBC user provisioning. Contains the
top-level packages.

* org. springframework. security.core

e org.springframework. security.access

e org.springframework. security. aut hentication
* org. springframework. security. provisioning

e org.springframework. security.renoting

Web - spring-security-web.jar

Containsfilters and related web-security infrastructure code. Anything with a serviet APl dependency.
You'll needit if you require Spring Security web authenti cation services and URL -based access-control.
The main packageisor g. spri ngf ramewor k. security. web.

Config - spri ng-security-config.jar

Contains the security namespace parsing code (and hence nothing that you are likely yo use directly in
your application). You need it if you are using the Spring Security XML namespace for configuration.
The main packageisor g. spri ngf ramewor k. security. config.

3.0.2.RELEASE Spring Security 5

http://www.springsource.com/download/community?project=Spring%20Security
http://www.springsource.com/download/community?project=Spring%20Security
http://www.springsource.com/download/community?project=Spring%20Security

Spring Security

LDAP -spring-security-1dap.jar

LDAP authentication and provisioning code. Required if you need to use LDAP authentication or
manage LDAP user entries. Thetop-level packageisor g. spri ngf ramewor k. security. | dap.

ACL -spring-security-acl.jar

Specialized domain object ACL implementation. Used to apply security to
specific domain object instances within your application. The top-level package is
org. springframework. security. acls.

CAS -spring-security-cas-client.jar

Spring Security's CAS client integration. If you want to use Spring Security web authentication with a
CASsingle sign-on server. Thetop-level packageisor g. spri ngf ranewor k. security. cas.

OpenlID - spri ng-security-openid.jar

OpeniD web authentication support. Used to authenticate users against an externa OpenlD server.
org. springframewor k. security. openi d. Requires OpenlD4Java.

Checking out the Source

Since Spring Security is an Open Source project, we'd strongly encourage you to check out the source
code using git. Thiswill give you full accessto all the sample applications and you can build the most
up to date version of the project easily. Having the source for a project is also ahuge help in debugging.
Exception stack traces are no longer obscure black-box issues but you can get straight to the line that's
causing the problem and work out what's happening. The source is the ultimate documentation for a
project and often the simplest place to find out how something actually works.

To obtain the source for the project trunk, use the following git command:

git clone git://git.springsource.org/spring-security/spring-security.git

You can checkout specific versons from https://src. springfranmework. org/svn/
spring-security/tags/.

3.0.2.RELEASE Spring Security 6

Spring Security

2. Security Namespace Configuration

2.1 Introduction

Namespace configuration has been available since version 2.0 of the Spring framework. It alows you
to supplement the traditional Spring beans application context syntax with elements from additional
XML schema. You can find more information in the Spring Reference Documentation [http:/
static.springsource.org/spring/docs/3.0.x/spring-framework-reference/htmi/apc.html]. A namespace
element can be used simply to allow a more concise way of configuring an individual bean or, more
powerfully, to define an aternative configuration syntax which more closely matches the problem
domain and hides the underlying complexity from the user. A simple e ement may conceal the fact that
multiple beans and processing steps are being added to the application context. For example, adding
the following element from the security namespace to an application context will start up an embedded
LDAP server for testing use within the application:

<security:|dap-server />

Thisis much simpler than wiring up the equivalent Apache Directory Server beans. The most common
alternative configuration requirements are supported by attributes on the | dap- ser ver element and
the user is isolated from worrying about which beans they need to create and what the bean property
names are. 1. Use of a good XML editor while editing the application context file should provide
information on the attributes and elements that are available. We would recommend that you try out
the SpringSource Tool Suite [http://www.springsource.com/products/sts] as it has special features for
working with standard Spring namespaces.

To start using the security namespace in your application context, all you need to do is add the schema
declaration to your application context file:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: security="http://ww.springfranework. org/ schema/ security"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schema/ beans
http://ww. springframework. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springfranmework. org/ schema/ security
http://ww. springframework. org/ schema/ security/spring-security-3.0.xsd">

</ beans>

In many of the examples you will see (and in the sample) applications, we will often use "security"
as the default namespace rather than "beans', which means we can omit the prefix on all the security
namespace el ements, making the content easier to read. Y ou may also want to do thisif you have your
application context divided up into separate files and have most of your security configuration in one
of them. Y our security application context file would then start like this

Ly ou can find out more about the use of the | dap- server elementinthe chapter on LDAP.

3.0.2.RELEASE Spring Security 7

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/apc.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/apc.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/apc.html
http://www.springsource.com/products/sts
http://www.springsource.com/products/sts

Spring Security

<beans: beans xm ns="http://ww. spri ngframewor k. org/ schena/ security"
xm ns: beans="htt p: // ww. spri ngf ramewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
Xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://ww. springfranmework. org/ schema/ security
http://ww. springframework. org/ schema/ security/spring-security-3.0.xsd">

</ beans: beans>

Welll assume this syntax is being used from now on in this chapter.

Design of the Namespace

The namespace is designed to capture the most common uses of the framework and provide asimplified
and concise syntax for enabling them within an application. The design is based around the large-scale
dependencies within the framework, and can be divided up into the following aress:

* Web/HTTP Security - the most complex part. Sets up the filters and related service beans used to
apply the framework authentication mechanisms, to secure URLS, render login and error pages and
much more.

» Business Object (Method) Security - options for securing the service layer.
 AuthenticationManager - handles authentication requests from other parts of the framework.

» AccessDecisionManager - provides access decisions for web and method security. A default one will
be registered, but you can al so choose to use a custom one, declared using normal Spring bean syntax.

* AuthenticationProviders - mechanisms against which the authenti cation manager authenticates users.
The namespace provides supports for several standard options and also a means of adding custom
beans declared using atraditional syntax.

» UserDetailsService - closely related to authentication providers, but often also required by other
beans.

WEe'll see how to configure these in the following sections.

2.2 Getting Started with Security Namespace
Configuration

In this section, we'll ook at how you can build up a namespace configuration to use some of the main
features of the framework. Let's assume you initially want to get up and running as quickly as possible
and add authentication support and access control to an existing web application, with afew test logins.
Then well look at how to change over to authenticating against a database or other security repository.
In later sections we'll introduce more advanced hamespace configuration options.

web. xm Configuration

The first thing you need to do is add the following filter declaration to your web. xmi file:

3.0.2.RELEASE Spring Security 8

Spring Security

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-name>springSecurityFilterChain</filter-name>
<url-pattern>/*</url-pattern>

</filter-mappi ng>

This provides a hook into the Spring Security web infrastructure. Del egat i ngFi | t er Proxy isa
Spring Framework class which delegates to a filter implementation which is defined as a Spring bean
in your application context. In this case, the bean is named “springSecurityFilterChain”, which is an
internal infrastructure bean created by the namespace to handle web security. Note that you should not
use this bean name yourself. Once you've added this to your web. xmi , you're ready to start editing
your application context file. Web security services are configured using the <ht t p> element.

A Minimal <ht t p> Configuration

All you need to enable web security to begin with is

<http auto-config="true' >
<intercept-url pattern="/**" access="ROLE_USER' />
</ http>

Which saysthat we want all URLswithin our application to be secured, requiring the role ROLE_USER
to access them. The <ht t p> element is the parent for all web-related namespace functionality. The
<i nt er cept - ur| > element defines a pat t er n which is matched against the URLs of incoming
requests using an ant path style syntax. The access attribute defines the access requirements for
reguests matching the given pattern. With the default configuration, thisistypically a comma-separated
list of roles, one of which a user must have to be allowed to make the request. The prefix “ROLE " is
amarker which indicates that a simple comparison with the user's authorities should be made. In other
words, a normal role-based check should be used. Access-control in Spring Security is not limited to
the use of simple roles (hence the use of the prefix to differentiate between different types of security
attributes). We'll see later how the interpretation can vary?.

Note
e

You can use multiple <i ntercept-url> elements to define different access
requirements for different sets of URLS, but they will be evaluated in the order listed and
the first match will be used. So you must put the most specific matches at the top. You
can aso add a et hod attribute to limit the match to a particular HTTP method (GET,
PCST, PUT etc.). If arequest matches multiple patterns, the method-specific match will
take precedence regardless of ordering.

To add some users, you can define a set of test data directly in the namespace:

’The interpretation of the comma-separated values in the access attribute depends on the implementation of the
AccessDecisionManager which is used. In Spring Security 3.0, the attribute can al so be populated with an EL expression.

3.0.2.RELEASE Spring Security 9

Spring Security

<aut henti cati on- manager >
<aut henti cati on- provi der >
<user - servi ce>
<user nanme="jim" password="jim spassword" authorities="ROLE USER, ROLE_ADM N' />
<user nane="bob" passwor d="bobspassword" authorities="ROLE USER' />
</ user-servi ce>
</ aut henti cati on- provi der >
</ aut henti cati on- manager >

If you are familiar with pre-namespace versions of the framework, you can probably already
guess roughly what's going on here. The <htt p> element is responsible for creating a
Fi | t er Chai nPr oxy and thefilter beans which it uses. Common problems like incorrect filter
ordering are no longer an issue as the filter positions are predefined.

The <aut henti cati on- pr ovi der > element creates a
DaoAut hent i cati onProvi der bean and the <user-servi ce> element creates an
I nMenor yDaol npl . All aut henti cati on- provi der elements must be children of the
<aut hent i cat i on- manager > element, which createsaPr ovi der Manager and registers
the authentication providers with it. You can find more detailed information on the beans
that are created in the namespace appendix. It's worth cross-checking this if you want to start
understanding what the important classesin the framework are and how they are used, particularly
if you want to customise things later.

The configuration above definestwo users, their passwords and their roles within the application (which
will be used for access control). It isalso possibleto load user information from astandard propertiesfile
usingthepr operti es attributeonuser - ser vi ce. Seethe section onin-memory authenticationfor
more details on the file format. Using the<aut hent i cat i on- pr ovi der > element means that the
user information will be used by the authentication manager to process authentication requests. Y ou can
have multiple<aut hent i cat i on- pr ovi der > elementsto define different authentication sources
and each will be consulted in turn.

At this point you should be ableto start up your application and you will be required to log in to proceed.
Try it out, or try experimenting with the “tutorial” sample application that comes with the project. The
above configuration actually adds quite a few services to the application because we have used the
aut o- conf i g attribute. For example, form-based login processing is automatically enabled.

What does aut o- confi g Include?

Theaut o- conf i g attribute, as we have used it above, isjust a shorthand syntax for:

<ht t p>
<formlogin />
<http-basic />
<l ogout />

</ http>

3.0.2.RELEASE Spring Security 10

Spring Security

These other elements are responsible for setting up form-login, basi ¢ authentication and logout handling
services respectively s, They each have attributes which can be used to alter their behaviour.

Form and Basic Login Options

Y ou might be wondering where the login form came from when you were prompted to log in, since
we made no mention of any HTML files or JSPs. In fact, since we didn't explicitly set a URL for the
login page, Spring Security generates one automatically, based on thefeaturesthat are enabled and using
standard values for the URL which processes the submitted login, the default target URL the user will
be sent to after loggin in and so on. However, the namespace offers plenty of support to allow you to
customi ze these options. For example, if you want to supply your own login page, you could use:

<http auto-config="true' >
<intercept-url pattern="/login.jsp*" access="|S_AUTHENTI CATED ANONYMOUSLY"/ >
<intercept-url pattern="/**" access="ROLE_USER' />
<formlogin | ogin-page='/login.jsp'/>

</ http>

Note that you can still use aut o- confi g. The f orm | ogi n element just overrides the default
settings. Also notethat we've added an extrai nt er cept - ur | element to say that any requestsfor the
login page should be available to anonymous users #. Otherwise the request would be matched by the
pattern/ ** and it wouldn't be possible to access the login page itself! Thisisacommon configuration
error and will result in an infinite loop in the application. Spring Security will emit awarning in the log
if your login page appears to be secured. It is also possible to have all requests matching a particular
pattern bypass the security filter chain completely:

<http auto-config="true' >
<intercept-url pattern="/css/**" filters="none"/>
<intercept-url pattern="/login.jsp*" filters="none"/>
<intercept-url pattern="/**" access="ROLE _USER' />
<formlogin | ogin-page='/login.jsp'/>

</ http>

It's important to realise that these requests will be completely oblivious to any further Spring Security
web-related configuration or additional attributes such as r equi r es- channel , so you will not
be able to access information on the current user or call secured methods during the request. Use
access='1S_AUTHENTI CATED ANONYMOUSLY' as an alternative if you still want the security
filter chain to be applied.

If you want to use basic authentication instead of form login, then change the configuration to

3In versions prior to 3.0, this list also included remember-me functionality. This could cause some confusing errors with some
configurations and was removed in 3.0. In 3.0, the addition of an AnonynousAut hent i cati onFi | t er ispart of the default
<ht t p> configuration, so the <anonynous /> element is added regardless of whether aut o- conf i g isenabled.

See the chapter on anonymous authentication and also the AuthenticatedVoter class for more details on how the value
I'S_AUTHENTI CATED ANONYMOUSLY is processed.

3.0.2.RELEASE Spring Security 11

Spring Security

<http auto-config="true' >
<intercept-url pattern="/**" access="ROLE _USER' />
<http-basic />

</ http>

Basic authentication will then take precedence and will be used to prompt for a login when a user
attempts to access a protected resource. Form login is still available in this configuration if you wish to
useit, for example through alogin form embedded in another web page.

Setting a Default Post-Login Destination

If aform login isn't prompted by an attempt to access a protected resource, the def aul t - t ar get -
ur | option comesinto play. Thisisthe URL the user will be taken to after logging in, and defaults to
"". You can also configure things so that they user always ends up at this page (regardless of whether
thelogin was"on-demand" or they explicitly chosetologin) by settingtheal ways- use- def aul t -
t ar get attribute to "true". Thisis useful if your application aways requires that the user starts at a
"home" page, for example:

<htt p>
<intercept-url pattern='/login. htnm' filters=" none'/>
<intercept-url pattern='/**' access=' ROLE USER />
<form |l ogin | ogin-page="/login. htm default-target-url="/home. htn
al ways-use-defaul t-target="true' />
</ http>

Using other Authentication Providers

In practice you will need a more scalable source of user information than a few names added to
the application context file. Most likely you will want to store your user information in something
like a database or an LDAP server. LDAP namespace configuration is dealt with in the LDAP
chapter, so we won't cover it here. If you have a custom implementation of Spring Security's
User Det ai | sSer vi ce, called "myUserDetailsService" in your application context, then you can
authenticate against this using

<aut henti cati on- nanager >
<aut henti cation-provi der user-service-ref="nmyUserDetail sService'/>
</ aut henti cati on- manager >

If you want to use a database, then you can use

<aut henti cati on- nanager >
<aut henti cati on- provi der>
<j dbc- user-servi ce data-source-ref="securityDataSource"/>
</ aut henti cati on- provi der >
</ aut henti cati on- manager >

3.0.2.RELEASE Spring Security 12

Spring Security

Where “ securityDataSource” isthe name of aDat aSour ce bean inthe application context, pointing at
a database containing the standard Spring Security user data tables. Alternatively, you could configure
a Spring Security JdbcDaol npl bean and point at that using theuser - ser vi ce-r ef attribute:

<aut henti cati on- nanager >
<aut henti cati on-provi der user-service-ref="nmyUserDetail sService'/>
</ aut henti cati on- manager >

<beans: bean i d="nyUser Det ai | sServi ce"
cl ass="org. spri ngframewor k. security. core.userdetails.jdbc.JdbcDaol npl ">
<beans: property nane="dat aSource" ref="dataSource"/>
</ beans: bean>

Y ou can aso use standard Aut hent i cat i onPr ovi der beans asfollows

<aut henti cati on- manager >
<aut henti cati on-provi der ref="nyAuthenticationProvider'/>
</ aut henti cati on- manager >

where my Aut hent i cati onPr ovi der is the name of a bean in your application context which
implements Aut hent i cat i onPr ovi der . See Section 2.6, “ The Authentication Manager and the
Namespace” for more on information on how the Spring Security Aut henti cati onManager is
configured using the namespace.

Adding a Password Encoder

Often your password data will be encoded using a hashing algorithm. This is supported by the
<passwor d- encoder > element. With SHA encoded passwords, the original authentication provider
configuration would look like this:

<aut henti cati on- manager >
<aut henti cati on- provi der >
<passwor d- encoder hash="sha"/>
<user - servi ce>
<user name="jim" password="d7e635leaal3189a5a3641bab846c8e8c69ba39f "
authoriti es="ROLE_USER, ROLE_ADM N' />
<user nane="bob" password="4e7421b1b8765d8f 9406d87e7cc6aa784c4ab97f"
aut horiti es="ROLE_USER"' />
</ user-servi ce>
</ aut henti cati on- provi der >
</ aut henti cati on- nanager >

When using hashed passwords, it's also a good idea to use a salt value to protect against dictionary
attacks and Spring Security supports thistoo. Ideally you would want to use a randomly generated salt
value for each user, but you can use any property of the User Det ai | s object whichisloaded by your
User Det ai | sSer vi ce. For example, to use the user namne property, you would use

3.0.2.RELEASE Spring Security 13

Spring Security

<passwor d- encoder hash="sha">
<sal t - source user-property="usernanme"/>
</ passwor d- encoder >

You can use a custom password encoder bean by using the r ef attribute of passwor d- encoder .
This should contain the name of a bean in the application context which is an instance of Spring
Security's Passwor dEncoder interface.

2.3 Advanced Web Features

Remember-Me Authentication
See the separate Remember-Me chapter for information on remember-me namespace configuration.
Adding HTTP/HTTPS Channel Security

If your application supports both HTTP and HTTPS, and you require that particular URLSs can only
be accessed over HTTPS, then thisis directly supported using ther equi r es- channel attribute on
<intercept-url>:

<ht t p>
<intercept-url pattern="/secure/**" access="ROLE_USER' requires-channel ="https"/>
<intercept-url pattern="/**" access="ROLE_USER' requires-channel ="any"/>

</ http>

With this configuration in place, if auser attempts to access anything matching the "/secure/**" pattern
using HTTP, they will first be redirected to an HTTPS URL. The available options are "http", "https"
or "any". Using the value "any" means that either HTTP or HTTPS can be used.

If your application uses non-standard ports for HTTP and/or HTTPS, you can specify a list of port
mappings as follows:

<htt p>

<port - mappi ngs>
<port - mappi ng http="9080" https="9443"/>
</ port - mappi ngs>
</ http>

Session Management
Detecting Timeouts

Y ou can configure Spring Security to detect the submission of an invalid session ID and redirect the
user to an appropriate URL. Thisis achieved through the sessi on- nanagenent element:

<htt p>

3.0.2.RELEASE Spring Security 14

Spring Security

<sessi on- managenent invalid-session-url="/sessionTi neout. htm' />
</ http>

Concurrent Session Control

If you wish to place constraints on a single user's ability to log in to your application, Spring Security
supports this out of the box with the following simple additions. First you need to add the following
listener to your web. xm file to keep Spring Security updated about session lifecycle events:

<listener>
<l i stener-class>
org. springframewor k. security. web. session. H t pSessi onEvent Publ i sher
</listener-class>
</listener>

Then add the following lines to your application context:

<htt p>
<sessi on- nanagenent >

</ sessi on- nanagenent >
</ http>

This will prevent a user from logging in multiple times - a second login will cause the first to be
invalidated. Often you would prefer to prevent a second login, in which case you can use

<ht t p>

<sessi on- managenent >
<concurrency-control max-sessions="1" error-if-maxi mumexceeded="true" />
</ sessi on- nanagenent >
</ http>

The second login will then be rejected. By “rejected”, we mean that the user will be sent to the
aut hentication-failure-url if form-based loginisbeing used. If the second authentication
takes place through another non-interactive mechanism, such as “remember-me”, an “unauthorized”
(402) error will be sent to the client. If instead you want to use an error page, you can add the attribute
sessi on-aut hentication-error-url tothesessi on- nanagenent eement.

If you are using a customized authentication filter for form-based login, then you have to configure
concurrent session control support explicitly. More details can be found in the Session Management
chapter.

Session Fixation Attack Protection

Session fixation [http://en.wikipedia.org/wiki/Session_fixation] attacks are a potential risk where it is
possible for a malicious attacker to create a session by accessing a site, then persuade another user to
log in with the same session (by sending them a link containing the session identifier as a parameter,
for example). Spring Security protects against this automatically by creating a new session when a
user logs in. If you don't require this protection, or it conflicts with some other regquirement, you

3.0.2.RELEASE Spring Security 15

http://en.wikipedia.org/wiki/Session_fixation
http://en.wikipedia.org/wiki/Session_fixation

Spring Security

can control the behaviour using the sessi on-fi xat i on- pr ot ecti on attribute on <sessi on-
managenent >, which has three options

e i grateSessi on - creates a new session and copies the existing session attributes to the new
session. Thisis the default.

* none - Don't do anything. The original session will be retained.

* newSessi on - Create anew "clean" session, without copying the existing session data.

OpenlID Support

The namespace supports OpenlID [http://openid.net/] login either instead of, or in addition to normal
form-based login, with a ssimple change:

<htt p>
<intercept-url pattern="/**" access="ROLE _USER' />
<openid-login />

</ http>

Y ou should then register yourself with an OpenlD provider (such as myopenid.com), and add the user
information to your in-memory <user - servi ce>:

<user name="http://jim.hendrix. mopenid.com" authorities="ROLE USER' />

You should be able to login using the myopeni d. com site to authenticate. It is aso possible to
select aspecificUser Det ai | sSer vi ce beanfor use OpenID by settingtheuser - ser vi ce-r ef
attribute on the openi d- | ogi n element. See the previous section on authentication providers for
more information. Note that we have omitted the password attribute from the above user configuration,
since this set of user datais only being used to load the authorities for the user. A random password
will be generate internally, preventing you from accidentally using this user data as an authentication
source elsewhere in your configuration.

Attribute Exchange

Support for OpenID attribute exchange [http://openid.net/specs/openid-attribute-exchange-1_0.html].
As an example, the following configuration would attempt to retrieve the email and full name from the
OpenlD provider, for use by the application:

<openi d- | ogi n>

<attri but e- exchange>
<openi d-attribute name="enmmil|l" type="http://axschema.org/contact/enmil" required="true"/>
<openi d-attribute name="nanme" type="http://axschena. org/ nanePerson"/>

</ attribut e-exchange>

</ openi d- | ogi n>

The “type” of each OpenlD attribute is a URI, determined by a particular schema, in this case http://
axschema.org/. If an attribute must be retrieved for successful authentication, ther equi r ed attribute
can be set. The exact schema and attributes supported will depend on your OpenlD provider. The
attribute values are returned as part of the authentication process and can be accessed afterwards using
the following code:

3.0.2.RELEASE Spring Security 16

http://openid.net/
http://openid.net/
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://axschema.org/
http://axschema.org/

Spring Security

Openl DAut henti cati onToken token =
(Openl DAut hent i cati onToken) Securi t yCont ext Hol der . get Cont ext (). get Aut henti cation();
Li st<Openl DAttribute> attri butes = token.getAttributes();
The Openl DAt t ri but e contains the attribute type and the retrieved value (or values in the case of
multi-valued attributes). We'll see more about how the Secur i t yCont ext Hol der class is used
whenwe look at core Spring Security componentsin the technical overview [core-components] chapter.

Adding in Your Own Filters

If you've used Spring Security before, you'll know that the framework maintains a chain of filtersin
order to apply its services. You may want to add your own filters to the stack at particular locations
or use a Spring Security filter for which there isn't currently a namespace configuration option (CAS,
for example). Or you might want to use a customized version of a standard namespace filter, such
astheUser nanmePasswor dAut henti cat i onFi | t er whichiscreated by the<f or m | ogi n>
element, taking advantage of some of the extra configuration options which are available by using the
bean explicitly. How can you do this with namespace configuration, since thefilter chainis not directly
exposed?

The order of the filters is always strictly enforced when using the namespace. When the application
context is being created, the filter beans are sorted by the namespace handling code and the standard
Spring Security filters each have an dias in the namespace and a well-known position.

Note

In previous versions, the sorting took place after the filter instances had been created, during
post-processing of the application context. In version 3.0+ the sorting is now done at the
bean metadata level, before the classes have been instantiated. This has implications for
how you add your own filters to the stack as the entire filter list must be known during the
parsing of the <ht t p> element, so the syntax has changed slightly in 3.0.

The filters, aliases and namespace elements/attributes which create the filters are shown in Table 2.1,
“Standard Filter Aliases and Ordering”. The filters are listed in the order in which they occur in the
filter chain.

Table 2.1. Sandard Filter Aliases and Ordering

Alias Filter Class Namespace Element
or Attribute

CHANNEL_FILTER Channel Processi ngFil terhttp/intercept-
url @ equi res-channel

CONCURRENT_SESSION_FILT&mcur r ent Sessi onFi | t ersessi on- nanagenent /
concurrency-control

SECURITY_CONTEXT_FILTERSecur i t yCont ext Per si st elncefi | t er

LOGOUT_FILTER LogoutFil ter ht t p/ | ogout

3.0.2.RELEASE Spring Security 17

core-components
core-components

Spring Security

Alias Filter Class Namespace Element
or Attribute
X509 FILTER X509Aut henti cationFil tenttp/x509

PRE_AUTH_FILTER

Ast ract PreAut hent i cat edRfAdcessi ngFi |l ter
Subclasses

CAS FILTER

CasAut henti cati onFi |l t erN/A

FORM_LOGIN_FILTER

User nanePasswor dAut hent hiciap/ oorHml it @egi n

BASIC_AUTH_FILTER

SERVLET_API_SUPPORT FIL

Basi cAut henti cationFil tlertp/ http-basic

TR ur i t yCont ext Hol der Awair efpd @ ervl et - api -
provi si on

REMEMBER_ME_FILTER
ANONYMOUS FILTER
SESSION_MANAGEMENT_FI
EXCEPTION_TRANSLATION]
FILTER_SECURITY_INTERCE

SWITCH_USER FILTER

Renenber MeAut henti cat i omtH pt eenenber - ne
AnonynousAut henti cati onlii § peanonynous
L$ESSi onManagenent Fi | t ersessi on- managenent
B d&R | onTr ansl ati onFi | hierp

‘FTORer Securityl nterceptlort p

SwitchUserFilter N/A

Y ou can add your own filter to the stack, usingthecust om fi | t er element and one of these names
to specify the position your filter should appear at:

<ht t p>
<customfilter position="
</ http>

<beans: bean id="nyFilter" cl

FORM LOG N_FI LTER" ref="nyFilter" />

ass="com nyconpany. MySpeci al Aut henti cati onFilter"/>

Youcanasousetheaf t er or bef or e attributesif you want your filter to be inserted before or after
another filter in the stack. The names "FIRST" and "LAST" can be used with the posi t i on attribute
to indicate that you want your filter to appear before or after the entire stack, respectively.

Avoiding filter position conflicts

a

If you are inserting a custom filter which may occupy the same position as one of the
standard filters created by the namespace then it's important that you don't include the
namespace versions by mistake. Avoid using theaut o- conf i g attribute and remove any
elements which create filters whose functionality you want to replace.

Notethat you can't replacefilterswhich are created by the use of the<ht t p> element itself
- Securi t yCont ext Per si st enceFi |l ter, Excepti onTransl ati onFilter

orFilterSecurit

yl nterceptor.

3.0.2.RELEASE

Spring Security

18

Spring Security

If you're replacing a namespace filter which requires an authentication entry point (i.e. where the
authentication process is triggered by an attempt by an unauthenticated user to access to a secured
resource), you will need to add a custom entry point bean too.

Setting a Custom Aut hent i cati onEnt r yPoi nt

If you aren't using form login, OpenlD or basic authentication through the namespace, you may want
to define an authentication filter and entry point using a traditional bean syntax and link them into the
namespace, aswe've just seen. The corresponding Aut hent i cat i onEnt r yPoi nt canbeset using
theent ry- poi nt - r ef attribute on the <ht t p> element.

The CAS sampleapplicationisagood example of the use of custom beanswith the namespace, including
this syntax. If you aren't familiar with authentication entry points, they are discussed in the technical
overview chapter.

2.4 Method Security

Fromversion 2.0 onwards Spring Security hasimproved support substantially for adding security to your
service layer methods. It provides support for JSR-250 annotation security as well as the framework's
original @ecur ed annotation. From 3.0 you can also make use of new expression-based annotations
[el-access]. You can apply security to a single bean, using the i nt er cept - net hods element to
decorate the bean declaration, or you can secure multiple beans across the entire service layer using the
Aspect] style pointcuts.

The <gl obal - et hod- securi t y> Element

This element is used to enable annotation-based security in your application (by setting the appropriate
attributes on the element), and al so to group together security pointcut declarationswhich will be applied
acrossyour entire application context. Y ou should only declareone<gl obal - net hod- security>
element. The following declaration would enable support for Spring Security's @ecur ed:

<gl obal - net hod- security secured-annotati ons="enabl ed" />

Adding an annotation to a method (on an class or interface) would then limit the access to that method
accordingly. Spring Security's native annotation support defines a set of attributesfor the method. These
will be passed to the AccessDeci si onManager for it to make the actual decision:

public interface BankService {

@ecur ed("1 S_AUTHENTI CATED ANONYMOUSL Y")
publ i c Account readAccount (Long id);

@ecur ed("1 S_AUTHENTI CATED ANONYMOUSLY")
public Account[] findAccounts();

@ecur ed(" ROLE_TELLER")
publ i c Account post (Account account, double anmpunt);

}
Support for JSR-250 annotations can be enabled using

3.0.2.RELEASE Spring Security 19

el-access
el-access

Spring Security

<gl obal - net hod- security jsr250-annotati ons="enabl ed" />

These are standards-based and alow simple role-based constraints to be applied but do not have the
power Spring Security's native annotations. To use the new expression-based syntax, you would use

<gl obal - met hod- security pre-post-annotations="enabl ed" />

and the equivalent Java code would be

public interface BankService {

@Pr eAut hori ze("i sAnonynous() ")
publ i c Account readAccount (Long id);

@Pr eAut hori ze("i sAnonynous() ")
public Account[] findAccounts();

@r eAut hori ze("hasAut hority(' ROLE TELLER)")
publ i c Account post (Account account, double anmpunt);

Expression-based annotations are a good choice if you need to define simple rules that go beyond
checking the role names against the user's list of authorities. Y ou can enable more than one type of
annotation in the same application, but you should avoid mixing annotations typesin the same interface
or classto avoid confusion.

Adding Security Pointcuts using pr ot ect - poi nt cut

The use of pr ot ect - poi nt cut is particularly powerful, asit allows you to apply security to many
beans with only a simple declaration. Consider the following example:

<gl obal - et hod- security>
<pr ot ect - poi nt cut expressi on="execution(* com myconpany.*Service.*(..))"
access="ROLE_USER'/ >
</ gl obal - net hod- security>

This will protect all methods on beans declared in the application context whose classes are in the
com myconpany package and whose class namesend in " Service". Only userswith the ROLE_USER
role will be able to invoke these methods. Aswith URL matching, the most specific matches must come
first in thelist of pointcuts, as the first matching expression will be used.

2.5 The Default AccessDecisionManager

This section assumes you have some knowledge of the underlying architecture for access-control within
Spring Security. If you don't you can skipit and comeback toiit later, asthissectionisonly really relevant
for people who need to do some customization in order to use more than simple role-based security.

3.0.2.RELEASE Spring Security 20

Spring Security

When you use a namespace configuration, a default instance of AccessDeci si onManager is
automatically registered for you and will be used for making access decisionsfor method invocationsand
web URL access, based on the access attributes you specify inyour i nt er cept - ur | andpr ot ect -
poi nt cut declarations (and in annotations if you are using annotation secured methods).

The default strategy is to use an Affirmati veBased AccessDeci si onManager with a
Rol eVot er and an Aut hent i cat edVot er . You can find out more about these in the chapter on
authorization.

Customizing the AccessDecisionManager

If you need to use a more complicated access control strategy then it is easy to set an aternative for
both method and web security.

For method security, you do this by setting the access- deci si on- nanager - r ef attribute on
gl obal - met hod- securi ty to the Id of the appropriate AccessDeci si onManager bean in
the application context:

<gl obal - met hod- security access-deci si on-manager -ref ="myAccessDeci si onManager Bean" >

</ gl obal - net hod- security>

The syntax for web security is the same, but onthe ht t p element:

<http access-deci si on- manager -r ef =" nyAccessDeci si onManager Bean" >

</ http>

2.6 The Authentication Manager and the Namespace

The main interface which provides authentication services in Spring Security is the
Aut hent i cati onManager . Thisisusually an instance of Spring Security's Pr ovi der Manager
class, which you may dready be familiar with if you've used the framework before. If
not, it will be covered later, in the technical overview chapter. The bean instance is
registered using the aut henti cati on- manager namespace element. You can't use a custom
Aut hent i cat i onManager if youareusing either HTTP or method security through the namespace,
but this should not be a problem as you have full control over the Aut hent i cati onProvi ders
that are used.

You may want to register additional AuthenticationProvider beans with the
Pr ovi der Manager andyou candothisusingthe<aut henti cati on- pr ovi der > element with
ther ef attribute, where the value of the attribute is the name of the provider bean you want to add.
For example:

<aut henti cati on- manager >

3.0.2.RELEASE Spring Security 21

authorization

Spring Security

<aut henti cati on-provi der ref="casAuthenticationProvider"/>
</ aut henti cati on- manager >

<bean i d="casAut henti cati onProvi der"
cl ass="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">

</ bean>

Anocther common requirement is that another bean in the context may require a reference to the
Aut hent i cat i onManager . You can easily register an dliasfor the Aut hent i cat i onManager
and use this name elsewhere in your application context.

<security:authentication-manager alias="authenticati onManager">
</security:authentication-manager>
<bean i d="cust om zedFor nlLogi nFilter"

cl ass="com someconpany. security. web. Cust onfornLogi nFi |l ter">

<property name="aut henti cati onManager" ref="authenticati onManager"/>

</ bean>

3.0.2.RELEASE Spring Security 22

Spring Security

3. Sample Applications

There are several sample web applications that are available with the project. To avoid an overly
large download, only the "tutorial” and "contacts’ samples are included in the distribution zip file.
Y ou can either build the others yourself, or you can obtain the war files individually from the centra
Maven repository. We'd recommend the former. Y ou can get the source as described in the introduction
and it's easy to build the project using Maven. There is more information on the project web site at
http://www.springsource.org/security/ [http://www.springsource.org/security/] if you need it. All paths
referred to in this chapter are relative to the project source directory.

3.1 Tutorial Sample

The tutorial sample is a nice basic example to get you started. It uses simple namespace configuration
throughout. The compiled application is included in the distribution zip file, ready to be deployed into
your web container (spri ng-security-sanpl es-tutorial -3. 0. x.war). The form-based
authentication mechanism is used in combinati on with the commonly-used remember-me authentication
provider to automatically remember the login using cookies.

We recommend you start with the tutorial sample, as the XML is minimal and easy to follow. Most
importantly, you can easily add this one XML file (and its corresponding web. xni entries) to your
existing application. Only when this basic integration is achieved do we suggest you attempt adding in
method authorization or domain object security.

3.2 Contacts

The Contacts Sampleis an advanced examplein that it illustrates the more powerful features of domain
object access control lists (ACLS) in addition to basic application security. The application provides an
interface with which the users are able to administer asimple database of contacts (the domain objects).

To deploy, ssmply copy the WAR file from Spring Security distribution into your container’ swebapps
directory. Thewar shouldbecalledspri ng- securi ty- sanpl es-cont act s- 3. 0. x. war (the
appended version number will vary depending on what release you are using).

After starting your container, check the application can load. Visit htt p: / /1 ocal host : 8080/
cont act s (or whichever URL is appropriate for your web container and the WAR you deployed).

Next, click "Debug". You will be prompted to authenticate, and a series of usernames and passwords
are suggested on that page. Simply authenticate with any of these and view the resulting page. It should
contain a success message similar to the following:

Security Debug Information

Authentication object is of type:
org.springframework.security.authentication.UsernamePasswordA uthenticationToken

3.0.2.RELEASE Spring Security 23

http://www.springsource.org/security/
http://www.springsource.org/security/

Spring Security

Authentication object as a String:

org.springframework.security.authentication.UsernamePasswordA uthenti cationT oken@1f127853:
Principal: org.springframework.security.core.userdetails.User@b07ed00: Username: rod; \
Password: [PROTECTEDY]; Enabled: true; AccountNonExpired: true;

credentialsNonExpired: true; AccountNonL ocked: true; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER; \

Password: [PROTECTED]; Authenticated: true; \

Details: org.springframework.security.web.authentication.WebA uthenti cationDetail s@O0: \
RemotelpAddress: 127.0.0.1; Sessionld: 8fkp8t83ohar; \

Granted Authorities: ROLE_SUPERVISOR, ROLE_USER

Authentication object holds the following granted authorities:

ROLE_SUPERVISOR (getAuthority(): ROLE_SUPERVISOR)
ROLE_USER (getAuthority(): ROLE_USER)

Success! Y our web filters appear to be properly configured!

Once you successfully receive the above message, return to the sample application's home page and
click "Manage". You can then try out the application. Notice that only the contacts available to the
currently logged on user are displayed, and only users with ROLE_SUPERVI SOR are granted access
to delete their contacts. Behind the scenes, the Met hodSecuri t yl nt er cept or is securing the
business objects.

The application allows you to modify the access control lists associated with different contacts. Be sure
to give thisatry and understand how it works by reviewing the application context XML files.

3.3 LDAP Sample

The LDAP sample application provides a basic configuration and sets up both a namespace
configuration and an equivalent configuration using traditional beans, both in the same application
context file. This means there are actually two identical authentication providers configured in this
application.

3.4 CAS Sample

The CAS sample requires that you run both a CAS server and CAS client. It isn't included in the
distribution so you should check out the project code as described in theintroduction [get-source]. Y ou'll
find the relevant files under the sanpl e/ cas directory. There's also a Readne. t xt file in there
which explains how to run both the server and the client directly from the source tree, complete with
SSL support. Y ou have to download the CA S Server web application (awar file) from the CAS siteand
dropitintothesanpl es/ cas/ ser ver directory.

3.0.2.RELEASE Spring Security 24

get-source
get-source

Spring Security

3.5 Pre-Authentication Sample

This sample application demonstrates how to wire up beans from the pre-authentication framework to
make use of login information from a J2EE container. The user name and roles are those setup by the
container.

Thecodeisinsanpl es/ pr eaut h.

3.0.2.RELEASE Spring Security 25

Spring Security

4. Spring Security Community

4.1 Issue Tracking

Spring Security uses JIRA to manage bug reports and enhancement requests. If you find a bug, please
log a report using JJRA. Do not log it on the support forum, mailing list or by emailing the project's
devel opers. Such approaches are ad-hoc and we prefer to manage bugs using a more formal process.

If possible, in your issue report please provide a JUnit test that demonstrates any incorrect behaviour.
Or, better yet, provide apatch that correctstheissue. Similarly, enhancements are wel come to belogged
in the issue tracker, although we only accept enhancement requests if you include corresponding unit
tests. Thisis necessary to ensure project test coverage is adequately maintained.

Y ou can access the issue tracker at http://jira.springsource.org/browse/SEC.

4.2 Becoming Involved

We welcome your involvement in the Spring Security project. There are many ways of contributing,
including reading the forum and responding to questions from other people, writing new code,
improving existing code, assisting with documentation, developing samples or tutorials, or simply
making suggestions.

4.3 Further Information

Questions and comments on Spring Security are welcome. Y ou can use the Spring Community Forum
web siteat htt p: // forum spri ngsour ce. or g to discuss Spring Security with other users of
the framework. Remember to use JIRA for bug reports, as explained above.

3.0.2.RELEASE Spring Security 26

http://jira.springsource.org/browse/SEC
http://forum.springsource.org

Part Il. Architecture
and Implementation

Once you are familiar with setting up and running some namespace-configuration based applications,
you may wish to develop more of an understanding of how the framework actually works behind
the namespace facade. Like most software, Spring Security has certain central interfaces, classes and
conceptual abstractions that are commonly used throughout the framework. In this part of the reference

guidewewill ook at some of these and see how they work together to support authentication and access-
control within Spring Security.

Spring Security

5. Technical Overview

5.1 Runtime Environment

Spring Security 3.0 requires a Java 5.0 Runtime Environment or higher. As Spring Security aims to
operate in a self-contained manner, there is no need to place any special configuration files into your
Java Runtime Environment. In particular, there is no need to configure a special Java Authentication
and Authorization Service (JAAS) policy file or place Spring Security into common classpath locations.

Similarly, if you are using an EJB Container or Servlet Container there is no need to put any special
configuration files anywhere, nor include Spring Security in a server classloader. All the required files
will be contained within your application.

This design offers maximum deployment time flexibility, as you can simply copy your target artifact
(beitaJAR, WAR or EAR) from one system to another and it will immediately work.

5.2 Core Components

In Spring Security 3.0, the contents of the spr i ng- securi ty- cor e jar were stripped down to the
bare minimum. It no longer contains any code rel ated to web-application security, LDAP or namespace
configuration. We'll take alook here at some of the Javatypesthat you'll find in the core module. They
represent the building blocks of the the framework, so if you ever need to go beyond a simple namespace
configuration then it's important that you understand what they are, even if you don't actually need to
interact with them directly.

SecurityContextHolder, SecurityContext and Authentication Objects

The most fundamental object is Secur i t yCont ext Hol der . Thisiswhere we store details of the
present security context of the application, which includes details of the principal currently using the
application. By default theSecur i t yCont ext Hol der usesaThr eadLocal to storethesedetails,
which means that the security context is always available to methods in the same thread of execution,
even if the security context is not explicitly passed around as an argument to those methods. Using a
ThreadLocal inthisway isquitesafeif careistaken to clear the thread after the present principal's
request is processed. Of course, Spring Security takes care of this for you automatically so thereis no
need to worry about it.

Some applications aren't entirely suitable for usingaThr eadLocal , because of the specific way they
work with threads. For example, a Swing client might want all threads in a Java Virtual Machine to
use the same security context. Secur i t yCont ext Hol der can be configured with a strategy on
startup to specify how you would like the context to be stored. For a standal one application you would
use the Secur i t yCont ext Hol der . MODE_GLOBAL strategy. Other applications might want to
have threads spawned by the secure thread aso assume the same security identity. This is achieved
by usingSecuri t yCont ext Hol der . MODE_| NHERI TABLETHREADL OCAL . Y ou can changethe
mode from the default Secur i t yCont ext Hol der . MODE_THREADLOCAL in two ways. The first
is to set a system property, the second is to call a static method on Securi t yCont ext Hol der.

3.0.2.RELEASE Spring Security 28

Spring Security

Most applications won't need to change from the default, but if you do, take alook at the JavaDocs for
Securi t yCont ext Hol der tolearn more.

Obtaining information about the current user

Inside the Securi t yCont ext Hol der we store details of the principal currently interacting with
the application. Spring Security usesan Aut hent i cat i on object to represent this information. Y ou
won't normally need to create an Aut hent i cat i on object yourself, but it isfairly common for users
toquery the Aut hent i cat i on object. You can usethe following code block - from anywherein your
application - to obtain the name of the currently authenticated user, for example:

bj ect principal = SecurityContextHol der. get Context().getAuthentication().getPrincipal();

if (principal instanceof UserDetails) {

String username = ((UserDetails)principal).getUsername();
} else {

String username = principal.toString();

}

Theabject returned by thecall toget Cont ext () isaninstanceof theSecur i t yCont ext interface.
Thisisthe object that iskept in thread-local storage. Aswe'll see below, most authenti cation mechanisms
withing Spring Security return an instance of User Det ai | s asthe principal.

The UserDetailsService

Another item to note from the above code fragment is that you can obtain a principal from
the Aut henti cati on object. The principal is just an Obj ect. Most of the time this can be
cast into a User Det ai | s object. User Det ai | s is a centra interface in Spring Security. It
represents a principal, but in an extensible and application-specific way. Think of User Det ai | s
as the adapter between your own user database and what Spring Security needs inside the
Securi t yCont ext Hol der . Being a representation of something from your own user database,
quite often you will cast the User Det ai | s to the original object that your application provided, so
you can call business-specific methods (like get Ermai | (), get Enpl oyeeNunber () and so on).

By now you're probably wondering, so when do | provideaUser Det ai | s object? How do | do that?
I thought you said this thing was declarative and | didn't need to write any Java code - what gives? The
short answer is that there is a special interface called User Det ai | sSer vi ce. The only method on
thisinterface acceptsa St r i ng-based username argument and returnsaUser Det ai | s:

UserDetail s | oadUser ByUser name(St ring usernane) throws User nameNot FoundExcepti on;

This is the most common approach to loading information for a user within Spring Security and you
will seeit used throughout the framework whenever information on a user is required.

On successful authentication, User Det ai | s isused to build the Aut hent i cat i on object that is
stored in the Secur i t yCont ext Hol der (more on this below). The good news is that we provide
anumber of User Det ai | sSer vi ce implementations, including one that uses an in-memory map
(I nMeror yDaol npl) and another that uses JDBC (JdbcDaol npl). Most users tend to write their
own, though, with their implementations often simply sitting on top of an existing Data A ccess Object

3.0.2.RELEASE Spring Security 29

Spring Security

(DAO) that represents their employees, customers, or other users of the application. Remember the
advantage that whatever your User Det ai | sSer vi ce returns can aways be obtained from the
Secur it yCont ext Hol der using the above code fragment.

GrantedAuthority

Besides the principal, another important method provided by Authentication is
get Aut horities(). This method provides an array of G antedAuthority objects. A
Gr ant edAut hori ty is, not surprisingly, an authority that isgranted to the principal . Such authorities
are usuadly “roles’, such as ROLE_ADM NI STRATOR or ROLE_HR _SUPERVI SOR. These roles are
later on configured for web authorization, method authorization and domain object authorization. Other
parts of Spring Security are capable of interpreting these authorities, and expect them to be present.
G ant edAut hori t y objects are usually loaded by the User Det ai | sSer vi ce.

Usudly theGr ant edAut hor i t y objectsare application-wide permissions. They are not specifictoa
given domain object. Thus, youwouldn't likely haveaG ant edAut hor i t y torepresent apermission
to Enpl oyee object number 54, because if there are thousands of such authorities you would quickly
run out of memory (or, at the very least, cause the application to take along time to authenticate a user).
Of course, Spring Security is expressly designed to handle this common requirement, but you'd instead
use the project's domain object security capabilities for this purpose.

Summary

Just to recap, the major building blocks of Spring Security that we've seen so far are:

» SecurityCont ext Hol der, to provide access to the Secur i t yCont ext .

» SecurityContext, to hold the Aut henti cati on and possibly request-specific security
information.

* Aut henti cati on, torepresent the principal in a Spring Security-specific manner.

* Grant edAut hori ty, to reflect the application-wide permissions granted to a principal .

» UserDet ai | s, to provide the necessary information to build an Authentication object from your
application's DAOs or other source source of security data.

» UserDetail sServi ce, tocreateaUser Det ai | s when passed ina St ri ng-based username
(or certificate ID or the like).

Now that you've gained an understanding of these repeatedly-used components, let's take a closer look
at the process of authentication.

5.3 Authentication

Spring Security can participate in many different authentication environments. While we recommend
people use Spring Security for authentication and not integrate with existing Container Managed
Authentication, it is nevertheless supported - asis integrating with your own proprietary authentication
system.

What is authentication in Spring Security?

Let's consider a standard authentication scenario that everyone is familiar with.

3.0.2.RELEASE Spring Security 30

Spring Security

1. A user isprompted to log in with a username and password.

2. The system (successfully) verifiesthat the password is correct for the username.
3. The context information for that user is obtained (their list of roles and so on).
4. A security context is established for the user

5. The user proceeds, potentially to perform some operation which is potentially protected by an access
control mechanism which checks the required permissions for the operation against the current
security context information.

The first three items constitute the authentication process so well take alook at how these take place

within Spring Security.

1. The username and password are obtained and combined into an instance of
User nanePasswor dAut henti cati onToken (an instance of the Authenti cation
interface, which we saw earlier).

2. Thetoken is passed to an instance of Aut hent i cati onManager for validation.

3. The Aut hent i cat i onManager returns a fully populated Aut henti cati on instance on
successful authentication.

4. The security context is established by calling
Securi t yCont ext Hol der. get Cont ext (). set Authentication(...), passng in
the returned authentication object.

From that point on, the user is considered to be authenticated. Let's ook at some code as an example.

i nport org.springfranework. security.authentication.*;

i mport org.springframework. security.core.*;

i mport org.springframework. security.core.authority. G antedAuthorityl npl;
i nport org.springfranework. security.core.context.SecurityContextHol der;

public class AuthenticationExanple {
private static Authenticati onManager am = new Sanpl eAut henti cati onManager () ;

public static void main(String[] args) throws Exception {
Buf f eredReader in = new BufferedReader (new | nput St reanReader (Systemin));

whi |l e(true) {

System out. println("Pl ease enter your usernane:");

String name = in.readLine();

System out. println("Pl ease enter your password:");

String password = in.readLine();

try {
Aut henti cati on request = new User namePasswor dAut henti cati onToken(name, password);
Aut hentication result = am aut henti cate(request);
Securi t yCont ext Hol der . get Cont ext (). set Aut henti cation(result);

br eak;
} catch(Authenticati onException e) {
System out. println("Authentication failed: " + e.getMssage());

}
}

System out. println("Successfully authenticated. Security context contains:
Securi t yCont ext Hol der. get Cont ext (). get Aut henti cation());

3.0.2.RELEASE Spring Security 31

Spring Security

}

cl ass Sanpl eAut henti cati onManager i npl ements Aut henti cati onManager {
static final List<G antedAuthority> AUTHORI TIES = new ArrayLi st <G ant edAut hority>();

static {
AUTHORI Tl ES. add(new G ant edAut horityl mpl (" ROLE_USER")) ;

}

public Authentication authenticate(Authentication auth) throws Authenticati onException {
i f (auth.getNane().equal s(auth.getCredentials())) {
return new User nanePasswor dAut henti cati onToken(aut h. get Nane(),
aut h. get Credenti al s(), AUTHORI Tl ES);

}

t hrow new BadCr edenti al sExcepti on("Bad Credential s");

}
}

Here we have written a little program that asks the user to enter a username and password and
performs the above sequence. The Aut hent i cat i onManager which we've implemented here will
authenticate any user whose username and password are the same. It assignsasingle role to every user.
The output from the above will be something like:

Pl ease enter your usernane:

bob

Pl ease enter your password:

passwor d

Aut hentication failed: Bad Credentials

Pl ease enter your usernamne:

bob

Pl ease enter your password:

bob

Successfully authenticated. Security context contains: \
org. springframewor k. security. aut henticati on. User namePasswor dAut henti cati onToken@41d0230: \
Princi pal : bob; Password: [PROTECTED]; \
Aut henticated: true; Details: null; \
Granted Authorities: ROLE USER

Notethat you don't normally need to write any codelikethis. The processwill normally occur internally,
in aweb authentication filter for example. We've just included the code here to show that the question
of what actually constitutes authentication in Spring Security has quite a simple answer. A user is
authenticated whenthe Secur i t yCont ext Hol der containsafully populated Aut hent i cati on
object.

Setting the SecurityContextHolder Contents Directly

In fact, Spring Security doesn't mind how you put the Authentication object
inside the SecurityContextHolder. The only critica requirement is that the
Securi t yCont ext Hol der contains an Aut hent i cat i on which represents a principa before
theAbst ract Securi tyl nt er cept or (whichwell see more about later) needsto authorize auser
operation.

You can (and many users do) write their own filters or MV C controllers to provide interoperability
with authentication systems that are not based on Spring Security. For example, you might be using

3.0.2.RELEASE Spring Security 32

Spring Security

Container-Managed A uthentication which makesthe current user availablefrom aThreadlL ocal or INDI
location. Or you might work for a company that has alegacy proprietary authentication system, which
is a corporate "standard”" over which you have little control. In situations like this it's quite easy to
get Spring Security to work, and still provide authorization capabilities. All you need to do is write a
filter (or equivalent) that reads the third-party user information from alocation, build a Spring Security-
specific Aut hent i cat i on object, and put it into the Secur i t yCont ext Hol der .

If you're wondering how the Aut hent i cati onManager manager isimplemented in areal world
example, we'll look at that in the core services chapter.

5.4 Authentication in a Web Application

Now let's explore the situation where you are using Spring Security in a web application (without
web. xm security enabled). How is a user authenticated and the security context established?

Consider atypical web application's authentication process:
1. You visit the home page, and click on alink.
2. A request goesto the server, and the server decides that you've asked for a protected resource.

3. As you're not presently authenticated, the server sends back a response indicating that you must
authenticate. The response will either be an HTTP response code, or a redirect to a particular web

page.

4. Depending on the authentication mechanism, your browser will either redirect to the specific web
page so that you can fill out the form, or the browser will somehow retrieve your identity (via a
BASIC authentication dialogue box, a cookie, a X.509 certificate etc.).

5. The browser will send back aresponse to the server. Thiswill either be an HTTP POST containing
the contents of theform that you filled out, or an HT TP header containing your authentication details.

6. Next the server will decide whether or not the presented credentialsarevalid. If they'revalid, the next
step will happen. If they're invalid, usually your browser will be asked to try again (so you return
to step two above).

7. The origina request that you made to cause the authentication process will be retried. Hopefully
you've authenticated with sufficient granted authorities to access the protected resource. If you have
sufficient access, the request will be successful. Otherwise, you'll receive back an HTTP error code
403, which means "forbidden".

Spring Security has distinct classes responsible for most of the steps described above. The main
participants (in the order that they are used) are the Excepti onTransl ationFilter, an
Aut henti cat i onEnt ryPoi nt and an “authentication mechanism”, which is responsible for
calling the Aut hent i cat i onManager which we saw in the previous section.

ExceptionTranslationFilter

ExceptionTransl ati onFi |l ter isa Spring Security filter that has responsibility for detecting
any Spring Security exceptions that are thrown. Such exceptions will generally be thrown by

3.0.2.RELEASE Spring Security 33

Spring Security

an Abstract Securityl nterceptor, which is the main provider of authorization services.
We will discuss Abstract Securityl nterceptor in the next section, but for now we just
need to know that it produces Java exceptions and knows nothing about HTTP or how to
go about authenticating a principal. Instead the Excepti onTransl ati onFi | t er offers this
service, with specific responsibility for either returning error code 403 (if the principal has been
authenticated and therefore simply lacks sufficient access - as per step seven above), or launching an
Aut henti cati onEnt r yPoi nt (if the principal has not been authenticated and therefore we need
to go commence step three).

AuthenticationEntryPoint

The Aut henti cati onEnt r yPoi nt is responsible for step three in the above list. As you can
imagine, each web application will have a default authentication strategy (well, this can be configured
likenearly everything el sein Spring Security, but let'skeep it simplefor now). Each major authentication
systemwill haveitsown Aut hent i cat i onEnt r yPoi nt implementation, which typically performs
one of the actions described in step 3.

Authentication Mechanism

Once your browser submits your authentication credentials (either as an HTTP form post or HTTP
header) there needs to be something on the server that “collects’ these authentication details. By now
wereat step six intheabovelist. In Spring Security we have aspecial namefor the function of collecting
authentication details from a user agent (usually a web browser), referring to it as the “authentication
mechanism”. Examples are form-base login and Basic authentication. Once the authentication details
have been collected from the user agent, an Aut henti cati on “request” object is built and then
presented to the Aut hent i cat i onManager .

After the authentication mechanism receives back the fully-populated Aut henti cati on abject,
it will deem the request valid, put the Aut henti cati on into the Securi t yCont ext Hol der,
and cause the original request to be retried (step seven above). If, on the other hand, the
Aut hent i cat i onManager rejected the request, the authentication mechanism will ask the user
agent to retry (step two above).

Storing the Securi t yCont ext between requests

Depending on the type of application, there may need to be a strategy in place to store
the security context between user operations. In a typical web application, a user logs in
once and is subsequently identified by their session Id. The server caches the principa
information for the duration session. In Spring Security, the responsibility for storing the
Securi t yCont ext between requests falls to the Secur i t yCont ext Per si st enceFil ter,
which by default stores the context as an Ht t pSessi on attribute between HTTP requests. It
restores the context to the Securi t yCont ext Hol der for each request and, crucially, clears the
Securi t yCont ext Hol der when the request completes. Y ou shouldn't interact directly with the
Ht t pSessi on for security purposes. There is simply no justification for doing so - aways use the
Securi t yCont ext Hol der instead.

Many other types of application (for example, a stateless RESTful web service) do not use
HTTP sessions and will re-authenticate on every request. However, it is still important that

3.0.2.RELEASE Spring Security 34

Spring Security

the Securi t yCont ext Persi stenceFi | ter isincluded in the chain to make sure that the
Securi t yCont ext Hol der iscleared after each request.

Note

.

@

In an application which receives concurrent requests in a single session,
the same SecurityCont ext instance will be shared between threads. Even
though a ThreadLocal is being used, it is the same instance that is
retrieved from the HttpSession for each thread. This has implications
if you wish to temporarily change the context under which a thread is
running. If you just use SecurityCont ext Hol der. get Context (), and cal
set Aut henti cati on(anAut henti cati on) on the returned context object,
then the Authentication object will change in all concurrent threads
which share the same SecurityContext instance. You can customize the
behaviour of SecurityCont ext Persi stenceFilter to create a completely
new SecurityContext for each request, preventing changes in one thread
from affecting another. Alternatively you can create a new instance just
a the point where you temporarily change the context. The method
Securit yCont ext Hol der. cr eat eEnpt yCont ext () aways returns a new
context instance.

5.5 Access-Control (Authorization) in Spring Security

The main interface responsible for making access-control decisions in Spring Security is the
AccessDeci si onManager . It hasadeci de method which takes an Aut hent i cat i on object
representing the principal requesting access, a“ secure object” (see below) and alist of security metadata
attributes which apply for the object (such asalist of roleswhich are required for access to be granted).

Security and AOP Advice

If you're familiar with AOP, you'd be aware there are different types of advice available: before, after,
throws and around. An around advice is very useful, because an advisor can elect whether or not to
proceed with a method invocation, whether or not to modify the response, and whether or not to throw
an exception. Spring Security providesan around advicefor method invocations aswell asweb requests.
We achieve an around advice for method invocations using Spring's standard AOP support and we
achieve an around advice for web requests using a standard Filter.

For those not familiar with AOP, the key point to understand is that Spring Security can help you
protect method invocations as well as web requests. Most people are interested in securing method
invocationsontheir serviceslayer. Thisisbecausethe serviceslayer iswhere most businesslogic resides
in current-generation J2EE applications. If you just need to secure method invocations in the services
layer, Spring's standard AOP will be adequate. If you need to secure domain objects directly, you will
likely find that AspectJ isworth considering.

Y ou can el ect to perform method authori zation using A spectJ or Spring AOP, or you can elect to perform
web request authorization using filters. Y ou can use zero, one, two or three of these approachestogether.

3.0.2.RELEASE Spring Security 35

Spring Security

The mainstream usage pattern is to perform some web request authorization, coupled with some Spring
AOP method invocation authorization on the services layer.

Secure Objects and the Abstract Securityl nterceptor

So what is a “secure object” anyway? Spring Security uses the term to refer to any object that can
have security (such as an authorization decision) applied to it. The most common examples are method
invocations and web requests.

Each supported secure object type has its own interceptor class, which is
a subclass of AbstractSecuritylnterceptor. Importantly, by the time the
Abstract Securityl nterceptor iscaled, the SecurityCont ext Hol der will contain a
valid Aut hent i cat i on if the principal has been authenticated.

Abstract Securityl nterceptor provides a consistent workflow for handling secure object
reguests, typicaly:

1. Look up the “configuration attributes’” associated with the present request

2. Submitting the secure object, current Aut henti cati on and configuration attributes to the
AccessDeci si onManager for an authorization decision

3. Optionally change the Aut hent i cat i on under which the invocation takes place

4. Allow the secure object invocation to proceed (assuming access was granted)

5. Cdl the Af t er | nvocat i onManager if configured, once the invocation has returned.
What are Configuration Attributes?

A “configuration attribute” can be thought of as a String that has speciad meaning to the
classes used by Abstract Securitylnterceptor. They are represented by the interface
Confi gAttri but e within the framework. They may be simple role names or have more complex
meaning, depending on the how sophisticated the AccessDeci si onManager implementation is.
The Abstract Securityl nterceptor is configured with a SecurityMet adat aSour ce
which it uses to look up the attributes for a secure object. Usually this configuration will be hidden
from the user. Configuration attributes will be entered as annotations on secured methods or as
access attributes on secured URLSs. For example, when we saw something like <i nt er cept - ur |

pattern='/secure/**' access=' ROLE_A, ROLE_B' / > inthe namespaceintroduction, this
is saying that the configuration attributes ROLE_A and ROLE_B apply to web requests matching
the given pattern. In practice, with the default AccessDeci si onManager configuration, this
means that anyone who has a G- ant edAut hor i t y matching either of these two attributes will be
allowed access. Strictly speaking though, they are just attributes and the interpretation is dependent
on the AccessDeci si onManager implementation. The use of the prefix ROLE_ is a marker to
indicate that these attributes are roles and should be consumed by Spring Security's Rol eVot er .
Thisis only relevant when a voter-based AccessDeci si onManager isin use. Well see how the
AccessDeci si onManager isimplemented in the authorization chapter [authz-arch].

3.0.2.RELEASE Spring Security 36

authz-arch
authz-arch

Spring Security

RunAsManager

Assuming AccessDeci si onManager decides to dlow the request, the
Abstract Securityl nterceptor will normally just proceed with the request. Having said that,
on rare occasions users may want to replace the Aut hent i cat i on insidethe Securi t yCont ext
with adifferent Aut hent i cat i on, which is handled by the AccessDeci si onManager calling
a RunAsManager . This might be useful in reasonably unusual situations, such as if a services
layer method needs to call a remote system and present a different identity. Because Spring Security
automatically propagates security identity from one server to another (assuming you're using aproperly-
configured RMI or Httplnvoker remoting protocol client), this may be useful.

AfterinvocationManager

Following the secure object proceeding and then returning - which may mean a method invocation
completing or a filter chain proceeding - the Abst ract Securityl nt er cept or gets one fina
chance to handle theinvocation. At this stagethe Abst r act Securi t yl nt er cept or isinterested
in possibly modifying the return object. We might want this to happen because an authorization
decision couldn't be made “on the way in” to a secure object invocation. Being highly pluggable,
Abstract Securityl nterceptor will pass control to an Aft erl nvocat i onManager to
actually modify the object if needed. This class can even entirely replace the object, or throw an
exception, or not change it in any way asit chooses.

Abstract Securityl nterceptor and its related objects are shown in Figure 5.1, “Security
interceptors and the “ secure object” model”.

AuthenticationManager

AccessDecisionManager SecurityMetadataSource

RunAsManager |, - AbstractSecuritylnterceptor —#/ AfterinvocationManager

T

Aspect)Securitylnterceptor MethodSecurityinterceptor
secyres FilterSecuritylnterceptor Secqres
SEG*I‘E‘S
JoinPaint Methodinvocation

Filterlnvocation

Figure5.1. Security interceptors and the “ secure object” model

3.0.2.RELEASE Spring Security 37

Spring Security

Extending the Secure Object Model

Only devel opers contempl ating an entirely new way of intercepting and authorizing requestswould need
to use secure objects directly. For example, it would be possible to build a new secure abject to secure
calls to a messaging system. Anything that requires security and also provides away of intercepting a
call (like the AOP around advice semantics) is capable of being made into a secure object. Having said
that, most Spring applications will simply use the three currently supported secure object types (AOP
AllianceMet hodl nvocat i on, AspectJJoi nPoi nt andwebrequestFi | t er I nvocat i on)with
complete transparency.

5.6 Localization

Spring Security supports localization of exception messages that end users are likely to see. If your
application is designed for English-speaking users, you don't need to do anything as by default all
Security Security messages are in English. If you need to support other locales, everything you need
to know is contained in this section.

All exception messages can belocalized, including messagesrel ated to authentication failures and access
being denied (authorization failures). Exceptions and logging that is focused on developers or system
deployers (including incorrect attributes, interface contract violations, using incorrect constructors,
startup time validation, debug-level logging) etc are not localized and instead are hard-coded in English
within Spring Security's code.

Shipping in the Spring-security-core-xx.jar you will find an
or g. spri ngframewor k. securi ty packagethat in turn containsanessages. properties
file. Thisshould bereferred to by your Appl i cat i onCont ext , as Spring Security classesimplement
Spring'sMessageSour ceAwar e interface and expect the message resolver to be dependency injected
at application context startup time. Usually all you need to do is register a bean inside your application
context to refer to the messages. An example is shown below:

<bean i d="nessageSour ce"
cl ass="org. spri ngframewor k. cont ext . support . Rel oadabl eResour ceBundl eMessageSour ce" >
<property nanme="basenane" val ue="org/ spri ngframework/ security/nessages"/>
</ bean>

Thenmessages. properti es isnamed in accordance with standard resource bundles and represents
the default language supported by Spring Security messages. Thisdefault fileisin English. If you do not
register a message source, Spring Security will still work correctly and fallback to hard-coded English
versions of the messages.

If you wish to customize the nessages. properti es file, or support other languages, you should
copy thefile, renameit accordingly, and register it inside the above bean definition. Therearenot alarge
number of message keysinsidethisfile, solocalization should not be considered amajor initiative. If you
do perform localization of this file, please consider sharing your work with the community by logging
a JIRA task and attaching your appropriately-named localized version of messages. properti es.

Rounding out the discussion on locdization is the Spring ThreadLocal known as
org. springframewor k. cont ext.i 18n. Local eCont ext Hol der. You should set the

3.0.2.RELEASE Spring Security 38

Spring Security

Local eCont ext Hol der to represent the preferred Local e of each user. Spring Security will

attempt to locate a message from the message source using the Local e obtained from this
Thr eadLocal . Please refer to the Spring Framework documentation for further details on using

Local eCont ext Hol der.

3.0.2.RELEASE Spring Security

39

Spring Security

6. Core Services

Now that we have a high-level overview of the Spring Security architecture and its core classes, let's
take a closer ook at one or two of the core interfaces and their implementations, in particular the
Aut hent i cat i onManager, User Det ai | sServi ce and the AccessDeci si onManager .
These crop up regularly throughout the remainder of this document so it'simportant you know how they
are configured and how they operate.

6.1 The Aut henti cati onManager, Provi der Manager
and Aut henti cati onProvi ders

The Aut hent i cati onManager isjust an interface, so the implementation can be anything we
choose, but how does it work in practice? What if we need to check multiple authentication databases
or acombination of different authentication services such as a database and an LDAP server?

The default implementation in Spring Security iscalled Pr ovi der Manager and rather than handling
the authentication request itself, it delegates to alist of configured Aut hent i cati onProvi der s,
each of which is queried in turn to see if it can perform the authentication. Each provider will either
throw an exception or return a fully populated Aut henti cati on object. Remember our good
friends, User Det ai | s and User Det ai | sSer vi ce?If not, head back to the previous chapter and
refresh your memory. The most common approach to verifying an authentication request isto load the
corresponding User Det ai | s and check the loaded password against the one that has been entered
by the user. This is the approach used by the DaoAut hent i cati onProvi der (see below). The
loaded User Det ai | s object - and particularly the Gr ant edAut hor i t ysit contains - will be used
when building the fully populated Aut hent i cati on object which is returned from a successful
authentication and stored in the Secur i t yCont ext .

If you are using the namespace, an instance of Provi der Manager is created and maintained
internally, and you add providers to it by using the namespace authentication provider elements (see
the namespace chapter). In this case, you should not declare a Pr ovi der Manager bean in your
application context. However, if you are not using the namespace then you would declare it like so:

<bean i d="aut henti cati onManager"
cl ass="org. spri ngframewor k. security. authentication. Provi der Manager " >
<property nanme="provi ders">
<list>
<ref | ocal ="daoAut henti cati onProvi der"/>
<ref | ocal ="anonynmusAut henti cati onProvi der"/>
<ref |ocal ="| dapAut henti cati onProvi der"/>
</list>
</ property>
</ bean>

In the above example we have three providers. They are tried in the order shown (which is implied
by the use of a Li st), with each provider able to attempt authentication, or skip authentication by
simply returning nul | . If al implementations return null, the Pr ovi der Manager will throw a

3.0.2.RELEASE Spring Security 40

Spring Security

Pr ovi der Not FoundExcept i on. If you're interested in learning more about chaining providers,
please refer to the Pr ovi der Manager JavaDaocs.

Authentication mechanisms such as a web form-login processing filter are injected with a reference
to the Pr ovi der Manager and will call it to handle their authentication requests. The providers you
requirewill sometimes beinterchangeable with the authenti cation mechanisms, while at other timesthey
will depend on aspecific authentication mechanism. For example, DaoAut hent i cati onPr ovi der
and LdapAut henti cati onProvi der are compatible with any mechanism which submits a
simple username/password authentication request and so will work with form-based logins or HTTP
Basic authentication. On the other hand, some authentication mechanisms create an authentication
request object which can only be interpreted by a single type of Aut henti cati onProvi der.
An example of this would be JA-SIG CAS, which uses the notion of a service ticket and so
can therefore only be authenticated by a CasAut henti cati onProvi der. You needn't be too
concerned about this, because if you forget to register a suitable provider, you'll simply receive a
Pr ovi der Not FoundExcept i on when an attempt to authenticate is made.

DaoAut henti cati onProvi der

The simplest AuthenticationProvider implemented by Spring Security is
DaoAut hent i cati onProvi der, which is aso one of the earliest supported by the framework.
It leverages a User Det ai | sServi ce (as a DAO) in order to lookup the username, password
and Grant edAut horitys. It authenticates the user simply by comparing the password
submitted in a User namePasswor dAut hent i cati onToken against the one loaded by the
User Det ai | sSer vi ce. Configuring the provider is quite simple:

<bean i d="daoAut henti cati onProvi der"
cl ass="org. spri ngframewor k. security. authenticati on. dao. DaoAut henti cati onProvi der">
<property name="userDetail sService" ref="i nMenoryDaol npl "/ >
<property nanme="sal t Source" ref bean="salt Source"/>
<property nanme="passwor dEncoder" ref="passwordEncoder"/>
</ bean>

The Passwor dEncoder and Sal t Source are optiona. A Passwor dEncoder provides
encoding and decoding of passwords presented in the User Det ai | s object that is returned from the
configured User Det ai | sSer vi ce. A Sal t Sour ce enables the passwords to be populated with
a"salt", which enhances the security of the passwords in the authentication repository. These will be
discussed in more detail below [core-services-password-encodin].

6.2 User Det ai | sSer vi ce Implementations

As mentioned in the earlier in this reference guide, most authentication providers take advantage
of the UserDetails and UserDetail sService interfaces. Recal that the contract for
User Det ai | sSer vi ce isasingle method:

UserDetail s | oadUser ByUser name(String usernane) throws UsernameNot FoundExcepti on;

3.0.2.RELEASE Spring Security 41

core-services-password-encodin
core-services-password-encodin

Spring Security

Thereturned User Det ai | s isan interface that provides getters that guarantee non-null provision of
authentication information such as the username, password, granted authorities and whether the user
account is enabled or disabled. Most authentication providers will use a User Det ai | sSer vi ce,
evenif the username and password are not actually used as part of the authentication decision. They may
usethereturned User Det ai | s object just for its G- ant edAut hor i t y information, because some
other system (like LDAP or X.509 or CAS etc) has undertaken the responsibility of actually validating
the credentials.

Given User Det ai | sSer vi ce is so smple to implement, it should be easy for users to retrieve
authenti cation information using a persistence strategy of their choice. Having said that, Spring Security
doesinclude a couple of useful base implementations, which we'll look at below.

In-Memory Authentication

Iseasy to usecreateacustom User Det ai | sSer vi ce implementation that extractsinformation from
apersistence engine of choice, but many applicationsdo not require such complexity. Thisisparticularly
trueif you're building a prototype application or just starting integrating Spring Security, when you don't
really want to spend time configuring databases or writing User Det ai | sSer vi ce implementations.
For this sort of situation, a simple option is to use the user - ser vi ce element from the security
namespace:

<user-service id="userDetail sService">
<user nanme="jim" password="jim spassword" authorities="ROLE_USER, ROLE ADM N' />
<user nane="bob" password="bobspassword" authorities="ROLE USER' />

</ user-service>

This aso supports the use of an external propertiesfile:

<user-service id="userDetail sService" properties="users. properties"/>

The properties file should contain entriesin the form

user name=passwor d, gr ant edAut hori ty[, grant edAut hority] [, enabl ed| di sabl ed]

For example

jim=jimspassword, ROLE_USER, ROLE_ADM N, enabl ed
bob=bobspasswor d, ROLE_USER, enabl ed

JdbcDaol npl

Spring Security also includes aUser Det ai | sSer vi ce that can obtain authentication information
from aJDBC datasource. Internally Spring JDBC isused, so it avoidsthe complexity of afully-featured
object relational mapper (ORM) just to store user details. If your application does use an ORM tool, you
might prefer to write a custom User Det ai | sSer vi ce to reuse the mapping files you've probably
already created. Returning to JdbcDaol npl , an example configuration is shown below:

3.0.2.RELEASE Spring Security 42

Spring Security

<bean i d="dat aSource" cl ass="org. spri ngframework.jdbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property name="driverCl assName" val ue="org. hsql db.j dbcDriver"/>
<property name="url" val ue="j dbc: hsql db: hsql : / /| ocal host : 9001"/ >
<property nanme="usernanme" val ue="sa"/>
<property nanme="password" val ue=""/>
</ bean>

<bean i d="userDet ai | sService"
cl ass="org. spri ngframework. security. core.userdetails.jdbc.JdbcDaol npl ">
<property nanme="dat aSource" ref="dataSource"/>
</ bean>

You can use different relational database management systems by modifying the
Dri ver Manager Dat aSour ce shown above. You can also use a global data source obtained from
JNDI, aswith any other Spring configuration.

Authority Groups

By default, JdbcDaol npl loadstheauthoritiesfor asingleuser with the assumption that the authorities
are mapped directly to users (see the database schema appendix). An alternative approach isto partition
the authorities into groups and assign groups to the user. Some people prefer this approach as a means
of administering user rights. See the JdbcDaol npl Javadoc for more information on how to enable
the use of group authorities. The group schemais also included in the appendix.

6.3 Password Encoding

Spring Security's Passwor dEncoder interface is used to support the use of passwords which are
encoded in some way in persistent storage. This will normally mean that the passwords are “hashed”
using a digest algorithm such as MD5 or SHA.

What is a hash?

Password hashing is not unique to Spring Security but is a common source of confusion for users who
are not familiar with the concept. A hash (or digest) algorithm is a one-way function which produces a
piece of fixed-length output data (the hash) from some input data, such as a password. As an example,
the MD5 hash of the string “ password” (in hexadecimal) is

5f 4dcc3b5aa765d61d8327deb882cf 99

A hash is“one-way” in the sense that it is very difficult (effectively impossible) to obtain the original
input given the hash value, or indeed any possible input which would produce that hash value. This
property makes hash values very useful for authentication purposes. They can be stored in your user
database as an alternative to plaintext passwords and even if the values are compromised they do not
immediately reveal a password which can be used to login. Note that this also means you have no way
of recovering the password once it is encoded.

Adding Salt to a Hash

One potential problem with the use of password hashes that it is relatively easy to get round the one-
way property of the hash if acommon word isused for the input. For example, if you search for the hash

3.0.2.RELEASE Spring Security 43

Spring Security

value 5f 4dcc3b5aa765d61d8327deb882cf 99 using google, you will quickly find the original
word “password”. In asimilar way, an attacker can build a dictionary of hashes from a standard word
list and use this to lookup the original password. One way to help prevent this is to have a suitably
strong password policy to try to prevent common words from being used. Another is to use a “salt”
when cal culating the hashes. Thisisan additional string of known data for each user which is combined
with the password before calculating the hash. Ideally the data should be as random as possible, but
in practice any salt value is usually preferable to none. Spring Security has a Sal t Sour ce interface
which can be used by an authentication provider to generate a salt value for a particular user. Using a
salt means that an attacker has to build a separate dictionary of hashes for each salt value, making the
attack more complicated (but not impossible).

Hashing and Authentication

When an authentication provider (such as Spring Security'sDaoAut hent i cat i onPr ovi der needs
to check the password in a submitted authentication request against the known value for a user, and
the stored password is encoded in some way, then the submitted value must be encoded using exactly
the same algorithm. It's up to you to check that these are compatible as Spring Security has no control
over the persistent values. If you add password hashing to your authentication configuration in Spring
Security, and your database contains plaintext passwords, then there is no way authentication can
succeed. Evenif you are aware that your database is using MD5 to encode the passwords, for example,
and your application is configured to use Spring Security's Mi5Passwor dEncoder , there are till
things that can go wrong. The database may have the passwords encoded in Base 64, for example while
the enocoder is using hexadecimal strings (the default)l. Alternatively your database may be using
upper-case while the output from the encoder is lower-case. Make sure you write a test to check the
output from your configured password encoder with aknown password and salt combination and check
that it matches the database value before going further and attempting to authenticate through your
application. For moreinformation on the default method for merging salt and password, see the Javadoc
for BasePasswor dEncoder . If you want to generate encoded passwords directly in Javafor storage
inyour user database, then you can use the encodePasswor d method on the Passwor dEncoder .

Youcan configure the encoder to use Base 64 instead of hex by setting theencodeHashAsBase64 property tot r ue. Check
the Javadoc for MessageDi gest Passwor dEncoder and its parent classes for more information.

3.0.2.RELEASE Spring Security 44

Part IlIl. Web Application Security

Most Spring Security users will be using the framework in applications which make user of HTTP and
the Servlet API. Inthispart, we'll take alook at how Spring Security provides authentication and access-
control features for the web layer of an application. We'll ook behind the facade of the namespace and
seewhich classesand interfaces are actually assembled to provide web-layer security. In some situations
it is necessary to use traditional bean configuration to provide full control over the configuration, so
we'll aso see how to configure these classes directly without the namespace.

Spring Security

7. The Security Filter Chain

Spring Security's web infrastructure is based entirely on standard servlet filters. It doesn't use servlets
or any other servlet-based frameworks (such as Spring MV C) internally, so it has no strong links to any
particular web technology. It dealsin Ht t pSer vl et Request s and Ht t pSer vl et Responses
and doesn't care whether the requests come from a browser, a web service client, an Ht t pl nvoker

or an AJAX application.

Spring Security maintainsafilter chain internally where each of thefilters hasa particular responsibility
and filters are added or removed from the configuration depending on which services are required. The
ordering of the filters is important as there are dependencies between them. If you have been using
namespace configuration, then the filters are automatically configured for you and you don't have to
define any Spring beans explicitly but here may be times when you want full control over the security
filter chain, either because you are using features which aren't supported in the namespace, or you are
using your own customized versions of classes.

7.1 Del egati ngFi | t er Proxy

When using servlet filters, you obviously need to declare them in your web. xm , or they will be
ignored by the servlet container. In Spring Security, the filter classes are also Spring beans defined in
the application context and thus able to take advantage of Spring's rich dependency-injection facilities
and lifecycle interfaces. Spring's Del egat i ngFi | t er Pr oxy provides the link between web. xm
and the application context.

When using Del egat i ngFi | t er Pr oxy, you will see something like thisin theweb. xm file:

<filter>
<filter-name>nyFilter</filter-name>
<filter-class>org.springframework.web.filter.Del egatingFilterProxy</filter-class>
</filter>

<filter-mppi ng>
<filter-name>nyFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mppi ng>

Notice that the filter is actually a Del egat i ngFi | t er Pr oxy, and not the class that will actually
implement the logic of the filter. What Del egat i ngFi | t er Pr oxy doesisdelegatetheFi | ter's
methods through to a bean which is obtained from the Spring application context. This enables the
bean to benefit from the Spring web application context lifecycle support and configuration flexibility.
The bean must implement j avax. servl et . Fi | t er and it must have the same name as that in the
filter-nanme edement. Read the Javadoc for Del egat i ngFi | t er Pr oxy for more information

7.2 Fi | t er Chai nPr oxy

It should now be clear that you can declare each Spring Security filter bean that you require in your
application context file and add a corresponding Del egat i ngFi | t er Pr oxy entry to web. xm

3.0.2.RELEASE Spring Security 46

Spring Security

for each filter, making sure that they are ordered correctly. This is a cumbersome approach and
clutters up the web. xm file quickly if we have a lot of filters. We would prefer to just add a
single entry to web. xm and deal entirely with the application context file for managing our web
security beans. This is where Spring Secuiryt's Fi | t er Chai nPr oxy comesin. It iswired using a
Del egati ngFi | t er Proxy, just likein the example above, but withthef i | t er - name set to the
bean name “filterChainProxy”. Thefilter chainisthen declared in the application context with the same
bean name. Here's an example:

<bean id="filterChainProxy" class="org.springframework.security.web. FilterChai nProxy">
<sec:filter-chain-map path-type="ant">
<sec:filter-chain pattern="/webServices/**" filters="
securi tyCont ext Per si st enceFi | t er Wt hASCFal se,
basi cAut henti cati onFil ter,
exceptionTransl ationFilter,
filterSecuritylnterceptor” />
<sec:filter-chain pattern="/**" filters="
securi t yCont ext Persi st enceFi | t er Wt hASCTr ue,
fornmLogi nFilter,
exceptionTransl ationFilter,
filterSecuritylnterceptor" />
</sec:filter-chain-mp>
</ bean>

The namespace element fi | t er - chai n- map is used to set up the security filter chain(s) which are
required within the applicationl. It maps a particular URL pattern to a chain of filters built up from the
bean names specifiedinthef i | t er s element. Both regular expressions and Ant Paths are supported,
and the most specific URIs appear first. At runtime the Fi | t er Chai nPr oxy will locate the first
URI pattern that matches the current web request and the list of filter beans specified by thefil ters
attribute will be applied to that request. Thefilters will be invoked in the order they are defined, so you
have complete control over the filter chain which is applied to a particular URL.

You may have noticed we have declared two SecurityCont ext Persi stenceFilters
in the filter chain (ASC is short for all owSessionCreation, a property of
Securi t yCont ext Persi st enceFi | t er). Asweb services will never present aj sessi oni d
on future requests, creating Ht t pSessi onsfor such user agents would be wasteful. If you had ahigh-
volume application which required maximum scalability, we recommend you use the approach shown
above. For smaller applications, using a single Secur i t yCont ext Per si st enceFi | t er (with
itsdefault al | owSessi onCr eat i on ast r ue) would likely be sufficient.

In relation to lifecycle issues, the FilterChainProxy will aways delegate
init(FilterConfig) and destroy() methods through to the underlaying Fi | t er s if such
methods are called against Fi |l t er Chai nProxy itself. In this case, Filter Chai nProxy
guarantees to only initialize and destroy each Fi | t er bean once, no matter how many times it is
declared in thefilter chain(s). Y ou control the overall choice as to whether these methods are called or
not viathet arget Fi | t er Li f ecycl e initialization parameter of Del egat i ngFi | t er Pr oxy.
By default this property isf al se and servlet container lifecycle invocations are not del egated through
Del egati ngFi | t er Proxy.

INote that you'll need to include the security namespace in your application context XML filein order to use this syntax.

3.0.2.RELEASE Spring Security 47

Spring Security

When we looked at how to set up web security using namespace configuration, we used a
Del egat i ngFi | t er Pr oxy with the name “ springSecurityFilterChain”. Y ou should now be ableto
see that thisisthe name of the Fi | t er Chai nPr oxy which is created by the namespace.

Bypassing the Filter Chain

As with the namespace, you can use the attribute filters = "none" as an aternative to
supplying a filter bean list. This will omit the request pattern from the security filter chain entirely.
Note that anything matching this path will then have no authentication or authorization services applied
and will be freely accessible. If you want to make use of the contents of the Securi t yCont ext
contents during a request, then it must have passed through the security filter chain. Otherwise the
Securi t yCont ext Hol der will not have been populated and the contents will be null.

7.3 Filter Ordering

The order that filters are defined in the chain is very important. Irrespective of which filters you are
actually using, the order should be asfollows:

1. Channel Processi ngFi | t er, because it might need to redirect to a different protocol

2. Concurrent Sessi onFi | t er, because it doesn't use any SecurityCont ext Hol der
functionality but needs to update the Sessi onRegi st ry to reflect ongoing requests from the
principal

3. SecurityCont ext Persi stenceFilter, soaSecurityContext can be set up in the
Securi t yCont ext Hol der at the beginning of a web request, and any changes to the
Securi t yCont ext can be copied to the Ht t pSessi on when the web request ends (ready for
use with the next web request)

4. Authentication processing mechanisms - User namePasswor dAut henti cationFil ter,
CasAut henticationFilter, BasicAuthenticationFilter etc - so that the
Securi t yCont ext Hol der can be modified to contain a valid Aut henti cati on request
token

5. TheSecuri t yCont ext Hol der Awar eRequest Fi | t er, if youareusing it toinstall a Spring
Security aware Ht t pSer vl et Request W apper into your servlet container

6. Remenber MeAut henti cationFilter, so that if no earlier authentication processing
mechanism updated the Securi t yCont ext Hol der, and the request presents a cookie that
enables remember-me servicesto take place, asuitable remembered Aut hent i cat i on object will
be put there

7. AnonynousAut henticationFilter, so tha if no earlier authentication processing
mechanism updated the Secur i t yCont ext Hol der , an anonymous Aut hent i cat i on object
will be put there

8. ExceptionTransl ati onFi |l t er, to catch any Spring Security exceptions so that either an
HTTP error response can be returned or an appropriate Aut hent i cati onEnt r yPoi nt can be
launched

3.0.2.RELEASE Spring Security 48

Spring Security

9. FilterSecuritylnterceptor, to protect web URIs and raise exceptions when access is
denied

7.4 Use with other Filter-Based Frameworks

If you're using some other framework that is aso filter-based, then you need to make sure that the
Spring Security filters come first. This enables the Secur i t yCont ext Hol der to be populated in
time for use by the other filters. Examples are the use of SiteMesh to decorate your web pages or aweb
framework like Wicket which uses afilter to handle its requests.

3.0.2.RELEASE Spring Security 49

Spring Security

8. Core Security Filters

There are some key filters which will always be used in aweb application which uses Spring Security,
so we'll ook at these and their supporting classes and interfaces first. We won't cover every feature, so
be sure to look at the Javadoc for them if you want to get the complete picture.

8.1FilterSecuritylnterceptor

We've aready seen Fi | t er Securi tyl nt erceptor briefly when discussing access-control in
general, and we've aready used it with the namespace where the <i nt er cept - ur | > elements
are combined to configure it internally. Now well see how to explicitly configure it for use with
aFi |l t er Chai nProxy, aong with its companion filter Excepti onTransl ationFilter. A
typical configuration example is shown below:

<bean id="filterSecuritylnterceptor"
cl ass="org. springframework. security.web. access.intercept.FilterSecuritylnterceptor">
<property nanme="aut henti cati onManager" ref="authenticati onManager"/>
<property nanme="accessDeci si onManager" ref="accessDeci si onManager"/>
<property nanme="securityMet adat aSource">
<security:filter-security-metadata-source>
<security:intercept-url pattern="/secure/super/**" access="ROLE_WE_DONT_HAVE"/ >
<security:intercept-url pattern="/secure/**" access="ROLE SUPERVI SOR, ROLE _TELLER'/ >
</security:filter-security-metadata-source>
</ property>
</ bean>

FilterSecuritylnterceptor isresponsible for handling the security of HTTP resources. It
requires areference to an Aut hent i cat i onManager and an AccessDeci si onManager . Itis
also supplied with configuration attributes that apply to different HTTP URL requests. Refer back to
the original discussion on these in the technical introduction.

The FilterSecuritylnterceptor can be configured with configuration attributes in two
ways. The first, which is shown above, is using the <filter-security-netadata-
sour ce> namespace element. This is similar to the <fi | t er - chai n- map> used to configure
aFi | t er Chai nPr oxy but the <i nt er cept - ur| > child elements only use the pat t er n and
access attributes. Commas are used to delimit the different configuration attributes that apply to each
HTTPURL. Thesecond optionistowriteyour ownSecur i t yMet adat aSour ce, but thisisbeyond
the scope of this document. Irrespective of the approach used, the Secur i t yMet adat aSour ce is
responsiblefor returningali st <Confi gAttri but e> containing al of the configuration attributes
associated with asingle secure HTTP URL.

It should be noted that the
FilterSecuritylnterceptor.setSecurityMetadataSource() method actually
expects an instance of Fi |l t er Securit yMet adat aSour ce. This is a marker interface which
subclasses Securi t yMet adat aSour ce. It simply denotes the Securi t yMet adat aSour ce
understands Fi | t er | nvocat i ons. In the interests of simplicity well continue to refer to the
FilterlnvocationSecurityMetadat aSource asaSecurityMetadat aSource, asthe
distinction is of little relevance to most users.

3.0.2.RELEASE Spring Security 50

Spring Security

The Securit yMet adat aSour ce created by the namespace syntax obtains the configuration
attributesfor aparticular Fi | t er | nvocat i on by matching the request URL against the configured
pat t er n attributes. Thisbehavesin the sameway asit doesfor namespace configuration. Thedefaultis
totreat al expressionsas Apache Ant paths and regular expressions are al so supported for more complex
cases. The pat h-t ype attribute is used to specify the type of pattern being used. It is not possible to
mix expression syntaxes within the same definition. As an example, the previous configuration using
regular expressions instead of Ant paths would be written as follows:

<bean id="filterlnvocationlnterceptor"
cl ass="org. springframework. security.web.access.intercept.FilterSecuritylnterceptor">
<property nanme="aut henti cati onManager" ref="authenticati onManager"/>
<property nanme="accessDeci si onManager" ref="accessDeci si onManager"/>
<property name="runAsManager" ref="runAsManager"/>
<property nanme="securityMetadat aSource">
<security:filter-security-netadata-source path-type="regex">
<security:intercept-url pattern="\A/ secure/super/.*\Z" access="ROLE_WE _DONT_HAVE"/>
<security:intercept-url pattern="\A/secure/.*\" access="ROLE_SUPERVI SOR, ROLE_TELLER'/ >
</security:filter-security-metadata-source>
</ property>
</ bean>

Patterns are aways evauated in the order they are defined. Thus it is important that more specific
patterns are defined higher in the list than less specific patterns. Thisisreflected in our example above,
where the more specific/ secur e/ super/ pattern appears higher than the less specific/ secur e/
pattern. If they werereversed, the/ secur e/ patternwould awaysmatchandthe/ secur e/ super/
pattern would never be evaluated.

8.2 ExceptionTransl ationFilter

The ExceptionTransl ati onFi |l t er sitsabovetheFi |t er Securityl nterceptor inthe
security filter stack. It doesn't do any actual security enforcement itself, but handles exceptions thrown
by the security interceptors and provides suitable and HTTP responses.

<bean i d="exceptionTransl ati onFilter"

cl ass="org. springframework. security.web. access. Excepti onTransl ati onFilter">
<property nanme="aut henticati onEntryPoint" ref="authenticati onEntryPoint"/>
<property nanme="accessDeni edHandl er" ref="accessDeni edHandl er"/>
</ bean>

<bean i d="aut henti cati onEntryPoi nt"

cl ass="org. springframework. security.web. aut henti cati on. Logi nUr| Aut henti cati onEntryPoi nt">
<property name="| ogi nFormJr|" val ue="/1ogin.jsp"/>
</ bean>

<bean i d="accessDeni edHandl| er"
cl ass="org. spri ngframewor k. security.web. access. AccessDeni edHandl er | npl ">
<property name="errorPage" val ue="/accessDeni ed. ht />
</ bean>

3.0.2.RELEASE Spring Security 51

Spring Security

Aut hent i cat i onEnt r yPoi nt

The Aut henticati onEntryPoi nt will be caled if the user requests a secure HTTP
resource but they are not authenticated. An appropriate Aut henti cati onException or
AccessDeni edExcepti on will be thrown by a security interceptor further down the call
stack, triggering the comrence method on the entry point. This does the job of presenting
the appropriate response to the user so that authentication can begin. The one we've used here
is Logi nUr | Aut henti cati onEnt r yPoi nt, which redirects the request to a different URL
(typically alogin page). The actual implementation used will depend on the authentication mechanism
you want to be used in your application.

AccessDeni edHandl er

What happens if a user is already authenticated an they try to access a protected resource? In normal
usage, this shouldn't happen because the application workflow should be restricted to operations to
which a user has access. For example, an HTML link to an administration page might be hidden from
users who do not have an admin role. You can't rely on hiding links for security though, as there's
aways a possibility that a user will just enter the URL directly in an attempt to bypass the restrictions.
Or they might modify a RESTful URL to change some of the argument values. Y our application must
be protected against these scenarios or it will definitely be insecure. Y ou will typically use smple web
layer security to apply constraints to basic URLs and use more specific method-based security on your
service layer interfaces to really nail down what is permissible.

If an AccessDeni edExcepti on isthrown and a user has aready been authenticated, then this
means that an operation has been attempted for which they don't have enough permissions. In this case,
Excepti onTransl ati onFi | t er will invoke asecond strategy, the AccessDeni edHandl er .
By default, an AccessDeni edHandl er | npl isused, which just sends a 403 (Forbidden) response
to the client. Alternatively you can configure an instance explicitly (as in the above example) and set
an error page URL which it will forwards the request to ! This can be asimple “access denied” page,
such as a JSP, or it could be a more complex handler such as an MV C controller. And of course, you
can implement the interface yourself and use your own implementation.

It's also possible to supply a custom AccessDeni edHandl er when you're using the namespace to
configure your application. See the namespace appendix for more details.

8.3 Securi tyCont ext Persi stenceFi |l ter

We covered the purpose of thisall-important filter in the Technical Overview chapter so you might want
to re-read that section at this point. Let's first take alook at how you would configure it for use with a
Fi | t er Chai nPr oxy. A basic configuration only requires the bean itself

<bean i d="securityContextPersistenceFilter"
class="org. springframework. security.web. cont ext. SecurityCont ext Persi stenceFilter"/>

YWe use a forward so that the SecurityContextHolder still contains details of the principal, which may be useful for displaying
to the user. In old releases of Spring Security we relied upon the servlet container to handle a 403 error message, which lacked
this useful contextual information.

3.0.2.RELEASE Spring Security 52

Spring Security

As we saw previoudy, this filter has two man tasks. It is responsible for storage
of the SecurityContext contents between HTTP requests and for clearing the
Securi t yCont ext Hol der whenarequestiscompleted. Clearingthe Thr eadLocal inwhichthe
context isstored is essential, asit might otherwise be possible for athread to be replaced into the servlet
container's thread pool, with the security context for a particular user still attached. This thread might
then be used at alater stage, performing operations with the wrong credentials.

Securi t yCont ext Repository

From Spring Security 3.0, the job of loading and storing the security context is now delegated to a
separate strategy interface:

public interface SecurityContextRepository {
Securi tyCont ext | oadCont ext (Htt pRequest ResponseHol der request ResponseHol der) ;
voi d saveCont ext (SecurityCont ext context, HttpServletRequest request,
Ht t pSer vl et Response response);
}

The Ht t pRequest ResponseHol der issimply acontainer for the incoming request and response
objects, allowing the implementation to replace these with wrapper classes. The returned contents will
be passed to the filter chain.

The default implementation isHt t pSessi onSecur i t yCont ext Reposi t ory, which stores the
security context asan Ht t pSessi on attribute 2. The most important configuration parameter for this
implementation is the al | owSessi onCr eat i on property, which defaultsto t r ue, thus alowing
the classto create asession if it needs one to store the security context for an authenticated user (it won't
create one unless authentication has taken place and the contents of the security context have changed).
If you don't want a session to be created, then you can set this property to f al se:

<bean i d="securityContextPersistenceFilter"

cl ass="org. springframework. security.web. cont ext. SecurityCont ext Persi stenceFilter">

<property nanme='securityContext Repository' >

<bean cl ass='org. spri ngfranmework. security.web. cont ext. H t pSessi onSecuri t yCont ext Reposi tory' >
<property name='al | owSessi onCreati on' val ue='fal se' />

</ bean>

</ property>

</ bean>

Alternatively you could provide a null implementation of the Securi t yCont ext Repository
interface, which will prevent the security context from being stored, even if a session has already been
created during the request.

8.4 User nanePasswor dAut henti cati onFil ter

We've now seen the three main filters which are always present in a Spring Security web configuration.
These are al so the three which are automatically created by the namespace <ht t p> element and cannot

2In Spring Security 2.0 and earlier, this filter was called Ht t pSessi onCont ext | nt egr at i onFi | t er and performed all
thework of storing the context was performed by thefilter itself. If you werefamiliar with this class, then most of the configuration
options which were available can now be found on Ht t pSessi onSecur i t yCont ext Reposi tory.

3.0.2.RELEASE Spring Security 53

Spring Security

be substituted with alternatives. The only thing that's missing now isan actual authentication mechanism,
something that will allow a user to authenticate. This filter is the most commonly used authentication
filter and the one that is most often customized 3. It also provides the implementation used by the
<f or m | ogi n> element from the namespace. There are three stages required to configure it.

1. ConfigurealLogi nUr | Aut henti cat i onEnt r yPoi nt with the URL of the login page, just as
wedid above, and set it onthe Excepti onTransl ati onFil ter.

2. Implement the login page (using a JSP or MV C controller).

3. Configure an instance of User namePasswor dAut hent i cati onFi | t er in the application
context

4. Add thefilter bean to your filter chain proxy (making sure you pay attention to the order).
Thelogin form simply containsj _user nane andj _passwor d input fields, and posts to the URL
that is monitored by the filter (by default thisis/j _spring_security_check). The basic filter
configuration looks something like this:

<bean id="authenticationFilter" class=

"org. springframework. security.web. aut henti cati on. User nanePasswor dAut henti cati onFilter">
<property nanme="aut henti cati onManager" ref="authenticati onManager"/>
<property name="filterProcessesU|" value="/j_spring_security_check"/>

</ bean>

Application Flow on Authentication Success and Failure

The filter calls the configured Aut hent i cat i onManager to process each authentication regquest.
The destination following a successful authentication or an authentication failure is controlled
by the Authenticati onSuccessHandl er and AuthenticationFail ureHandl er
strategy interfaces, respectively. The filter has properties which alow you to
set these so you can customize the behaviour completely 4 Some standard
implementations are supplied such as Si npl eUrl Aut henti cati onSuccessHandl er,
SavedRequest Awar eAut hent i cat i onSuccessHandl er,

Si npl eUr | Aut hent i cati onFai | ur eHandl er and
Except i onMappi ngAut henti cat i onFai | ur eHandl er . Havealook at the Javadoc for these
classes to see how they work.

If authentication is successful, the resulting Aut henti cati on object will be placed into the
Securi t yCont ext Hol der. The configured Aut henti cati onSuccessHandl er will then
be caled to either redirect or forward the user to the appropriate destination. By default a
SavedRequest Awar eAut hent i cat i onSuccessHandl er is used, which means that the user
will be redirected to the original destination they requested before they were asked to login.

3For historical reasons, prior to Spring Security 3.0, this filter was called Aut hent i cat i onProcessi ngFi | t er and the
entry point was called Aut hent i cati onProcessi ngFi | t er Ent r yPoi nt . Since the framework now supports many
different forms of authentication, they have both been given more specific namesin 3.0.

4In versions prior to 3.0, the application flow at this point had evolved to a stage was controlled by a mix of properties on this
class and strategy plugins. The decision was made for 3.0 to refactor the code to make these two strategies entirely responsible.

3.0.2.RELEASE Spring Security 54

Spring Security

Note

TheExcepti onTransl ati onFi | t er cachestheoriginal request auser makes. When
the user authenticates, the request handler makes use of this cached request to obtain the
original URL andredirect toit. Theoriginal request isthen rebuilt and used asan aternative.

If authentication fails, the configured Aut hent i cat i onFai | ur eHandl er will be invoked.

3.0.2.RELEASE Spring Security

55

Spring Security

9. Basic and Digest Authentication

Basic and digest authentiation are alternative authentication mechanisms which are popular in web
applications. Basic authentication is often used with statel ess clients which passtheir credentialson each
request. It's quite common to use it in combination with form-based authenti cation where an application
is used through both a browser-based user interface and as aweb-service. However, basic authentication
transmits the password as plain text so it should only really be used over an encrypted transport layer
suchasHTTPS.

9.1 Basi cAut henti cationFilter

Basi cAut henti cati onFilter is responsible for processing basic authentication credentials
presented in HT TP headers. This can be used for authenticating callsmade by Spring remating protocols
(such as Hessian and Burlap), as well as normal browser user agents (such as Firefox and Internet
Explorer). The standard governing HTTP Basic Authentication is defined by RFC 1945, Section 11,
andBasi cAut henti cati onFi | t er conformswiththisRFC. Basic Authentication isan attractive
approach to authentication, because it is very widely deployed in user agents and implementation is
extremely simple (it's just a Base64 encoding of the username:password, specified in an HTTP header).

Configuration

To implement HTTP Basic Authentication, you need to add aBasi cAut henti cati onFilter to
your filter chain. The application context should contain Basi cAut henti cati onFi | t er andits
required collaborator:

<bean id="basi cAut henticationFilter"
cl ass="org. spri ngframewor k. security.web. aut henti cati on. ww. Basi cAut henti cationFilter">
<property nanme="aut henti cati onManager" ref="authenti cati onManager"/>
<property nanme="aut henticati onEntryPoi nt" ref="authenticati onEntryPoint"/>

</ bean>

<bean i d="aut henti cati onEntryPoi nt"
cl ass="org. spri ngframewor k. security.web. aut henti cati on. ww. Basi cAut henti cati onEntryPoi nt">
<property nanme="real mNane" val ue="Name O Your Real n'/>

</ bean>

The configured Aut hent i cat i onManager processes each authentication request. If authentication
fails, theconfigured Aut hent i cat i onEnt r yPoi nt will beused to retry the authenti cation process.
Usually you will use the filter in combination with a Basi cAut henti cati onEntryPoi nt,
which returns a 401 response with a suitable header to retry HTTP Basic authentication. If
authentication is successful, the resulting Aut henticati on object will be placed into the
Securi t yCont ext Hol der asusual.

If the authentication event was successful, or authentication was not attempted becausethe HT TP header
did not contain a supported authentication request, thefilter chain will continueasnormal. Theonly time
the filter chain will be interrupted isif authentication fails and the Aut hent i cat i onEnt r yPoi nt
iscaled.

3.0.2.RELEASE Spring Security 56

Spring Security

9.2 D gest Aut henti cationFilter

Di gest Aut henti cati onFil ter is capable of processing digest authentication credentials
presented in HTTP headers. Digest Authentication attempts to solve many of the weaknesses of Basic
authentication, specifically by ensuring credentials are never sent in clear text across the wire. Many
user agents support Digest Authentication, including FireFox and Internet Explorer. The standard
governing HTTP Digest Authentication is defined by RFC 2617, which updates an earlier version
of the Digest Authentication standard prescribed by RFC 2069. Most user agents implement RFC
2617. Spring Security's Di gest Aut hent i cati onFi | t er iscompatible with the "aut h" quality
of protection (qop) prescribed by RFC 2617, which aso provides backward compatibility with RFC
2069. Digest Authentication is a more attractive option if you need to use unencrypted HTTP (i.e. no
TLS/HTTPS) and wish to maximise security of the authentication process. Indeed Digest Authentication
isamandatory requirement for the WebDAV protacol, as noted by RFC 2518 Section 17.1.

Digest Authentication is definitely the most secure choice between Form Authentication, Basic
Authentication and Digest Authentication, although extra security also means more complex user agent
implementations. Central to Digest Authentication is a "nonce". This is a value the server generates.
Spring Security's nonce adopts the following format:

base64(expirationTinme + ":" + ndS5Hex(expirationTime + ":" + key))
expirationTi me: The date and time when the nonce expires, expressed in mlliseconds
key: A private key to prevent nodification of the nonce token

The Di gest Aut hent i cat onEnt r yPoi nt hasaproperty specifying the key used for generating
the nonce tokens, along with anonceVal i di t ySeconds property for determining the expiration
time (default 300, which equals five minutes). Whist ever the nonceis valid, the digest is computed by
concatenating various strings including the username, password, nonce, URI being requested, a client-
generated nonce (merely arandom value which the user agent generates each request), the realm name
etc, then performing an MD5 hash. Both the server and user agent perform this digest computation,
resulting in different hash codesiif they disagree on an included value (eg password). In Spring Security
implementation, if the server-generated nonce has merely expired (but the digest was otherwise valid),
the Di gest Aut henti cati onEnt ryPoi nt will send a" st al e=true" header. This tells the
user agent thereis no need to disturb the user (as the password and username etc is correct), but simply
to try again using a new nonce.

An appropriate value for Di gest Aut henti cat i onEnt r yPoi nt 'snonceVal i di t ySeconds
parameter will depend on your application. Extremely secure applications should notethat anintercepted
authentication header can be used to impersonate the principal until theexpi rati onTi e contained
in the nonce is reached. Thisisthe key principle when selecting an appropriate setting, but it would be
unusual for immensely secure applications to not be running over TLS/HTTPS in the first instance.

Because of the more complex implementation of Digest Authentication, there are often user agent
issues. For example, Internet Explorer fails to present an "opaque" token on subsequent requests in
the same session. Spring Security filters therefore encapsulate all state information into the "nonce"

3.0.2.RELEASE Spring Security 57

Spring Security

token instead. In our testing, Spring Security'simplementation works reliably with FireFox and Internet
Explorer, correctly handling nonce timeouts etc.

Configuration

Now that we'vereviewed thetheory, let'ssee how to useit. Toimplement HTTP Digest Authentication, it
isnecessary to define Di gest Aut henti cati onFi | t er inthefilter chain. The application context
will need to definethe Di gest Aut hent i cati onFi | t er anditsrequired collaborators:

<bean id="digestFilter" class=
"org. springframewor k. security.web. aut henti cati on. ww. Di gest Aut henti cationFilter">
<property nanme="userDetail sServi ce" ref="jdbcDaol npl "/>
<property nanme="aut henticati onEntryPoi nt" ref="digestEntryPoint"/>
<property name="user Cache" ref="userCache"/>
</ bean>

<bean i d="di gest EntryPoint" cl ass=
"org. springframework. security.web. aut henti cati on. ww. Di gest Aut henti cati onEntryPoi nt">
<property name="real mName" val ue="Contacts Real mvia D gest Authentication"/>
<property nanme="key" val ue="acegi"/>
<property nanme="nonceVal i ditySeconds" val ue="10"/>
</ bean>

The configured User Det ai | sSer vi ce is needed because Di gest Aut henti cati onFilter
must have direct access to the clear text password of a user. Digest Authentication will NOT
work if you are using encoded passwords in your DAO. The DAO collaborator, aong with
the User Cache, are typically shared directly with a DaoAut henti cati onProvi der. The
aut henti cat i onEnt r yPoi nt property must be Di gest Aut henti cati onEnt ryPoi nt, so
that Di gest Aut henti cati onFilt er can obtain the correct r eal mNane and key for digest
calculations.

Like Basi cAut henti cati onFi |l ter, if authentication is successful an Aut henti cati on
regquest token will be placed into the Secur i t yCont ext Hol der . If the authentication event was
successful, or authentication was not attempted because the HTTP header did not contain a Digest
Authentication regquest, the filter chain will continue as normal. The only time the filter chain will be
interrupted is if authentication fails and the Aut hent i cat i onEnt r yPoi nt iscalled, as discussed
in the previous paragraph.

Digest Authentication's RFC offers a range of additional features to further increase security. For
example, the nonce can be changed on every request. Despite this, Spring Security implementation
was designed to minimise the complexity of the implementation (and the doubtless user agent
incompatibilities that would emerge), and avoid needing to store server-side state. You are invited to
review RFC 2617 if you wish to explore these features in more detail. Asfar as we are aware, Spring
Security's implementation does comply with the minimum standards of this RFC.

3.0.2.RELEASE Spring Security 58

Spring Security

10. Remember-Me Authentication

10.1 Overview

Remember-me or persistent-login authentication refers to web sites being able to remember the identity
of a principal between sessions. This is typically accomplished by sending a cookie to the browser,
with the cookie being detected during future sessions and causing automated login to take place. Spring
Security providesthe necessary hooksfor these operationsto take place, and hastwo concrete remember-
me implementations. One uses hashing to preserve the security of cookie-based tokens and the other
uses a database or other persistent storage mechanism to store the generated tokens.

Note that both implemementations require a User Det ai | sServi ce. If you are using an
authentication provider which doesn't use a User Det ai | sSer vi ce (for example, the LDAP
provider) then it won't work unlessyou also haveaUser Det ai | sSer vi ce beanin your application
context.

10.2 Simple Hash-Based Token Approach

This approach uses hashing to achieve a useful remember-me strategy. In essence a cookie is sent to the
browser upon successful interactive authentication, with the cookie being composed as follows:

base64(username + ":" + expirationTine + ":" +
md5Hex(username + ":" + expirationTime + ":" password + ":" + key))
user nane: As identifiable to the UserDetail sService
passwor d: That matches the one in the retrieved UserDetails
expirationTi me: The date and tinme when the renmenber-ne token expires,
expressed in mlliseconds
key: A private key to prevent nodification of the renenber-ne token

As such the remember-me token is valid only for the period specified, and provided that the username,
password and key does not change. Notably, this has a potential security issue in that a captured
remember-me token will be usable from any user agent until such time as the token expires. Thisis
the same issue as with digest authentication. If a principal is aware a token has been captured, they
can easily change their password and immediately invalidate all remember-me tokens on issue. If more
significant security is needed you should use the approach described in the next section. Alternatively
remember-me services should simply not be used at all.

If you are familiar with the topics discussed in the chapter on namespace configuration, you can enable
remember-me authentication just by adding the <r emenber - me> element:

<ht t p>

<renenber - ne key="nmyAppKey"/>
</ http>

3.0.2.RELEASE Spring Security 59

Spring Security

The User Det ai | sSer vi ce will normally be selected automatically. If you have more than one in
your application context, you need to specify which one should be used with the user - ser vi ce-
r ef attribute, where the value is the name of your User Det ai | sSer vi ce bean.

10.3 Persistent Token Approach

This approach is based on the article http://jaspan.com/
improved_persistent_login_cookie best practice with some minor modifications 1. To use the this
approach with namespace configuration, you would supply a datasource reference:

<htt p>

<r enenber - ne dat a- sour ce- r ef =" soneDat aSour ce"/ >
</ http>

The database should contain a per si st ent _| ogi ns table, created using the following SQL (or
equivalent):

create tabl e persistent_|ogins (usernanme varchar(64) not null, series varchar(64) primary key, token val

10.4 Remember-Me Interfaces and Implementations

Remember-me authentication is not used with basic authentication, given it is often not used with
Ht t pSessi ons. Remember-me is used with User nanePasswor dAut henti cati onFil ter,
and is implemented via hooks in the Abstract Aut henticati onProcessingFilter
superclass. The hooks will invoke a concrete Remenber MeSer vi ces at the appropriate times. The
interface looks like this:

Aut henti cati on autolLogi n(Htt pServl et Request request, HttpServlet Response response);
voi d | ogi nFai | (Htt pServl et Request request, HttpServl et Response response);
voi d | ogi nSuccess(Htt pServl et Request request, HttpServl et Response response,

Aut henti cati on successful Aut henti cation);

Please refer to the JavaDocs for a fuller discussion on what the methods do, athough
note at this stage that Abstract Aut henti cati onProcessingFilter only cals the
| oginFail () and | ogi nSuccess() methods. The aut oLogi n() method is caled by
Remenber MeAut henti cati onFi | t er whenever the Securi t yCont ext Hol der does not
contain an Aut henti cati on. This interface therefore provides the underlying remember-me
implementation with sufficient notification of authentication-related events, and delegates to the
implementation whenever a candidate web request might contain a cookie and wish to be remembered.
This design alows any number of remember-me implementation strategies. We've seen above that
Spring Security provides two implementations. We'll ook at these in turn.

'Essential ly, the usernameis not included in the cookie, to prevent exposing avalid login name unecessarily. Thereisadiscussion
on thisin the comments section of this article.

3.0.2.RELEASE Spring Security 60

http://jaspan.com/improved_persistent_login_cookie_best_practice
http://jaspan.com/improved_persistent_login_cookie_best_practice

Spring Security

TokenBasedRememberMeServices

This implementation supports the simpler approach described in Section 10.2,
“Simple Hash-Based Token Approach”. TokenBasedRenenber MeSer vi ces
generates a Renenber MeAut henti cat i onToken, which is processed by
Remenber MeAut henti cati onProvi der. A key is shared between this
authentication provider and the TokenBasedRenmenber MeServices. In addition,
TokenBasedRenenber MeSer vi ces requires A UserDetailsService from which it can
retrieve the username and password for signature comparison purposes, and generate the
Renmenber MeAut hent i cat i onToken tocontainthecorrect G ant edAut hor i t y[]s. Somesort
of logout command should be provided by the application that invalidates the cookieif the user requests
this. TokenBasedRenenber MeSer vi ces aso implements Spring Security's Logout Handl er
interface so can be used with Logout Fi | t er to have the cookie cleared automatically.

The beans required in an application context to enable remember-me services are as follows:

<bean id="renmenber MeFi |l ter" class=

"org. springframewor k. security.web. aut henti cati on. renmenber me. Renenber MeAut henti cationFilter">
<property nanme="remenber MeSer vi ces" ref="renenber MeServi ces"/>
<property name="aut henti cati onManager" ref="theAuthenticati onManager" />

</ bean>

<bean id="renmenber MeServi ces" cl ass=

"org. springframewor k. security.web. aut henti cati on. renmenber me. TokenBasedRenmenber MeSer vi ces" >
<property nanme="userDetail sService" ref="nyUserDetail sService"/>
<property name="key" val ue="spri ngRocks"/>

</ bean>

<bean id="renenber MeAut henti cati onProvi der" cl ass=

<property nanme="key" val ue="spri ngRocks"/>
</ bean>

Don't forget to add your Renenber MeSer vi ces implementation
to your UsernamePasswor dAut henticationFilter.setRemenber MeServi ces()
property, include the Renenber MeAut henti cati onProvi der in your
Aut henti cati onManager . set Provi ders() list, and add
Renmemnber MeAut henti cati onFi | t er intoyour Fi | t er Chai nPr oxy (typicaly immediately
after your User nanmePasswor dAut henti cati onFil ter).

PersistentTokenBasedRememberMeServices

Thisclass can be used in the sameway as TokenBasedRenenber MeSer vi ces, but it additionally
needs to be configured with a Per si st ent TokenReposi t ory to store the tokens. There are two
standard implementations.

* I nMenoryTokenReposi t oryl npl whichisintended for testing only.

» JdbcTokenReposi t oryl npl which stores the tokens in a database.
The database schema is described above in Section 10.3, “Persistent Token Approach”.

3.0.2.RELEASE Spring Security 61

"org. springframework. security.web. aut henti cati on. renmenber me. Renmenber MeAut hent i cati onProvi der">

Spring Security

11. Session Management

HTTPsession related functonality ishandled by acombination of theSessi onManagenent Fi | t er
and the Sessi onAut henti cati onStr at egy interface, which the filter delegates to. Typica
usage includes session-fixation protection attack prevention, detection of session timeouts and
restrictions on how many sessions an authenticated user may have open concurrently.

11.1 SessionManagementFilter

TheSessi onManagenent Fi | t er checksthe contentsof theSecur i t yCont ext Reposi tory
against the current contents of the Securi t yCont ext Hol der to determine whether a user has
been authenticated during the current request, typically by a non-interactive authentication mechanism,
such as pre-authentication or remember-me L 1f the repository contains a security context, the filter
does nothing. If it doesn't, and the thread-local Securi t yCont ext contains a (non-anonymous)
Aut hent i cat i on object, the filter assumes they have been authenticated by a previous filter in the
stack. It will then invoke the configured Sessi onAut henti cati onStr at egy.

If the user is not currently authenticated, the filter will check whether an invalid session ID
has been regquested (because of a timeout, for example) and will redirect to the configured
i nval i dSessi onUr | if set. The easiest way to configurethisisthrough the namespace, as described
earlier.

11.2 Sessi onAut henti cati onStr at egy

Sessi onAut henti cati onStrat egy is used by both Sessi onManagenent Filter and
Abstract Aut henti cati onProcessi ngFil t er, soif you are using a customized form-login
class, for example, you will need to inject it into both of these. In this case, a typical configuration,
combining the namespace and custom beans might look like this:

<htt p>
<customfilter position="FORM LOG N FILTER"' ref="myAuthFilter" />
<sessi on- nanagenent session-aut henticati on-strategy-ref="sas"/>
</ http>

<beans: bean i d="nyAuthFilter" class=
"org. springframewor k. security.web. aut henti cati on. User nanePasswor dAut henti cati onFilter">
<beans: property nanme="sessi onAut henti cati onStrategy" ref="sas" />

</ beans: bean>

<beans: bean i d="sas" cl ass=
"org.springframework. security.web. aut henti cati on. sessi on. Sessi onFi xati onProt ecti onSt rat egy" >
<beans: property nanme="sessi onRegi stry" ref="sessionRegistry" />
<beans: property nanme="naxi muntessi ons" val ue="1" />
</ beans: bean>

IAuthentication by mechanisms which perform a redirect after authenticating (such as form-login) will not be detected by
Sessi onManagenent Fi | t er, as the filter will not be invoked during the authenticating request. Session-management
functionality has to be handled separately in these cases.

3.0.2.RELEASE Spring Security 62

Spring Security

|
11.3 Concurrency Control

Spring Security is able to prevent a principal from concurrently authenticating to the same application
more than a specified number of times. Many ISV s take advantage of this to enforce licensing, whilst
network administrators like this feature because it helps prevent people from sharing login names. Y ou
can, for example, stop user “Batman” from logging onto the web application from two different sessions.
You can either expire their previous login or you can report an error when they try to log in again,
preventing the second login. Notethat if you are using the second approach, auser who has not explicitly
logged out (but who has just closed their browser, for example) will not be able to log in again until
their original session expires.

Concurrency control is supported by the namespace, so please check the earlier namespace chapter for
the simplest configuration. Sometimes you need to customize things though.

The implementation uses a speciaized version of Sessi onAut henti cati onStr at egy, caled
Concurrent Sessi onControl Strategy.

Note
e

Previously the concurrent authentication check was made by the Pr ovi der Manager ,
which could be injected with a Concur r ent Sessi onCont r ol | er. The latter would
check if the user was attempting to exceed the number of permitted sessions. However, this
approach required that an HTTP session be created in advance, which is undesirable. In
Spring Security 3, the user isfirst authenticated by the Aut hent i cat i onManager and
oncethey are successfully authenticated, asession is created and the check is made whether
they are allowed to have another session open.

To use concurrent session support, you'll need to add the following toweb. xm :

<listener>
<l i stener-cl ass>
org. spri ngframewor k. security.web. session. Htt pSessi onEvent Publ i sher
</l|istener-class>
</listener>

Inaddition, youwill needto add the Concur r ent Sessi onFi | t er toyour Fi | t er Chai nPr oxy.
TheConcurrent Sessi onFi | t er requirestwo properties, sessi onRegi st ry, which generaly
points to an instance of Sessi onRegi stryl npl, and expiredUr |, which points to the
page to display when a session has expired. A configuration using the namespace to create the
Fi | t er Chai nPr oxy and other default beans might look like this:

<ht t p>
<customfilter position="CONCURRENT_SESSI ON FI LTER"' ref="concurrencyFilter" />
<customfilter position="FORM LOG N _FILTER" ref="nmyAuthFilter" />

3.0.2.RELEASE Spring Security 63

Spring Security

<sessi on- nanagenent session-aut henticati on-strategy-ref="sas"/>
</ http>

<beans: bean i d="concurrencyFilter"
cl ass="org. springframework. security.web. sessi on. Concurrent Sessi onFi |l ter">
<beans: property nanme="sessi onRegi stry" ref="sessionRegistry" />
<beans: property name="expiredUrl" val ue="/session-expired. htn' />

</ beans: bean>

<beans: bean i d="nyAuthFilter" class=
"org. springframework. security.web. aut henti cati on. User nanePasswor dAut henti cati onFil ter">
<beans: property nanme="sessi onAut henti cati onStrategy" ref="sas" />
<beans: property name="aut henticati onManager" ref="authenticati onManager" />
</ beans: bean>

<beans: bean i d="sas" cl ass=

"org. springframework. security.web. aut henti cati on. sessi on. Concurrent Sessi onControl Strategy">
<beans: constructor-arg name="sessi onRegi stry" ref="sessionRegistry" />
<beans: property name="nmaxi muntessi ons" val ue="1" />

</ beans: bean>

<beans: bean i d="sessi onRegi stry"
cl ass="org. springframework. security.core. sessi on. Sessi onRegi strylnmpl" />

Adding the listener to web. xm causes an Appl i cati onEvent to be published to the Spring
Appl i cat i onCont ext everytimeaHt t pSessi on commencesor terminates. Thisiscritical, asit
allowsthe Sessi onRegi st ryl npl to be notified when a session ends. Without it, auser will never
be able to log back in again once they have exceeded their session allowance, even if they log out of
another session or it times out.

3.0.2.RELEASE Spring Security 64

Spring Security

12. Anonymous Authentication

12.1 Overview

It's generally considered good security practice to adopt a “deny-by-default” where you explicitly
specify what is allowed and disallow everything else. Defining what is accessible to unauthenticated
users is a similar situation, particularly for web applications. Many sites require that users must be
authenticated for anything other than a few URLSs (for example the home and login pages). In this
case it is easiest to define access configuration attributes for these specific URLSs rather than have for
every secured resource. Put differently, sometimesit is nice to say ROLE_SOVETHI NGisrequired by
default and only allow certain exceptions to this rule, such as for login, logout and home pages of an
application. You could also omit these pages from the filter chain entirely, thus bypassing the access
control checks, but thismay be undesirable for other reasons, particularly if the pages behave differently
for authenticated users.

This is what we mean by anonymous authentication. Note that there is no real conceptual difference
between a user who is “anonymously authenticated” and an unauthenticated user. Spring Security's
anonymous authentication just gives you a more convenient way to configure your access-control
attributes. Callsto servliet API callssuchasget Cal | er Pri nci pal , for example, will still return null
even though thereisactually an anonymous authentication objectinthe Secur i t yCont ext Hol der .

There are other situations where anonymous authentication is useful, such as when an auditing
interceptor queriesthe Secur i t yCont ext Hol der toidentify which principal wasresponsiblefor a
given operation. Classes can be authored morerobustly if they know the Secur i t yCont ext Hol der
aways contains an Aut hent i cat i on object, and never nul | .

12.2 Configuration

Anonymous authentication support is provided automatically when using the HTTP configuration
Spring Security 3.0 and can be customized (or disabled) using the <anonynous> element. You don't
need to configure the beans described here unless you are using traditional bean configuration.

Three classes that together provide the anonymous authentication feature.
AnonynousAut henti cati onToken is an implementation of Authentication, and
stores the G ant edAut horitys which apply to the anonymous principal. There is
a corresponding AnonynousAut henti cati onProvi der, which is chained into the
Provi der Manager so that AnonynousAut henti cati onTokens are accepted. Finadly,
there is an AnonynousAut henti cationFilter, which is chained after the normal
authentication mechanisms and automatically adds an AnonynousAut hent i cati onToken tothe
Securi t yCont ext Hol der if thereisno existing Aut hent i cat i on held there. The definition of
the filter and authentication provider appears as follows:

<bean i d="anonynousAut hFilter"
cl ass="org. springframework. security.web. aut henti cati on. AnonynousAut henti cati onFilter">

3.0.2.RELEASE Spring Security 65

Spring Security

<property name="key" val ue="foobar"/>
<property name="userAttribute" val ue="anonymusUser, ROLE_ANONYMOUS"/ >
</ bean>

<bean i d="anonynousAut henti cati onProvi der"
cl ass="org. springframework. security.authenticati on. AnonynousAut henti cati onProvi der">
<property name="key" val ue="foobar"/>
</ bean>

The key is shared between the filter and authentication provider, so that tokens created by
the former are accepted by the latter’. The userAttribute is expressed in the form of
user nanel nTheAut hent i cati onToken, grant edAut hority[, grant edAut hority].
Thisisthe same syntax as used after the equals sign for | nMenor yDaol npl 'suser Map property.

Asexplained earlier, the benefit of anonymous authentication isthat all URI patterns can have security
applied to them. For example:

<bean id="filterSecuritylnterceptor"
cl ass="org. springframework. security.web. access.intercept.FilterSecuritylnterceptor">
<property nanme="aut henti cati onManager" ref="authenti cati onManager"/>
<property nanme="accessDeci si onManager" ref="httpRequest AccessDeci si onManager"/ >
<property nanme="securityMetadata">
<security:filter-security-netadata-source>
<security:intercept-url pattern='/index.jsp' access='ROLE ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/hello.htm access=' ROLE ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/logoff.jsp' access=' ROLE_ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/login.jsp'" access=' ROLE ANONYMOUS, ROLE_USER />
<security:intercept-url pattern='/**" access=' ROLE_USER />
</security:filter-security-netadata-source>" +
</ property>
</ bean>

12.3 Aut henti cati onTr ust Resol ver

Rounding out the anonymous authentication discussion isthe Aut hent i cati onTr ust Resol ver
interface, with its corresponding Aut henti cati onTrust Resol ver | npl implementation.
This interface provides an i sAnonynous(Aut henti cation) method, which allows
interested classes to take into account this specia type of authentication
status. The ExceptionTranslationFilter uses this interface in processing
AccessDeni edExcepti ons. IfanAccessDeni edExcept i on isthrown, and the authentication
is of an anonymous type, instead of throwing a 403 (forbidden) response, the filter will instead
commence the Aut hent i cat i onEnt r yPoi nt sothe principal can authenticate properly. Thisisa

The use of the key property should not be regarded as providing any real security here. It is merely a book-keeping exercise.
If you are sharing aPr ovi der Manager which containsan AnonynousAut hent i cati onPr ovi der in ascenario where
it is possible for an authenticating client to construct the Aut hent i cat i on object (such as with RMI invocations), then a
malicious client could submit an AnonymousAut hent i cat i onToken whichit had created itself (with chosen username and
authority list). If the key is guessable or can be found out, then the token would be accepted by the anonymous provider. This
isn't a problem with normal usage but if you are using RMI you would be best to use a customized Pr ovi der Manager which
omits the anonymous provider rather than sharing the one you use for your HTTP authentication mechanisms.

3.0.2.RELEASE Spring Security 66

Spring Security

necessary distinction, otherwise principal swould always be deemed “ authenticated” and never be given
an opportunity to login viaform, basic, digest or some other normal authentication mechanism.

You will often see the ROLE_ANONYMOUS attribute in the above interceptor configuration replaced
with I S_AUTHENTI CATED_ANONYMOUSLY, which is effectively the same thing when defining
access controls. This is an example of the use of the Aut henti cat edVot er which we will
see in the authorization chapter. It uses an Aut henti cati onTr ust Resol ver to process this
particular configuration attribute and grant access to anonymous users. The Aut hent i cat edVot er
approach is more powerful, since it allows you to differentiate between anonymous, remember-me
and fully-authenticated users. If you don't need this functionality though, then you can stick with
ROLE_ ANONYMOUS, which will be processed by Spring Security's standard Rol eVot er .

3.0.2.RELEASE Spring Security 67

Part IV. Authorization

The advanced authorization capabilities within Spring Security represent one of the most compelling
reasons for its popularity. Irrespective of how you choose to authenticate - whether using a Spring
Security-provided mechanism and provider, or integrating with acontainer or other non-Spring Security
authentication authority - you will find the authorization services can be used within your application
in a consistent and simple way.

In this part well explore the different Abst r act Securi t yl nt er cept or implementations, which
were introduced in Part . We then move on to explore how to fine-tune authorization through use of
domain access control lists.

Spring Security

13. Authorization Architecture

13.1 Authorities

As we saw in the technical overview, al Aut henti cati on implementations store a list of
G ant edAut hority objects. These represent the authorities that have been granted to the
principal. The Gr ant edAut hor i t y objects are inserted into the Aut hent i cat i on object by the
Aut hent i cat i onManager and are later read by AccessDeci si onManager s when making
authorization decisions.

G ant edAut hor i t y isan interface with only one method:

String getAuthority()

This method allows AccessDeci si onManager s to obtain a precise St ri ng representation of
the Gr ant edAut hori ty. By returning a representation as a St ri ng, a G- ant edAut hority
can be easily “read” by most AccessDeci si onManagers. If a Grant edAut hori ty cannot
be precisely represented as a Stri ng, the G ant edAut hority is considered “complex” and
get Aut hority() mustreturnnul | .

An example of a “complex” Grant edAut hority would be an implementation that stores a
list of operations and authority thresholds that apply to different customer account numbers.
Representing this complex Grant edAuthority as a String would be quite difficult, and
as a result the get Authority() method should return nul | . This will indicate to any
AccessDeci si onManager that it will need to specifically support the G- ant edAut hority
implementation in order to understand its contents.

Spring Security includes one concrete GrantedAuthority implementation,
G ant edAut hori tyl npl . This allows any user-specified String to be converted into a
G ant edAut hori ty. All Aut henti cati onPr ovi der sincluded with the security architecture
use Gr ant edAut hori tyl npl to populatethe Aut hent i cat i on object.

13.2 Pre-Invocation Handling

As we've aso seen in the Technical Overview chapter, Spring Security provides interceptors which
control access to secure objects such as method invocations or web requests. A pre-invocation decision
on whether the invocation is allowed to proceed is made by the AccessDeci si onManager .

The AccessDecisionManager

The AccessDeci si onManager is caled by the Abst ract Securityl nterceptor andis
responsible for making final access control decisions. The AccessDeci si onManager interface
contains three methods:

voi d deci de(Aut henti cati on authentication, Cbject secureQbject,

3.0.2.RELEASE Spring Security 69

Spring Security

Li st<Confi gAttribute> config) throws AccessDeni edExcepti on;
bool ean supports(ConfigAttribute attribute);
bool ean supports(d ass cl azz);

The AccessDeci si onManager 'sdeci de method is passed all the relevant information it needs
in order to make an authorization decision. In particular, passing the secure Cbj ect enables
those arguments contained in the actual secure object invocation to be inspected. For example,
let's assume the secure object was a Met hodl nvocati on. It would be easy to query the
Met hodl nvocat i on for any Cust onmer argument, and then implement some sort of security logic
inthe AccessDeci si onManager to ensure the principal is permitted to operate on that customer.
Implementations are expected to throw an AccessDeni edExcept i on if accessis denied.

The supports(Confi gAttribute) method is caled by the
Abstract Securityl nterceptor at dstartup time to determine if the
AccessDeci si onManager can process the passed ConfigAttribute. The
supports(d ass) method is caled by a security interceptor implementation to ensure the
configured AccessDeci si onManager supports the type of secure object that the security
interceptor will present.

Voting-Based AccessDecisionManager Implementations

Whilst users can implement their own AccessDeci si onManager to control all aspects of
authorization, Spring Security includes several AccessDeci si onManager implementations that
are based on voting. Figure 13.1, “Voting Decision Manager” illustrates the relevant classes.

AccessDecisionManager
ConfigAttribute ? AccessDecisionVoter
* | w4
I 1 'L
: AbstractAccessDecisionManager oo
1 r" |II
SecurityConfig /)
RoleVaoter '
AffirmativeBased . AuthenticatedVoter
UnanimousBased

ConsensusBased

Figure 13.1. Voting Decision Manager

Using this approach, a series of AccessDeci si onVot er implementations are polled on an
authorization decision. The AccessDeci si onManager then decides whether or not to throw an
AccessDeni edExcept i on based on its assessment of the votes.

3.0.2.RELEASE Spring Security 70

Spring Security

The AccessDeci si onVot er interface has three methods:

int vote(Authentication authentication, Object object, List<ConfigAttribute> config);
bool ean supports(ConfigAttribute attribute);
bool ean supports(d ass cl azz);

Concrete implementations return an int, with possible values being reflected in
the AccessDeci si onVoter datic fields ACCESS ABSTAI N, ACCESS DEN ED and
ACCESS GRANTED. A voting implementation will return ACCESS_ABSTAI N if it has no opinion
on an authorization decision. If it does have an opinion, it must return either ACCESS DENI ED or
ACCESS_GRANTED.

There are three concrete AccessDeci si onManager s provided with Spring Security that tally the
votes. The ConsensusBased implementation will grant or deny access based on the consensus of
non-abstain votes. Properties are provided to control behavior in the event of an equality of votes
or if al votes are abstain. The Af fi r mati veBased implementation will grant access if one or
more ACCESS_GRANTED votes were received (i.e. a deny vote will be ignored, provided there
was at least one grant vote). Like the ConsensusBased implementation, there is a parameter
that controls the behavior if all voters abstain. The Unani mnousBased provider expects unanimous
ACCESS GRANTED votes in order to grant access, ignoring abstains. It will deny access if there is
any ACCESS_DENI ED vote. Like the other implementations, there is a parameter that controls the
behaviour if al voters abstain.

It is possible to implement a custom AccessDeci si onManager that tallies votes differently. For
example, votesfromaparticular AccessDeci si onVot er might receive additional weighting, whilst
adeny vote from a particular voter may have aveto effect.

Rol eVot er

The most commonly used AccessDeci si onVot er provided with Spring Security is the smple
Rol eVot er , which treats configuration attributes as simple role names and votesto grant accessif the
user has been assigned that role.

It will voteif any Confi gAttri but e beginswith the prefix ROLE . It will vote to grant access if
thereisaGr ant edAut hori t y whichreturnsaSt r i ng representation (viatheget Aut hori ty()
method) exactly equal to oneor moreConf i gAt t ri but es starting withthe prefix ROLE . If thereis
no exact match of any Conf i gAtt ri but e starting with ROLE_, the Rol eVot er will vote to deny
access. If no Conf i gAttri but e beginswith ROLE_, the voter will abstain.

Aut hent i cat edVot er

Another voter which we've implicitly seen is the Aut hent i cat edVot er, which can be used to
differentiate between anonymous, fully-authenticated and remember-me authenticated users. Many sites
allow certain limited access under remember-me authentication, but require a user to confirm their
identity by logging in for full access.

When we've used the attribute | S AUTHENTI CATED _ANONYMOUSLY to grant anonymous access,
this attribute was being processed by the Aut hent i cat edVot er . See the Javadoc for this class for
more information.

3.0.2.RELEASE Spring Security 71

Spring Security

Custom Voters

It is also possible to implement a custom AccessDeci si onVoter. Severa examples
are provided in Spring Security unit tests, including Contact SecurityVoter and
DenyVot er. The Contact SecurityVoter abstains from voting decisons where a
CONTACT_OWNED_BY_CURRENT_USER Conf i gAt t ri but e isnotfound. If voting, it queriesthe
Met hodl nvocat i on toextract the owner of the Cont act object that is subject of the method call. It
votesto grant accessif the Cont act owner matchesthe principal presentedinthe Aut hent i cati on
object. It could have just as easily compared the Cont act owner with some G- ant edAut hority
the Aut hent i cat i on object presented. All of thisis achieved with relatively few lines of code and
demonstrates the flexibility of the authorization model.

13.3 After Invocation Handling

Whilst the AccessDeci si onManager is caled by the Abst ract Securityl nt er cept or

before proceeding with the secure object invocation, some applications need a way of modifying the
object actually returned by the secure object invocation. Whilst you could easily implement your own
AOP concern to achieve this, Spring Security provides a convenient hook that has several concrete
implementations that integrate with its ACL capabilities.

Figure 13.2, “After Invocation Implementation” illustrates Spring Security's
Afterl nvocati onManager and its concrete implementations.

AfterinvocationManager AfterinvocationProvider

b 1.n ; E‘\

PostlinvocationAdvice

AfterinvocationProviderManager AbstractAclProvider Brovider

AclEntryAfterinvocationProvider

Figure 13.2. After Invocation Implementation

Like many other parts of Spring Security, Afterlnvocati onManager has a single
concrete implementation, Afterlnvocati onProvi der Manager, which polls a list of
AfterlnvocationProviders Each Afterlnvocati onProvi der isalowed to modify the
return object or throw an AccessDeni edExcept i on. Indeed multiple providers can modify the
object, as the result of the previous provider is passed to the next in the list.

Please be aware that if you'reusing Af t er | nvocat i onManager , you will still need configuration
attributesthat allow theMet hodSecuri t yl nt er cept or 'sAccessDeci si onManager toallow
an operation. If you're using the typical Spring Security included AccessDeci si onManager
implementations, having no configuration attributes defined for a particular secure method

3.0.2.RELEASE Spring Security 72

Spring Security

invocation will cause each AccessDeci si onVoter to abstain from voting. In turn, if
the AccessDeci si onManager property "al | ow f Al | Abst ai nDeci si ons" isfal se, an
AccessDeni edExcept i on will be thrown. You may avoid this potential issue by either (i) setting
"al | ow f Al | Abst ai nDeci si ons"tot r ue (although thisis generally not recommended) or (ii)
simply ensure that thereis at least one configuration attribute that an AccessDeci si onVot er will
voteto grant accessfor. Thislatter (recommended) approach isusually achieved throughaROLE_USER
or ROLE_AUTHENTI CATED configuration attribute.

3.0.2.RELEASE Spring Security 73

Spring Security

14. Secure Object Implementations

14.1 AOP Alliance (MethodInvocation) Security
Interceptor

Prior to Spring Security 2.0, securing Met hodl nvocat i ons needed quite a lot of boiler plate
configuration. Now the recommended approach for method security is to use namespace configuration.
This way the method security infrastructure beans are configured automatically for you so you don't
really need to know about the implementation classes. Well just provide aquick overview of the classes
that are involved here.

Method security in enforced using a Met hodSecurityl nterceptor, which secures
Met hodl nvocat i ons. Depending on the configuration approach, an interceptor may be
specific to a single bean or shared between multiple beans. The interceptor uses a
Met hodSecuri t yMet adat aSour ce instance to obtain the configuration attributes that apply to
a particular method invocation. MapBasedMet hodSecur i t yMet adat aSour ce is used to store
configuration attributes keyed by method names (which can be wildcarded) and will be used internally
when the attributes are defined in the application context using the <i nt er cept - met hods>
or <pr ot ect - poi nt > elements. Other implementations will be used to handle annotation-based
configuration.

Explicit MethodSecuritylnterceptor Configuration

Y ou can of course configure aMet hodSecuri tyltercept or directly inyour application context
for use with one of Spring AOP's proxying mechanisms:

<bean i d="bankManager Security" cl ass=
"org. springframework. security.access.intercept.aopalliance. MethodSecuritylnterceptor">
<property nanme="aut henti cati onManager" ref="authenticati onManager"/>
<property nanme="accessDeci si onManager" ref="accessDeci si onManager"/>
<property name="afterlnvocati onManager" ref="afterlnvocati onManager"/>
<property nanme="securityMet adat aSource" >
<val ue>
com nyconpany. BankManager . del et e*=ROLE_SUPERVI SOR
com nmyconpany. BankManager . get Bal ance=ROLE_TELLER, ROLE_SUPERVI SOR
</ val ue>
</ property>
</ bean>

14.2 Aspectd (JoinPoint) Security Interceptor

The AspectJ security interceptor is very similar to the AOP Alliance security interceptor discussed in
the previous section. Indeed we will only discuss the differencesin this section.

The AspectJ interceptor is named Aspect JSecuri t yl nt er cept or. Unlike the AOP Alliance
security interceptor, which relies on the Spring application context to weave in the security interceptor
via proxying, the Aspect JSecurityl nterceptor is weaved in via the Aspect] compiler. It

3.0.2.RELEASE Spring Security 74

Spring Security

would not be uncommon to use both types of security interceptors in the same application, with
Aspect JSecurityl nt ercept or being used for domain object instance security and the AOP
Alliance Met hodSecuri t yl nt er cept or being used for services layer security.

Let's first consider how the Aspect JSecurityl nterceptor is configured in the Spring
application context:

<bean i d="bankManager Security" class=
"org.springframework. security.access.intercept.aspectj.AspectJSecuritylnterceptor">
<property nanme="aut henti cati onManager" ref="authenti cati onManager"/>
<property nanme="accessDeci si onManager" ref="accessDeci si onManager"/>
<property name="afterlnvocati onManager" ref="afterl nvocati onManager"/>
<property nanme="securityMetadat aSource">
<val ue>
com nmyconpany. BankManager . del et e*=ROLE_SUPERVI SOR
com nyconpany. BankManager . get Bal ance=ROLE_TELLER, ROLE_SUPERVI SOR
</ val ue>
</ property>
</ bean>

As you can see, aside from the class name, the Aspect JSecuri tyl nt ercept or is exactly
the same as the AOP Alliance security interceptor. Indeed the two interceptors can share
the same securityMet adat aSource, as the SecurityMet adat aSour ce works with
java. |l ang. refl ect. Met hodsrather than an AOP library-specific class. Of course, your access
decisions have access to the relevant AOP library-specific invocation (ie Met hodl nvocat i on or
Joi nPoi nt) and as such can consider arange of addition criteriawhen making access decisions (such
as method arguments).

Next you'll need to define an AspectJaspect . For example:

package org. springfranmework. security.sanpl es. aspectj ;

i mport org.springframework. security.access.intercept.aspectj.AspectJSecuritylnterceptor
i nport org.springfranework. security.access.intercept.aspectj.AspectJCal |l back
i mport org.springframework. beans. factory. I nitializingBean

publ i c aspect Donmi nObj ect | nst anceSecurityAspect inplenents InitializingBean {
private AspectJSecuritylnterceptor securitylnterceptor

poi nt cut donmi nQhj ect | nst anceExecution(): target(Persistabl eEntity)
&& execution(public * *(..)) && !wi thin(Domai nCbj ect| nstanceSecurityAspect);

bj ect around(): domai nObj ect | nst anceExecution() {
if (this.securitylnterceptor == null) {
return proceed()

}

Aspect JCal | back cal | back = new AspectJCal | back() {
public Object proceedWthObject() {
return proceed();
}
i

return this.securitylnterceptor.invoke(thisJoinPoint, callback)

3.0.2.RELEASE Spring Security 75

Spring Security

}

publ i c AspectJSecuritylnterceptor getSecuritylnterceptor() {
return securitylnterceptor

}

public void setSecuritylnterceptor(AspectJSecuritylnterceptor securitylnterceptor) ({
this.securitylnterceptor = securitylnterceptor

}

public void afterPropertiesSet() throws Exception {
if (this.securitylnterceptor == null)
throw new ||| egal Argunent Excepti on("securitylnterceptor required");

}

In the above example, the security interceptor will be applied to every instance of
Per si stabl eEntity, which is an abstract class not shown (you can use any other class
or poi nt cut expression you like). For those curious, Aspect JCal | back is needed because
the proceed(); statement has specia meaning only within an around() body. The
Aspect JSecuri tyl nt er cept or calsthisanonymousAspect JCal | back classwhenit wants
the target object to continue.

You will need to configure Spring to load the aspect and wire it with the
Aspect JSecuri tyl nt er cept or . A bean declaration which achieves thisis shown below:

<bean i d="domai nObj ect | nst anceSecurityAspect"
cl ass="security.sanpl es. aspect . Domai nObj ect | nst anceSecuri t yAspect"
factory-nmet hod="aspect O " >
<property nanme="securitylnterceptor" ref="bankManager Security"/>
</ bean>

That'sit! Now you can create your beans from anywhere within your application, using whatever means
you think fit (egnew Per son() ;) and they will have the security interceptor applied.

3.0.2.RELEASE Spring Security 76

Spring Security

15. Expression-Based Access Control

Spring Security 3.0 introduced the ability to use Spring EL expressions as an authorization mechanismin
addition to the simple use of configuration attributes and access-decision voters which have seen before.
Expression-based access control is built on the same architecture but allows complicated boolean logic
to be encapsulated in a single expression.

15.1 Overview

Spring Security uses Spring EL for expression support and you should look at how that worksif you are
interested in understanding the topic in more depth. Expressions are evaluated with a “root object” as
part of the evaluation context. Spring Security uses specific classes for web and method security asthe
root object, in order to provide built-in expressions and access to values such as the current principal .

Common Built-In Expressions

The base class for expression root objects is Securi t yExpr essi onRoot . This provides some
common expressions which are available in both web and method security.

Table 15.1. Common built-in expressions
Expression Description
hasRol e([rol e]) Returnst r ue if the current principal has the specified role.

hasAnyRol e([rol el, r ol e2R&turnst r ue if the current principal has any of the supplied roles
(given as a comma-separated list of strings)

princi pal Allowsdirect accessto the principal object representing the current
user
aut hentication Allows direct access to the current Aut henti cati on object

obtained from the Secur i t yCont ext

permtAll Alwaysevaluatestot r ue

denyAl | Alwaysevaluatesto f al se

i sAnonynous() Returnst r ue if the current principal is an anonymous user
i sRenenber Me() Returnst r ue if the current principal isaremember-me user
i sAut henti cat ed() Returnst r ue if the user is not anonymous

i sFul I yAut henti cat ed() | Returnst r ue if the user is not an anonymous or a remember-me
user

15.2 Web Security Expressions

To use expressions to secure individual URLSs, you would first need to set the use- expr essi ons
attribute in the <ht t p> element to t r ue. Spring Security will then expect the access attributes of

3.0.2.RELEASE Spring Security "

Spring Security

the<i nt er cept - ur | > elementsto contain Spring EL expressions. The expressions should evaluate
to aboolean, defining whether access should be allowed or not. For example:

<http use-expressions="true">
<intercept-url pattern="/adm n*"
access="hasRol e(' adm n') and hasl pAddress(' 192.168.1.0/24")"/>

</ http>

Here we have defined that the “admin” area of an application (defined by the URL pattern) should
only be available to users who have the granted authority “admin” and whose IP address matches
a local subnet. We've aready seen the built-in hasRol e expression in the previous section. The
expression hasl pAddr ess is an additional built-in expression which is specific to web security.
It is defined by the WebSecuri t yExpr essi onRoot class, an instance of which is used as the
expression root object when evaluation web-access expressions. This object also directly exposed the

Ht t pSer vl et Request object under the namer equest so you can invoke the request directly in
an expression.

If expressions are being used, a WebExpressionVoter will be added to the
AccessDeci si onManager which is used by the namespace. So if you aren't using the namespace
and want to use expressions, you will have to add one of these to your configuration.

15.3 Method Security Expressions

Method security is a bit more complicated than a simple alow or deny rule. Spring Security 3.0
introduced some new annotations in order to allow comprehensive support for the use of expressions.

@r e and @ost Annotations

There are four annotations which support expression attributes to alow pre and post-invocation
authorization checks and aso to support filtering of submitted collection arguments or return values.
They are @r eAut hori ze, @reFil ter, @ost Aut hori ze and @Post Fi | t er. Their useis
enabled through the gl obal - net hod- securi t y namespace element:

<gl obal - mret hod- security pre-post-annotati ons="enabl ed"/>

Access Control using @°r eAut hori ze and @ost Aut hori ze

The most obviously useful annotation is @°r eAut hor i ze which decides whether a method can
actually be invoked or not. For example (from the “ Contacts’” sample application)

@r eAut hori ze("hasRol e(' ROLE_USER)")

public void create(Contact contact);
which means that access will only be alowed for users with the role "ROLE_USER". Obviously the
samething could easily be achieved using atraditional configuration and asimple configuration attribute
for the required role. But what about:

@r eAut hori ze("hasPer m ssi on(#contact, 'adnmin')")

3.0.2.RELEASE Spring Security 78

Spring Security

public voi d del et ePerm ssion(Contact contact, Sid recipient, Perm ssion perm ssion);

Here we're actually using a method argument as part of the expression to decide whether the current
user has the “admin” permission for the given contact. The built-inhasPer m ssi on() expressionis
linked into the Spring Security ACL module through the application context, as we'll see below. You
can access any of the method arguments by name as expression variables, provided your code has debug
information compiled in. Any Spring-EL functionality is available within the expression, so you can
also access properties on the arguments. For example, if you wanted a particular method to only allow
access to a user whose username matched that of the contact, you could write

@r eAut hori ze("#cont act. name == princi pal . nane)")
publ i c voi d doSonet hi ng(Cont act contact);

Here we are accessing another built—in expression, which is the pri nci pal of the current Spring
Security Aut henti cati on object obtained from the security context. You can aso access the
Aut hent i cat i on object itself directly using the expression name aut hent i cat i on.

Less commonly, you may wish to perform an access-control check after the method has been invoked.
This can be achieved using the @ost Aut hor i ze annotation. To access the return value from a
method, use the built—in namer et ur nCbj ect inthe expression.

Filtering using @r eFi | ter and @ostFilter

Asyou may already be aware, Spring Security supports filtering of collections and arrays and this can
now be achieved using expressions. Thisis most commonly performed on the return value of a method.
For example:

@r eAut hori ze(" hasRol e(' ROLE_USER) ")
@rost Filter("hasPerm ssion(filterObject, 'read') or hasPermission(filterCObject, 'admin')")
public List<Contact> getAll();

When using the @ost Fi | t er annotation, Spring Security iterates through the returned collection
and removes any elementsfor which the supplied expressionisfalse. Thenamef i | t er Qbj ect refers
to the current object in the collection. Y ou can also filter before the method call, using @r eFi | t er,
though this is a less common requirement. The syntax is just the same, but if there is more than one
argument which is a collection type then you have to select one by name using thefi | t er Tar get
property of this annotation.

Note that filtering is obviously not a substitute for tuning your dataretrieval queries. If you arefiltering
large collections and removing many of the entries then thisislikely to be inefficient.

Built-In Expressions

There are some built-in expressions which are specific to method security, which we have already seen
inuse above. Thefi |l t er Tar get andr et ur nVal ue vaues are simple enough, but the use of the
hasPer m ssi on() expression warrants a closer look.

The Per m ssi onEval uat or interface

hasPer nmi ssi on() expressions are delegated to an instance of Per m ssi onEval uator. Itis
intended to bridge between the expression system and Spring Security's ACL system, allowing you to

3.0.2.RELEASE Spring Security 79

Spring Security

specify authorization constraints on domain objects, based on abstract permissions. It has no explicit
dependencies on the ACL module, so you could swap that out for an alternative implementation if
required. The interface has two methods:

bool ean hasPer m ssi on(Aut henti cati on aut henticati on, Object targetDomai nObj ect,
bj ect permi ssion);

bool ean hasPer m ssi on(Aut henti cati on aut hentication, Serializable targetld,
String target Type, Object permi ssion);

which map directly to the available versions of the expression, with the exception that the first argument
(the Aut hent i cat i on object) isnot supplied. Thefirst isused in situations where the domain object,
to which access is being controlled, is already loaded. Then expression will return true if the current
user has the given permission for that object. The second version isused in cases where the object is not
loaded, but its identifier is known. An abstract “type” specifier for the domain object is also required,
allowing the correct ACL permissions to be loaded. This has traditionally been the Java class of the
object, but does not have to be aslong asit is consistent with how the permissions are |oaded.

To wuse hasPerm ssion() expressions, Yyou have to explicitty configure a
Per m ssi onEval uat or inyour application context. Thiswould look something like this:

<security: gl obal - et hod-security pre-post-annotati ons="enabl ed">
<security:expression-handl er ref="expressionHandl er"/>
</security: gl obal - met hod-security>

<bean i d="expressi onHandl er" cl ass=
"org. springframework. security.access. expressi on. net hod. Def aul t Met hodSecuri t yExpr essi onHandl er " >
<property nanme="perm ssi onEval uator" ref="myPerm ssi onEval uator"/>
</ bean>

Where nmyPer mi ssi onEval uat or is the bean which implements Per m ssi onEval uat or.
Usudly this will be the implementation from the ACL module which is caled
Acl Per m ssi onEval uat or . Seethe“ Contacts’ sample application configuration for more details.

3.0.2.RELEASE Spring Security 80

Part V. Additional Topics

In this part we cover features which require a knowledge of previous chapters as well as some of the
more advanced and less-commonly used features of the framework.

Spring Security

16. Domain Object Security (ACLS)

16.1 Overview

Complex applications often will find the need to define access permissions not simply at aweb request or
method invocation level. Instead, security decisions need to comprise both who (Aut hent i cat i on),
where (Met hodl nvocat i on) and what (SonmeDonai nObj ect). In other words, authorization
decisions also need to consider the actual domain object instance subject of a method invocation.

Imagine you're designing an application for a pet clinic. There will be two main groups of users of your
Spring-based application: staff of the pet clinic, aswell asthe pet clinic's customers. The staff will have
access to all of the data, whilst your customers will only be able to see their own customer records. To
make it a little more interesting, your customers can allow other users to see their customer records,
such as their "puppy preschool” mentor or president of their local "Pony Club”. Using Spring Security
as the foundation, you have several approaches that can be used:

1. Write your business methods to enforce the security. You could consult a collection within
the Cust omer domain object instance to determine which users have access. By using the
Securi t yCont ext Hol der . get Cont ext (). get Aut henti cati on(), youll be able to
accessthe Aut hent i cat i on object.

2. Write an AccessDeci si onVot er to enforce the security from the G- ant edAut hority[]s
stored in the Aut hent i cat i on object. This would mean your Aut hent i cat i onManager
would need to populate the Aut hentication with custom G antedAuthority[]s
representing each of the Cust orrer domain object instances the principal has access to.

3. Writean AccessDeci si onVot er to enforcethe security and open thetarget Cust oner domain
object directly. This would mean your voter needs access to a DAO that allows it to retrieve the
Cust orer object. It would then access the Cust oner object's collection of approved users and
make the appropriate decision.

Each one of these approaches is perfectly legitimate. However, the first couples your authorization
checking to your business code. The main problems with this include the enhanced difficulty of unit
testing and the fact it would be more difficult to reuse the Cust oner authorization logic elsewhere.
Obtainingthe Gr ant edAut hori t y[] sfromtheAut hent i cat i on objectisasofine, but will not
scaleto large numbersof Cust oner s. If auser might be able to access 5,000 Cust ornrer s (unlikely in
this case, but imagineif it were apopular vet for alarge Pony Club!) the amount of memory consumed
and time required to construct the Aut hent i cat i on object would be undesirable. The final method,
opening the Cust oner directly from external code, is probably the best of the three. It achieves
separation of concerns, and doesn't misuse memory or CPU cycles, but it is still inefficient in that
both the AccessDeci si onVot er and the eventual business method itself will perform acall to the
DAO responsible for retrieving the Cust omer object. Two accesses per method invocation is clearly
undesirable. In addition, with every approach listed you'll need to write your own access control list
(ACL) persistence and business logic from scratch.

Fortunately, there is another alternative, which we'll talk about below.

3.0.2.RELEASE Spring Security 82

Spring Security

16.2 Key Concepts

Spring Security's ACL services are shipped in the spri ng- security-acl - xxx.j ar. You will
need to add this JAR to your classpath to use Spring Security's domain object instance security
capabilities.

Spring Security's domain object instance security capabilities centre on the concept of an access control
list (ACL). Every domain object instance in your system hasits own ACL, and the ACL records details
of who can and can't work with that domain object. With this in mind, Spring Security delivers three
main ACL-related capabilities to your application:

» A way of efficiently retrieving ACL entriesfor all of your domain objects (and modifying those ACLS)
» A way of ensuring agiven principal is permitted to work with your objects, before methods are called

» A way of ensuring agiven principal ispermitted to work with your objects (or something they return),
after methods are called

Asindicated by the first bullet point, one of the main capabilities of the Spring Security ACL module
is providing a high-performance way of retrieving ACLs. This ACL repository capability is extremely
important, because every domain object instance in your system might have several access control
entries, and each ACL might inherit from other ACLsin atree-like structure (this is supported out-of-
the-box by Spring Security, and is very commonly used). Spring Security's ACL capability has been
carefully designed to provide high performance retrieval of ACLSs, together with pluggable caching,
deadl ock-minimizing database updates, independence from ORM frameworks (we use JDBC directly),
proper encapsulation, and transparent database updating.

Given databases are central to the operation of the ACL module, let's explore the four main tables used
by default in the implementation. The tables are presented below in order of size in a typical Spring
Security ACL deployment, with the table with the most rows listed | ast:

» ACL_SID alows usto uniquely identify any principal or authority in the system ("SID" stands for
"security identity"). The only columns are the ID, atextual representation of the SID, and a flag to
indicate whether the textual representation refers to a principal name or a Gr ant edAut hority.
Thus, there is a single row for each unique principal or G- ant edAut hori t y. When used in the
context of receiving apermission, aSID isgeneraly called a"recipient”.

» ACL_CLASSalowsustouniquely identify any domain object classin the system. The only columns
arethe D and the Java class name. Thus, thereisasingle row for each unique Class we wish to store
ACL permissionsfor.

 ACL_OBJECT_IDENTITY storesinformation for each unique domain object instance in the system.
Columns include the ID, a foreign key to the ACL_CLASS table, a unique identifier so we know
which ACL_CLASS instance we're providing information for, the parent, a foreign key to the
ACL_SID table to represent the owner of the domain object instance, and whether we allow ACL
entriesto inherit from any parent ACL. We have asingle row for every domain object instance we're
storing ACL permissions for.

3.0.2.RELEASE Spring Security 83

Spring Security

* Findly, ACL_ENTRY storestheindividual permissions assigned to each recipient. Columnsinclude
aforeignkeytothe ACL_OBJECT _IDENTITY, therecipient (ieaforeignkey to ACL_SID), whether
we'll be auditing or not, and the integer bit mask that represents the actual permission being granted
or denied. We have asingle row for every recipient that receives a permission to work with adomain
object.

As mentioned in the last paragraph, the ACL system uses integer bit masking. Don't worry, you need
not be aware of the finer points of bit shifting to use the ACL system, but suffice to say that we have 32
bits we can switch on or off. Each of these bits represents a permission, and by default the permissions
are read (bit 0), write (bit 1), create (bit 2), delete (bit 3) and administer (bit 4). It's easy to implement
your own Per m ssi on instance if you wish to use other permissions, and the remainder of the ACL
framework will operate without knowledge of your extensions.

It is important to understand that the number of domain objects in your system has absolutely no
bearing on the fact we've chosen to use integer bit masking. Whilst you have 32 bits available for
permissions, you could have billions of domain object instances (which will mean billions of rows
in ACL_OBJECT _IDENTITY and quite probably ACL_ENTRY). We make this point because we've
found sometimes people mistakenly believe they need a bit for each potential domain object, which is
not the case.

Now that we've provided a basic overview of what the ACL system does, and what it looks like at a

table structure, let's explore the key interfaces. The key interfaces are:

* Acl: Every domain object has one and only one Acl object, which internally holds the
AccessControl Entrys as well as knows the owner of the Acl . An Acl does not refer
directly to the domain object, but instead to an Obj ect | dentity. The Acl is stored in the
ACL_OBJECT_IDENTITY table.

* AccessControl Entry: An Acl holds multiple AccessCont r ol Ent rys, which are often
abbreviated as ACEs in the framework. Each ACE refers to a specific tuple of Per m ssi on, Si d
and Acl . An ACE can also be granting or non-granting and contain audit settings. The ACE is stored
inthe ACL_ENTRY table.

* Perm ssi on: A permission represents a particular immutable bit mask, and offers convenience
functions for bit masking and outputting information. The basic permissions presented above (bits 0
through 4) are contained in the BasePer i ssi on class.

e Si d: The ACL module needs to refer to principals and Gr ant edAut hority[]s. A level of
indirectionisprovided by the Si d interface, whichisan abbreviation of "security identity". Common
classesinclude Pri nci pal Si d (to represent the principal inside an Aut hent i cat i on object)
and Gr ant edAut hori t ySi d. The security identity information is stored in the ACL_SID table.

 bj ectldentity: Each domain object is represented internally within the ACL module by an
Obj ect I dent i ty. The default implementation iscalled Obj ect | denti tyl npl .

» Acl Servi ce: Retrieves the Acl applicable for a given Qbj ect I dentity. In the included
implementation (JdbcAcl Ser vi ce), retrieval operations are delegated to aLookupSt r at egy.
The LookupSt r at egy provides a highly optimized strategy for retrieving ACL information,
using batched retrievals (Basi cLookupSt r at egy) and supporting custom implementations that
leverage materialized views, hierarchical queries and similar performance-centric, non-ANSI SQL
capabilities.

3.0.2.RELEASE Spring Security 84

Spring Security

» Mut abl eAcl Ser vi ce: Allowsamodified Acl to be presented for persistence. It is not essential
to use thisinterface if you do not wish.

Please note that our out-of-the-box AclService and related database classes al use ANSI SQL. This
should thereforework with all major databases. At the time of writing, the system had been successfully
tested using Hypersonic SQL, PostgreSQL, Microsoft SQL Server and Oracle.

Two samples ship with Spring Security that demonstrate the ACL module. The first is the Contacts
Sample, and the other is the Document Management System (DM S) Sample. We suggest taking alook
over these for examples.

16.3 Getting Started

To get starting using Spring Security's ACL capability, you will need to store your ACL information
somewhere. This necessitates the instantiation of a Dat aSour ce using Spring. The Dat aSour ce is
theninjectedintoaJdbcMut abl eAcl Ser vi ce andBasi cLookupSt r at egy instance. Thelatter
provides high-performance ACL retrieval capabilities, and the former provides mutator capabilities.
Refer to one of the samples that ship with Spring Security for an example configuration. You'll also
need to populate the database with the four ACL-specific tables listed in the last section (refer to the
ACL samples for the appropriate SQL statements).

Once you've created the required schema and instantiated JdbcMut abl eAcl Ser vi ce, you'll next
need to ensure your domain model supports interoperability with the Spring Security ACL package.
Hopefully Qbj ect | denti t yl npl will prove sufficient, as it provides a large number of ways in
which it can be used. Most people will have domain objects that containapubl i ¢ Seri al i zabl e
get |1 d() method. If thereturn typeislong, or compatible with long (eg an int), you will find you need
not give further consideration to Cbj ect | dent i ty issues. Many parts of the ACL module rely on
long identifiers. If you're not using long (or an int, byte etc), there is a very good chance you'll need to
reimplement a number of classes. We do not intend to support non-long identifiersin Spring Security's
ACL module, aslongs are already compatible with all database sequences, the most common identifier
datatype, and are of sufficient length to accommaodate all common usage scenarios.

The following fragment of code shows how to create an Acl , or modify an existing Acl :

/1 Prepare the information we'd |like in our access control entry (ACE)
hjectldentity oi = new Objectldentitylnpl (Foo.class, new Long(44));
Sid sid = new Principal Si d("Samant ha") ;

Permi ssion p = BasePerni ssi on. ADM NI STRATI ON;

/] Create or update the rel evant ACL
Mut abl eAcl acl = null;
try {
acl = (Mutabl eAcl) acl Service. readAcl Byl d(oi);
} catch (Not FoundException nfe) {
acl = acl Service.createAcl (0i);

}

/1 Now grant sone perm ssions via an access control entry (ACE)
acl .insertAce(acl.getEntries().length, p, sid, true);
acl Servi ce. updat eAcl (acl) ;

3.0.2.RELEASE Spring Security 85

Spring Security

In the exampl e above, we're retrieving the ACL associated with the "Foo" domain object with identifier
number 44. We're then adding an ACE so that aprincipal named " Samantha' can"administer" the object.
The code fragment is relatively self-explanatory, except the insertAce method. The first argument to
the insertAce method is determining at what position in the Acl the new entry will be inserted. In the
example above, we're just putting the new ACE at the end of the existing ACEs. Thefinal argumentisa
boolean indicating whether the ACE is granting or denying. Most of the time it will be granting (true),
but if it is denying (false), the permissions are effectively being blocked.

Spring Security does not provide any specia integration to automatically create, update or delete ACLs
as part of your DAO or repository operations. I nstead, you will need to write code like shown above for
your individual domain objects. It'sworth considering using AOP on your serviceslayer to automatically
integrate the ACL information with your services layer operations. We've found this quite an effective
approach in the past.

Onceyou've used the abovetechniquesto store some ACL information in the database, the next stepisto
actually usethe ACL information as part of authorization decision logic. Y ou have a number of choices
here. Y ou could write your own AccessDeci si onVot er or Aft er | nvocati onProvi der that
respectively firesbefore or after amethod invocation. Such classeswould use Acl Ser vi ce toretrieve
the relevant ACL and then call Acl . i sGrant ed(Permission[] permssion, Sid[]

si ds, bool ean adm ni strativeMde) to decide whether permission is granted or denied.
Alternately, you could use our Acl EntryVot er, Acl EntryAfterlnvocati onProvi der or
Acl EntryAfterlnvocationCol |l ectionFilteringProvider classes. All of these classes
provide a declarative-based approach to evaluating ACL information at runtime, freeing you from
needing to write any code. Please refer to the sample applications to learn how to use these classes.

3.0.2.RELEASE Spring Security 86

Spring Security

17. Pre-Authentication Scenarios

There are situations where you want to use Spring Security for authorization, but the user has already
been reliably authenticated by some external system prior to accessing the application. Werefer to these
situations as “ pre-authenticated” scenarios. Examplesinclude X.509, Siteminder and authentication by
the J2EE container in which the application is running. When using pre-authentication, Spring Security
hasto

1. Identify the user making the request.

2. Obtain the authorities for the user.

The details will depend on the external authentication mechanism. A user might be identified by their
certificate information in the case of X.509, or by an HTTP request header in the case of Siteminder. If
relying on container authentication, the user will beidentified by calling theget User Pri nci pal ()
method on the incoming HTTP request. In some cases, the external mechanism may supply role/
authority information for the user but in others the authorities must be obtained from a separate source,
suchasaUser Det ai | sSer vi ce.

17.1 Pre-Authentication Framework Classes

Because most pre-authentication mechanisms follow the same pattern, Spring Security has a set
of classes which provide an internal framework for implementing pre-authenticated authentication
providers. Thisremovesduplication and allows new implementationsto be added in astructured fashion,
without having to write everything from scratch. Y ou don't need to know about these classesif you want
to use something like X.509 authentication, as it already has a namespace configuration option which
issimpler to use and get started with. If you need to use explicit bean configuration or are planning on
writing your own implementation then an understanding of how the provided implementationswork will
beuseful. Y ouwill find classes under the org.springframework.security.web.authentication.preauth. We
just provide an outline here so you should consult the Javadoc and source where appropriate.

AbstractPreAuthenticatedProcessingFilter

This classwill check the current contents of the security context and, if empty, it will attempt to extract
user information fromthe HT TP request and submitittothe Aut hent i cat i onManager . Subclasses
override the following methods to obtain this information:

protected abstract Object getPreAuthenticatedPrincipal (HtpServletRequest request);

protected abstract Object getPreAuthenticatedCredential s(HttpServletRequest request);

After caling these, the filter will create a Pr eAut henti cat edAut henti cati onToken
containing the returned data and submit it for authentication. By “authentication” here, we really
just mean further processing to perhaps load the user's authorities, but the standard Spring Security
authentication architecture is followed.

3.0.2.RELEASE Spring Security 87

Spring Security

AbstractPreAuthenticatedAuthenticationDetailsSource

Like other Spring Security authentication filters, the pre-authentication filter has
an authenticationDetail sSource property which by default will create a
WebAut henti cati onDetail s object to store additional information such as the session-
identifier and originating IP address in the details property of the Aut hentication
object. In cases where wuser role information can be obtained from the pre-
authentication mechanism, the data is aso stored in this property. Subclasses of
Abstract PreAut henti cat edAut henti cati onDet ai | sSour ce use an extended details
object which implements the Gr ant edAut hori ti esCont ai ner interface, thus enabling the
authentication provider to read the authorities which were externally allocated to the user. Wel'll look
at a concrete example next.

J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

If the filter is configured with an aut henti cati onDet ai | sSour ce which is an instance of
this class, the authority information is obtained by calling thei sUser | nRol e(String role)

method for each of a pre-determined set of “mappable roles’. The class gets these from a configured
Mappabl eAt tri but esRet ri ever. Possible implementations include hard-coding a list in the
application context and reading the role information from the <securi t y-r ol e> information in a
web. xm file. The pre-authentication sample application uses the | atter approach.

There is an additional stage where the roles (or attributes) are
mapped to Spring Security GrantedAuthority objects wusing a configured
Attri but es2G ant edAut hori ti esMapper . The default will just add the usual ROLE _ prefix
to the names, but it gives you full control over the behaviour.

PreAuthenticatedAuthenticationProvider

The pre-authenticated provider haslittle more to do than load the User Det ai | s object for the user. It
doesthis by delegating to aAut hent i cat i onUser Det ai | sSer vi ce. Thelatter issimilar to the
standard User Det ai | sSer vi ce but takesan Aut hent i cat i on object rather than just user name:

public interface Authenticati onUserDetail sService {
User Detai | s | oadUser Det ai | s(Aut henti cati on token) throws UsernaneNot FoundExcepti on;

}
This interface may have aso other uses but with pre-authentication it alows access to
the authorities which were packaged in the Aut henti cati on object, as we saw in the
previous section. The PreAut henti cat edG ant edAut horiti esUserDetail sService
class does this. Alternatively, it may delegate to a standard User Det ai | sSer vi ce via the
User Det ai | sByNaneSer vi ceW apper implementation.

Http403ForbiddenEntryPoint

The Aut hent i cat i onEnt r yPoi nt was discussed in the technical overview chapter. Normally
it is responsible for kick-starting the authentication process for an unauthenticated user (when they
try to access a protected resource), but in the pre-authenticated case this doesn't apply. You would

3.0.2.RELEASE Spring Security 83

Spring Security

only configure the Excepti onTransl ati onFi | t er with an instance of this class if you aren't
using pre-authentication in combination with other authentication mechanisms. It will be called if the
user is rgjected by the Abst r act Pr eAut hent i cat edPr ocessi ngFi | t er resulting in a null
authentication. It always returns a 403-forbidden response code if called.

17.2 Concrete Implementations

X.509 authenticationiscoveredinitsown chapter. Herewe'll look at some classeswhich provide support
for other pre-authenticated scenarios.

Request-Header Authentication (Siteminder)

An external authentication system may supply information to the application by setting specific
headers on the HTTP request. A well known example of this is Siteminder, which passes
the username in a header caled SM USER. This mechanism is supported by the class
Request Header Aut hent i cati onFi | t er which simply extracts the username from the header.
It defaults to using the name SM_USER as the header name. See the Javadoc for more details.

Tip

.

@

Notethat when using asystem likethis, the framework performs no authentication checks at
al andit isextremely important that the external system is configured properly and protects
all accesstotheapplication. If an attacker isableto forgethe headersin their original request
without this being detected then they could potentially choose any username they wished.

Siteminder Example Configuration

A typical configuration using thisfilter would look like this:

<security: http>
<!-- Additional http configuration omtted -->
<security:customfilter ref="sitem nderFilter" />
</security: http>

<bean id="sitem nderFilter" class=
"org. springframework. security.web. aut henti cati on. preaut h. header. Request Header Aut henti cati onFil ter">
<property nanme="princi pal Request Header" val ue="SM USER"/ >
<property nanme="aut henticati onManager" ref="authenticati onManager" />
</ bean>

<bean i d="preaut hAut hProvi der"
cl ass="org. springframework. security.web. aut henti cati on. preaut h. PreAut henti cat edAut henti cati onProvi der">
<property nanme="preAut henti cat edUser Det ai | sServi ce" >
<bean i d="userDet ai | sServi ceW apper"
cl ass="org. springframework. security.core.userdetails. UserDetail sByNanmeSer vi ceW apper ">
<property name="userDetail sServi ce" ref="userDetail sService"/>
</ bean>
</ property>
</ bean>

<security:authenticati on-manager alias="authenticati onManager">
<security:authentication-provider ref="preauthAuthProvider" />

3.0.2.RELEASE Spring Security 89

Spring Security

</security-authentication-manager>

We've assumed here that the security namespace is being used for configuration (hence the
user of thecustom fil ter,aut henti cati on-manager andcust om aut henti cati on-
provi der elements (you can read more about them in the namespace chapter [ns-config]). You
would leave these out of a traditional bean configuration. It's also assumed that you have added a
User Det ai | sSer vi ce (called “userDetailsService”) to your configuration to load the user's roles.

J2EE Container Authentication

The class J2eePr eAut henti cat edProcessi ngFilter will extract the username from
the userPrinci pal property of the HttpServl et Request. Use of this filter would
usually be combined with the use of J2EE roles as described above in the section called
* J2eeBasedPreA uthenti catedWebA uthenti cationDetail sSource” .

There is a sample application in the codebase which uses this approach, so get hold of the code from
subversion and have a look at the application context file if you are interested. The code is in the
sanpl es/ pr eaut h directory.

3.0.2.RELEASE Spring Security 90

ns-config
ns-config

Spring Security

18. LDAP Authentication

18.1 Overview

LDAPisoften used by organizationsasacentral repository for user information and as an authentication
service. It can aso be used to store the role information for application users.

There are many different scenarios for how an LDAP server may be configured so Spring Security's
LDAP provider is fully configurable. It uses separate strategy interfaces for authentication and role
retrieval and provides default implementations which can be configured to handle a wide range of
situations.

Y ou should be familiar with LDAP before trying to use it with Spring Security. The following link
provides agood introduction to the concepts involved and aguide to setting up adirectory using thefree
LDAPserver OpenLDAP: htt p: / / www. zyt r ax. com books/ | dap/ . Somefamiliarity with the
JNDI APIs used to access LDAP from Java may also be useful. We don't use any third-party LDAP
libraries (Mozilla, JLDAP etc.) in the LDAP provider, but extensive use is made of Spring LDAP, so
some familiarity with that project may be useful if you plan on adding your own customizations.

18.2 Using LDAP with Spring Security

LDAP authentication in Spring Security can be roughly divided into the following stages.

1. Obtaining the unigque LDAP “Distinguished Name”, or DN, from the login nhame. This will often
mean performing a search in the directory, unless the exact mapping of usernamesto DNsis known
in advance.

2. Authenticating the user, either by binding asthat user or by performing aremote*compare” operation
of the user's password against the password attribute in the directory entry for the DN.

3. Loading the list of authorities for the user.

The exception is when the LDAP directory is just being used to retrieve user information and
authenticate against it locally. This may not be possible as directories are often set up with limited read
access for attributes such as user passwords.

We will look at some configuration scenarios below. For full information on available configuration
options, please consult the security namespace schema (information from which should be available in
your XML editor).

18.3 Configuring an LDAP Server

The first thing you need to do is configure the server against which authentication should take place.
Thisisdoneusingthe <l dap- ser ver > element from the security namespace. This can be configured
to point at an external LDAP server, using theur | attribute:

<l dap-server url ="1dap://springframework. org: 389/ dc=spri ngf ramewor k, dc=org" />

3.0.2.RELEASE Spring Security 01

http://www.zytrax.com/books/ldap/

Spring Security

Using an Embedded Test Server

The <I dap- ser ver > element can also be used to create an embedded server, which can be very
useful for testing and demonstrations. In this case you use it without the ur | attribute:

<l dap- server root="dc=spri ngframework, dc=org"/>

Here we've specified that the root DIT of the directory should be * dc=springframework,dc=org”, which
is the default. Used this way, the namespace parser will create an embedded Apache Directory server
and scan the classpath for any LDIF files, which it will attempt to load into the server. Y ou can customize
this behaviour using thel di f attribute, which defines an LDIF resource to be loaded:

<l dap-server |dif="classpath:users.ldif" />

Thismakesit alot easier to get up and running with LDAP, sinceit can be inconvenient to work all the
time with an external server. It also insulates the user from the complex bean configuration needed to
wire up an Apache Directory server. Using plain Spring Beans the configuration would be much more
cluttered. Y ou must have the necessary Apache Directory dependency jarsavailablefor your application
to use. These can be obtained from the LDAP sample application.

Using Bind Authentication

Thisisthe most common LDAP authentication scenario.

<| dap- aut henti cati on- provi der user-dn-pattern="ui d={0}, ou=peopl e"/>

Thissimple examplewould obtain the DN for the user by substituting the user login namein the supplied
pattern and attempting to bind as that user with the login password. This is OK if all your users are
stored under asingle node in the directory. If instead you wished to configure an LDAP search filter to
locate the user, you could use the following:

<| dap- aut henti cati on- provi der user-search-filter="(uid={0})"
user - sear ch- base="ou=peopl e"/ >

If used with the server definition above, this would perform a search under the DN
ou=peopl e, dc=spri ngf ramewor k, dc=or g using the value of theuser - search-filter
attribute as a filter. Again the user login name is substituted for the parameter in the filter name. If
user - sear ch- base isn't supplied, the search will be performed from the root.

Loading Authorities

How authorities are loaded from groupsin the LDAP directory is controlled by the following attributes.

3.0.2.RELEASE Spring Security 92

Spring Security

* group- sear ch- base. Defines the part of the directory tree under which group searches should
be performed.

e group-rol e-attri bute. Theattribute which contains the name of the authority defined by the
group entry. Defaultstocn

e group-search-filter. Thefilter whichis used to search for group membership. The default
isuni queMenber ={ 0}, corresponding to the gr oupCf Uni queMenber s LDAP class. In this
case, the substituted parameter isthe full distinguished name of the user. The parameter { 1} can be
used if you want to filter on the login name.

So if we used the following configuration

<l dap- aut henti cati on- provi der user-dn-pattern="ui d={0}, ou=peopl e"
gr oup- sear ch- base="ou=gr oups" />

and authenticated successfully as user “ben”, the subsequent loading of authorities would
perform a search under the directory entry ou=gr oups, dc=spri ngfranmework, dc=or g,
looking for entries which contain the attribute uni queMenber with value
ui d=ben, ou=peopl e, dc=spri ngf r amewor k, dc=or g. By default the authority names will
havethe prefix ROLE_ prepended. Y ou can changethisusing ther ol e- pr ef i x attribute. If you don't
want any prefix, user ol e- pref i x="none" . For more information on loading authorities, see the
Javadoc for the Def aul t LdapAut hori ti esPopul at or class.

18.4 Implementation Classes

The namespace configuration options we've used above are simple to use and much more concise than
using Spring beans explicitly. There are situations when you may need to know how to configure Spring
Security LDAP directly in your application context. Y ou may wish to customize the behaviour of some
of the classes, for example. If you're happy using namespace configuration then you can skip this section
and the next one.

The main LDAP provider class, LdapAut henti cati onProvi der, doesn't actually do
much itself but delegates the work to two other beans, an LdapAut henticator and an
LdapAut hori ti esPopul at or which areresponsible for authenticating the user and retrieving the
user's set of Gr ant edAut hor i t ysrespectively.

LdapAuthenticator Implementations

The authenticator is also responsible for retrieving any required user attributes. This is because the
permissions on the attributes may depend on the type of authentication being used. For example, if
binding as the user, it may be necessary to read them with the user's own permissions.

There are currently two authentication strategies supplied with Spring Security:
» Authentication directly to the LDAP server ("bind" authentication).

» Password comparison, where the password supplied by the user is compared with the one stored in
the repository. This can either be done by retrieving the value of the password attribute and checking

3.0.2.RELEASE Spring Security 93

Spring Security

it locally or by performing an LDAP "compare" operation, where the supplied password is passed to
the server for comparison and the real password value is never retrieved.

Common Functionality

Before it is possible to authenticate a user (by either strategy), the distinguished name (DN) has
to be obtained from the login name supplied to the application. This can be done either by simple
pattern-matching (by setting the setUserDnPatterns array property) or by setting the userSearch
property. For the DN pattern-matching approach, a standard Java pattern format is used, and the
login name will be substituted for the parameter { 0} . The pattern should be relative to the DN that
the configured Spri ngSecuri t yCont ext Sour ce will bind to (see the section on connecting
to the LDAP server for more information on this). For example, if you are using an LDAP
server with the URL | dap: // nonkeynmachi ne. co. uk/ dc=spri ngf r anewor k, dc=or g,
and have a pattern ui d={ 0}, ou=gr eat apes, then a login name of "gorilla' will map to a
DN ui d=gori | | a, ou=gr eat apes, dc=spri ngf r amewor k, dc=or g. Each configured DN
pattern will be tried in turn until a match is found. For information on using a search, see the section
on search objects below. A combination of the two approaches can also be used - the patterns will be
checked first and if no matching DN is found, the search will be used.

BindAuthenticator

The class Bi ndAut henti cat or in the package
org. springframework. security.| dap. authentication implements the bind
authentication strategy. It smply attempts to bind as the user.

PasswordComparisonAuthenticator

The class Passwor dConpari sonAut henti cat or implements the password comparison
authentication strategy.

Active Directory Authentication

In addition to standard LDAP authentication (binding with a DN), Active Directory has its own non-
standard syntax for user authentication.

Connecting to the LDAP Server

The beans discussed above have to be able to connect to the server. They both have to
be supplied with a SpringSecurityCont ext Source which is an extenson of Spring
LDAP's Cont ext Sour ce. Unless you have specia requirements, you will usualy configure a
Def aul t Spri ngSecurit yCont ext Sour ce bean, which can be configured with the URL of your
LDAP server and optionally with the username and password of a "manager" user which will be used
by default when binding to the server (instead of binding anonymously). For more information read the
Javadoc for this class and for Spring LDAP's Abst r act Cont ext Sour ce.

LDAP Search Objects

Often a more complicated strategy than simple DN-matching is required to locate a user entry in the
directory. This can be encapsulated in an LdapUser Sear ch instance which can be supplied to the

3.0.2.RELEASE Spring Security %4

Spring Security

authenticator implementations, for example, to allow themto locate auser. The supplied implementation
isFi | t er BasedLdapUser Sear ch.

Fi | t er BasedLdapUser Sear ch

This bean uses an LDAP filter to match the wuser object in the directory.
The process is explaned in the Javadoc for the corresponding search method
on the JDK DirContext class [http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/
DirContext.html#search(javax.naming.Name,%20java.lang.String,%20j ava.lang.Object[],
%20javax.naming.directory.SearchControls)]. As explained there, the search filter can be supplied with
parameters. For this class, the only valid parameter is{ 0} which will be replaced with the user'slogin
name.

LdapAuthoritiesPopulator

After authenticating the user successfully, the LdapAut hent i cati onPr ovi der will attempt to
load a set of authorities for the user by calling the configured LdapAut hori ti esPopul at or
bean. The Def aul t LdapAut hori ti esPopul at or is an implementation which will load the
authorities by searching the directory for groups of which the user is amember (typically these will be
gr oupOF Narres or gr oupCOf Uni queNames entries in the directory). Consult the Javadoc for this
class for more details on how it works.

If you want to use LDAP only for authentication, but load the authorities from a difference source (such
as a database) then you can provide your own implementation of this interface and inject that instead.

Spring Bean Configuration

A typical configuration, using some of the beans we've discussed here, might look like this:

<bean i d="cont ext Sour ce"
class="org. springframework. security.| dap. Def aul t Spri ngSecurityCont ext Sour ce">
<constructor-arg val ue="1|dap: // monkeymachi ne: 389/ dc=spri ngf r anewor k, dc=or g"/ >
<property nanme="userDn" val ue="cn=manager, dc=spri ngf ramewor k, dc=or g"/ >
<property nanme="password" val ue="password"/>
</ bean>

<bean i d="I| dapAut hProvi der"
cl ass="org. springframework. security.|dap.aut henticati on. LdapAut henti cati onProvi der">
<constructor-arg>
<bean cl ass="org. spri ngframewor k. security.|dap.authentication. Bi ndAut henti cator">
<constructor-arg ref="context Source"/>
<property nanme="user DnPatterns">
<l i st ><val ue>ui d={ 0}, ou=peopl e</ val ue></1i st >
</ property>
</ bean>
</ constructor-arg>
<constructor-arg>
<bean
cl ass="org. springframework. security.|dap.userdetails.DefaultLdapAuthoritiesPopul ator">
<constructor-arg ref="context Source"/>
<constructor-arg val ue="ou=groups"/>
<property nanme="groupRol eAttribute" val ue="ou"/>
</ bean>
</ constructor-arg>

3.0.2.RELEASE Spring Security %5

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)
http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/directory/DirContext.html#search(javax.naming.Name,%20java.lang.String,%20java.lang.Object[],%20javax.naming.directory.SearchControls)

Spring Security

</ bean>

This would set up the provider to access an LDAP server with
URL | dap://nonkeymachi ne: 389/ dc=spri ngf ramewor k, dc=org. Authentication
will be performed by attempting to bind with the DN ui d=<user-1 ogin-
nane>, ou=peopl e, dc=spri ngf ramewor k, dc=org. After successful authentication,
roles will be assigned to the user by searching under the DN
ou=gr oups, dc=spri ngf ramewor k, dc=or g with the default filter (menber =<user’ s-
DN>) . The role name will be taken from the “ou” attribute of each match.

To configure auser search object, which usesthefilter (ui d=<user - | ogi n- nane>) for useinstead
of the DN-pattern (or in addition to it), you would configure the following bean

<bean id="user Search"
cl ass="org. springframework. security.| dap. search. Fi | t erBasedLdapUser Sear ch" >
<constructor-arg i ndex="0" val ue=""/>
<constructor-arg index="1" val ue="(uid={0})"/>

<constructor-arg i ndex="2" ref="contextSource" />
</ bean>

and use it by setting the Bi ndAut hent i cat or bean'suserSearch property. The authenticator would
then call the search object to obtain the correct user's DN before attempting to bind as this user.

LDAP Attributes and Customized UserDetails

The net result of an authentication using LdapAut henti cati onProvi der is the same as
a normal Spring Security authentication using the standard User Det ai | sSer vi ce interface.
A UserDetails object is created and stored in the returned Aut henti cati on object. As
with using a User Det ai | sSer vi ce, a common requirement is to be able to customize this
implementation and add extra properties. When using LDAP, these will normally be attributes
from the user entry. The creation of the User Det ai | s object is controlled by the provider's
User Det ai | sCont ext Mapper strategy, whichisresponsiblefor mapping user objectsto and from
LDAP context data:

public interface UserDetail sCont ext Mapper {
User Det ai | s mapUser Fr omCont ext (Di r Cont ext Operati ons ctx, String usernang,
Col | ecti on<Grant edAut hority> authorities);

voi d mapUser ToCont ext (UserDetail s user, DirContextAdapter ctx);
}

Only thefirst method is relevant for authentication. If you provide an implementation of thisinterface,
you can control exactly how the UserDetails object is created. The first parameter is an instance of
Spring LDAP's Di r Cont ext Oper at i ons which gives you access to the LDAP attributes which
were loaded. The user nane parameter isthe name used to authenticate and the final parameter isthe
collection of authorities loaded for the user.

Theway the context dataisloaded varies dightly depending on the type of authentication you are using.
With the Bi ndAut hent i cat or, the context returned from the bind operation will be used to read

3.0.2.RELEASE Spring Security %

Spring Security

the attributes, otherwise the data will be read using the standard context obtained from the configured
Cont ext Sour ce (when a search is configured to locate the user, this will be the data returned by
the search object).

3.0.2.RELEASE Spring Security 97

Spring Security

19. JSP Tag Libraries

Spring Security has its own taglib which provides basic support for accessing security information and
applying security constraintsin JSPs.

19.1 Declaring the Taglib

To use any of the tags, you must have the security taglib declared in your JSP:

<Y@taglib prefix="sec" uri="http://ww.springframework.org/security/tags" %

19.2 The aut hori ze Tag

This tag is used to determine whether its contents should be evaluated or not. In Spring Security
3.0, it can be used in two ways 1 The first approach uses a web-security expression [el-access-
we], specified in the access attribute of the tag. The expression evaluation will be delegated to
theWebSecuri t yExpr essi onHandl er defined in the application context (you should have web
expressions enabled in your <ht t p> namespace configuration to make sure this service is available).
So, for example, you might have

<sec: aut hori ze access="hasRol e(' supervisor')">

This content will only be visible to users who have
the "supervisor" authority in their list of <tt>G antedAuthority</tt>s.

</ sec: aut hori ze>

A common requirement is to only show a particular link, if the user is actually allowed to click it.
How can we determine in advance whether something will be allowed? This tag can also operate in
an alternative mode which allows you to define a particular URL as an attribute. If the user is allowed
to invoke that URL, then the tag body will be evaluated, otherwise it will be skipped. So you might
have something like

<sec: aut hori ze url="/adm n">

This content will only be visible to users who are authorized to send requests to the "/adm n" URL

</ sec: aut hori ze>

To use this tag there must also be an instance of Webl nvocat i onPri vi | egeEval uat or in
your application context. If you are using the namespace, one will automatically be registered. Thisis
an instance of Def aul t Webl nvocat i onPri vi | egeEval uat or, which creates a dummy web
regquest for the supplied URL and invokes the security interceptor to see whether the request would
succeed or fail. Thisallowsyou to del egate to the access-control setup you defined usingi nt er cept -
ur | declarations within the <ht t p> namespace configuration and saves having to duplicate the
information (such as the required roles) within your JSPs. This approach can aso be combined with a
nmet hod attribute, supplying the HTTP method, for a more specific match.

The legacy options from Spring Security 2.0 are also supported, but discouraged.

3.0.2.RELEASE Spring Security 98

el-access-we
el-access-we
el-access-we

Spring Security

19.3 The aut hent i cati onTag

This tag allows access to the current Aut henti cati on object stored in the security context. It
renders a property of the object directly in the JSP. So, for example, if the pri nci pal property
of the Aut henti cati on is an instance of Spring Security's User Det ai | s object, then using
<sec: aut hentication property="principal.usernane” /> will render the name of
the current user.

Of course, it isn't necessary to use JSP tags for thiskind of thing and some people prefer to keep aslittle
logic as possible in the view. Y ou can access the Aut hent i cat i on object in your MV C controller
(by caling Secur it yCont ext Hol der . get Cont ext (). get Aut henti cati on()) and add
the data directly to your model for rendering by the view.

19.4 The accesscontrol I i st Tag

Thistag isonly valid when used with Spring Security's ACL module. It checks a comma-separated list
of required permissions for a specified domain object. If the current user has any of those permissions,
then the tag body will be evaluated. If they don't, it will be skipped. An example might be

<sec: accesscontrol | i st hasPerm ssi on="1, 2" domai nObj ect ="sonmeChj ect ">

This will be shown if the user has either of the permissions
represented by the values "1" or "2" on the given object.

</ sec: accesscontrollist>

The permissions are passed to the Per m ssi onFact ory defined in the application context,
converting them to ACL Per m ssi on instances, so they may be any format which is supported
by the factory - they don't have to be integers, they could be strings like READ or WRI TE. If no
Per m ssi onFact ory isfound, aninstance of Def aul t Per m ssi onFact or y will beused. The
Acl Ser vi cefromtheapplication context will beusedtoloadthe Acl instancefor the supplied object.
The Acl will be invoked with the required permissions to check if any of them are granted.

3.0.2.RELEASE Spring Security 99

Spring Security

20. Java Authentication and Authorization
Service (JAAS) Provider

20.1 Overview

Spring Security provides a package able to del egate authentication requests to the Java A uthentication
and Authorization Service (JAAS). This package is discussed in detail below.

Central to JAAS operation arelogin configuration files. To learn more about JAAS login configuration
files, consult the JAAS reference documentation available from Sun Microsystems. We expect you to
have a basic understanding of JAAS and its login configuration file syntax in order to understand this
section.

20.2 Configuration

The JaasAut henti cati onProvi der attempts to authenticate a user’s principal and credentials
through JAAS.

Let’ sassume we have aJAAS|ogin configurationfile,/ VEB- | NF/ | ogi n. conf , with thefollowing
contents:

JAASTest {
sanpl e. Sanpl eLogi nModul e required

b

Like al Spring Security beans, the JaasAut henti cati onProvi der is configured via the
application context. The following definitionswould correspond to the above JAAS | ogin configuration
file

<bean i d="j aasAut henti cati onProvi der"
cl ass="org. springframewor k. security.authentication.jaas.JaasAut henticati onProvi der">
<property nanme="I|ogi nConfig" val ue="/WEB-I| NF/ | ogi n. conf"/>
<property name="| ogi nCont ext Name" val ue="JAASTest"/>
<property nanme="cal | backHandl er s" >
<list>
<bean
cl ass="org. springframewor k. security. authentication.jaas. JaasNaneCal | backHandl er"/>
<bean
cl ass="org. springframewor k. security. authentication.jaas. JaasPasswordCal | backHandl er" />
</list>
</ property>
<property name="authorityG anters">
<list>
<bean cl ass="org. springframework. security.authentication.jaas. TestAuthorityGanter"/>
</list>
</ property>
</ bean>

TheCal | backHandl er sand Aut hori t yGr ant er sare discussed below.

3.0.2.RELEASE Spring Security 100

Spring Security

JAAS CallbackHandler

Most JAASLogi nModul esrequireacallback of some sort. These callbacks are usually used to obtain
the username and password from the user.

In a Spring Security deployment, Spring Security is responsible for this user interaction (via the
authentication mechanism). Thus, by the time the authentication request is delegated through to JAAS,
Spring Security's authentication mechanism will aready have fully-populated an Aut hent i cat i on
object containing all the information required by the JAAS Logi nMbdul e.

Therefore, the JAAS package for Spring Security provides two default callback handlers,
JaasNaneCal | backHandl er andJaasPasswor dCal | backHandl er . Each of these callback
handlers implement JaasAut hent i cati onCal | backHandl er. In most cases these callback
handlers can ssmply be used without understanding the internal mechanics.

For those needing full control over the calback behavior, internally
JaasAut henti cat i onPr ovi der wrapsthese JaasAut henti cati onCal | backHandl er s
with an I nternal Cal | backHandl er. The Internal Cal | backHandl er is the class
that actualy implements JAAS norma Cal | backHandl er interface. Any time that
the JAAS LoginMdule is wused, it is passed a list of application context
configured | nternal Cal | backHandl ers. If the Logi nMbdul e requests a calback
against the Internal Call backHandl ers, the callback is in-tun passed to the
JaasAut henti cati onCal | backHandl| er sbeing wrapped.

JAAS AuthorityGranter

JAAS works with principals. Even "roles" are represented as principals in JAAS. Spring Security, on
the other hand, works with Aut hent i cat i on objects. Each Aut hent i cat i on object contains a
single principal, and multiple G- ant edAut hor i t y[]s. To facilitate mapping between these different
concepts, Spring Security's JAAS package includes an Aut hor i t yGr ant er interface.

An Aut horityGranter is responsible for inspecting a JAAS principa and returning a
set of Strings, representing the authorities assigned to the principal. For each returned
authority string, the JaasAut henti cati onProvi der creates a JaasGr ant edAut hority
(which implements Spring Security’s GrantedAuthority interface) containing the
authority string and the JAAS principa that the Aut horityG anter was passed. The
JaasAut henti cati onProvi der obtains the JAAS principals by firstly successfully
authenticating the user’s credentials using the JAAS Logi nMbdul e, and then accessing the
Logi nCont ext it returns. A call to Logi nCont ext . get Subj ect (). get Pri nci pal s()
is made, with each resulting principal passed to each Aut horit yGrant er defined against the
JaasAut henti cati onProvi der. set Aut hori tyG ant ers(Li st) property.

Spring Security does not include any production Aut hori t yGrant er s given that every JAAS
principal has an implementation-specific meaning. However, thereisa Test Aut hori t yG ant er
in the unit tests that demonstrates asimple Aut hor i t yGr ant er implementation.

3.0.2.RELEASE Spring Security 101

Spring Security

21. CAS Authentication

21.1 Overview

JA-SIG produces an enterprise-wide single sign on system known as CAS. Unlike other initiatives,
JA-SIG's Central Authentication Service is open source, widely used, simple to understand, platform
independent, and supports proxy capabilities. Spring Security fully supports CAS, and provides an easy
migration path from single-application deployments of Spring Security through to multiple-application
deployments secured by an enterprise-wide CAS server.

You canlearn moreabout CASatht t p: / / www. j a- si g. or g/ cas. You will also need to visit this
site to download the CAS Server files.

21.2 How CAS Works

Whilst the CASweb site contains documents that detail the architecture of CAS, we present the general
overview again here within the context of Spring Security. Spring Security 3.0 supports CAS 3. At the
time of writing, the CAS server was at version 3.3.

Somewherein your enterprise you will need to setup aCAS server. The CAS server issimply astandard
WAR file, so there isn't anything difficult about setting up your server. Inside the WAR file you will
customise the login and other single sign on pages displayed to users.

When deploying a CAS 3.3 server, you will also need to specify an Aut henti cati onHandl er
in the depl oyer Confi gCont ext . xnl included with CAS. The Aut henti cati onHandl er
has a simple method that returns a boolean as to whether a given set of Credentials is valid.
Your Aut henti cat i onHandl er implementation will need to link into some type of backend
authentication repository, such as an LDAP server or database. CAS itself includes numerous
Aut henti cati onHandl er s out of the box to assist with this. When you download and deploy
the server war file, it is set up to successfully authenticate users who enter a password matching their
username, which is useful for testing.

Apart from the CAS server itself, the other key players are of course the secure web applications
deployed throughout your enterprise. These web applications are known as "services'. There are two
types of services: standard servicesand proxy services. A proxy serviceisableto request resourcesfrom
other services on behalf of the user. Thiswill be explained more fully later.

21.3 Configuration of CAS Client

The web application side of CAS is made easy due to Spring Security. It is assumed you aready know
the basics of using Spring Security, so these are not covered again below. We'll assume a namespace
based configuration is being used and add in the CAS beans as required.

Youwill needtoadd aSer vi cePr operti es beanto your application context. This represents your
CAS service:

3.0.2.RELEASE Spring Security 102

Spring Security

<bean i d="servi ceProperties"
cl ass="org. springframework. security.cas. Servi ceProperties">
<property nanme="service"
val ue="https:/ /I ocal host: 8443/ cas-sanpl e/j _spring_cas_security_check"/>
<property nanme="sendRenew' val ue="fal se"/>
</ bean>

Theser vi ce must equal aURL that will be monitored by the CasAut henti cati onFi |l ter.The
sendRenewdefaultsto false, but should be set to trueif your application is particularly sensitive. What
this parameter doesistell the CASlogin service that asingle sign on login is unacceptable. Instead, the
user will need to re-enter their username and password in order to gain access to the service.

The following beans should be configured to commence the CAS authentication process (assuming
you're using a namespace configuration):

<security:http entry-point-ref="casEntryPoint">

<customfilter position="FORM LOG N FILTER" ref="nyFilter" />
</security: http>

<bean id="casFilter"
cl ass="org. spri ngframewor k. security.cas.web. CasAut henticationFilter">
<property nanme="aut henti cati onManager" ref="authenticati onManager"/>
</ bean>

<bean i d="casEntryPoi nt"
cl ass="org. springframework. security. cas.web. CasAut henti cati onEntryPoi nt">
<property nanme="logi nUrl" val ue="https://I|ocal host: 9443/ cas/| ogi n"/>
<property nanme="servi ceProperties" ref="serviceProperties"/>
</ bean>

The CasAut hent i cat i onEnt r yPoi nt should be selected to drive authentication using ent r y-
poi nt - r ef [ns-entry-point-ref].

The CasAut henticationFilter has very similar properties to the
User nanePasswor dAut henti cati onFi | t er (used for form-based logins).

For CAS to operate, the ExceptionTranslationFilter must have its
aut henti cat i onEnt r yPoi nt property set to the CasAut hent i cati onEnt r yPoi nt bean.

The CasAut henti cati onEntryPoi nt must refer to the Servi ceProperties bean
(discussed above), which providesthe URL to the enterprise's CASlogin server. Thisiswherethe user's
browser will be redirected.

Next you need to add aCasAut hent i cat i onPr ovi der and its collaborators:

<security:authenticati on-nmanager alias="authenticati onManager">
<security:authentication-provider ref="casAuthenticationProvider" />
</security:authentication-manager>

3.0.2.RELEASE Spring Security 103

ns-entry-point-ref
ns-entry-point-ref
ns-entry-point-ref

Spring Security

<bean i d="casAut henti cati onProvi der"
cl ass="org. springframework. security.cas. aut henti cati on. CasAut henti cati onProvi der">
<property nanme="userDetail sService" ref="userService"/>
<property name="servi ceProperties" ref="serviceProperties" />
<property nanme="ti cket Val i dator">
<bean cl ass="org.jasig.cas.client.validation.Cas20ServiceTi cket Val i dator">
<constructor-arg i ndex="0" value="https://Iocal host: 9443/ cas" />
</ bean>
</ property>
<property nanme="key" value="an_id_for_this_auth_provider_only"/>
</ bean>

<security:user-service id="user Service">
<security:user nanme="joe" password="joe" authorities="ROLE USER' />

</security:user-service>

The CasAut henti cati onProvi der uses a User Det ai | sServi ce instance to load the
authorities for a user, once they have been authentiated by CAS. We've shown a simple in-memory
setup here.

The beans are all reasonable self-explanatory if you refer back to the "How CAS Works" section.

3.0.2.RELEASE Spring Security 104

Spring Security

22. X.509 Authentication

22.1 Overview

The most common use of X.509 certificate authentication is in verifying the identity of a server when
using SSL, most commonly when using HTTPS from abrowser. The browser will automatically check
that the certificate presented by a server has been issued (ie digitally signed) by one of alist of trusted
certificate authorities which it maintains.

Y ou can also use SSL with “mutual authentication”; the server will then request avalid certificate from
the client as part of the SSL handshake. The server will authenticate the client by checking that its
certificateissigned by an acceptable authority. If avalid certificate has been provided, it can be obtained
through the servlet API in an application. Spring Security X.509 module extracts the certificate using
afilter. It maps the certificate to an application user and loads that user's set of granted authorities for
use with the standard Spring Security infrastructure.

You should be familiar with using certificates and setting up client authentication for your servlet
container before attempting to use it with Spring Security. Most of the work is in creating and
installing suitable certificates and keys. For example, if you're using Tomcat then read the instructions
here http://tontat. apache. org/tontat-6. 0-doc/ ssl - howt o. ht nl . It's important
that you get this working before trying it out with Spring Security

22.2 Adding X.509 Authentication to Your Web
Application
Enabling X.509 client authentication is very straightforward. Just add the <x509/ > element to your

http security namespace configuration.

<ht t p>
<x509 subj ect-principal -regex="CN=(.*?)," user-service-ref="userService"/>

</ http>

The element has two optional attributes:

* subj ect-principal -regex. The regular expression used to extract a username from the
certificate's subject name. The default value is shown above. This is the username which will be
passed to the User Det ai | sSer vi ce toload the authorities for the user.

» user-service-ref.Thisisthebeanldof theUser Det ai | sSer vi ce to be used with X.509.
It isn't needed if there is only one defined in your application context.

The subj ect - pri nci pal -regex should contain a single group. For example the default

expression "CN=(.*?)," matches the common name field. So if the subject name in the certificate

is "CN=Jimi Hendrix, OU=...", this will give a user name of "Jimi Hendrix". The matches are case

insensitive. So "email Address=(.?)," will match"EMAILADDRESS=jimi @hendrix.org,CN=..." giving

3.0.2.RELEASE Spring Security 105

http://tomcat.apache.org/tomcat-6.0-doc/ssl-howto.html

Spring Security

auser name"jimi @hendrix.org". If the client presents a certificate and avalid username is successfully
extracted, then there should be a valid Aut henti cati on object in the security context. If no
certificateisfound, or no corresponding user could befound then the security context will remain empty.
Thismeans that you can easily use X.509 authentication with other options such as aform-based login.

22.3 Setting up SSL in Tomcat

There are some pre-generated certificates in the sanpl es/ certi fi cat e directory in the Spring
Security project. You can use these to enable SSL for testing if you don't want to generate your own.
Thefileser ver. j ks contains the server certificate, private key and the issuing certificate authority
certificate. There are also some client certificate files for the users from the sample applications. Y ou
can install these in your browser to enable SSL client authentication.

To run tomcat with SSL support, drop theser ver . j ks fileinto the tomcat conf directory and add
the following connector to theser ver . xni file

<Connect or port="8443" protocol ="HITTP/ 1. 1" SSLEnabl ed="true" scheme="https" secure="true"
clientAuth="true" sslProtocol ="TLS"
keyst oreFi | e="${cat al i na. hone}/ conf/server.jks"
keyst or eType="JKS" keyst or ePass="password"
truststoreFil e="${catalina. honme}/conf/server.jks"
trust storeType="JKS" truststorePass="password"
/>

client Aut h can aso be set to want if you still want SSL connections to succeed even if the
client doesn't provide a certificate. Clients which don't present a certificate won't be able to access any
objects secured by Spring Security unless you use anon-X.509 authentication mechanism, such asform
authentication.

3.0.2.RELEASE Spring Security 106

Spring Security

23. Run-As Authentication Replacement

23.1 Overview

The Abstract Securityl nt ercept or is able to temporarily replace the Aut henti cati on
object in the SecurityCont ext and SecurityCont ext Hol der during the secure object
callback phase. Thisonly occursif the original Aut hent i cat i on object was successfully processed
by the Aut henti cati onManager and AccessDeci si onManager. The RunAsManager
will indicate the replacement Aut henti cati on object, if any, that should be used during the
SecuritylnterceptorCall back.

By temporarily replacing the Aut hent i cati on object during the secure object callback phase,
the secured invocation will be able to call other objects which require different authentication and
authorization credentials. It will aso be able to perform any internal security checks for specific
Gr ant edAut hori ty objects. Because Spring Security provides a number of helper classes that
automatically configure remoting protocol s based onthe contentsof theSecur i t yCont ext Hol der,
these run-as replacements are particularly useful when calling remote web services

23.2 Configuration

A RunAsManager interfaceis provided by Spring Security:

Aut henti cati on bui | dRunAs(Aut henti cati on aut hentication, Cbject object,
Li st<ConfigAttri bute> config);

bool ean supports(ConfigAttribute attribute);

bool ean supports(C ass cl azz);

The first method returns the Aut hentication object that should replace the existing
Aut henti cati on object for the duration of the method invocation. If the method returns
nul |, it indicates no replacement should be made. The second method is used by the
Abstract Securityl nterceptor as part of its startup validation of configuration attributes.
The supports(C ass) method is caled by a security interceptor implementation to ensure the
configured RunAs Manager supportsthetype of secure object that the security interceptor will present.

One concrete implementation of a RunAsManager is provided with Spring Security. The
RunAsManager | npl classreturns areplacement RunAsUser Token if any Confi gAttri bute
startswithRUN_AS_. If any such Conf i gAt t r i but e isfound, thereplacement RunAsUser Token
will contain the same principal, credentials and granted authorities asthe original Aut hent i cati on
object, dong with a new Grant edAut hori tyl npl for each RUN_AS_Confi gAttri bute.
Each new Grant edAut horityl npl will be prefixed with ROLE_, followed by the RUN_AS
ConfigAttribute. For example, a RUN _AS SERVER will result in the replacement
RunAsUser Token containingaROLE_RUN_AS SERVER granted authority.

The replacement RunAsUser Token is just like any other Aut henti cati on object. It needs
to be authenticated by the Aut henti cati onManager, probably via delegation to a suitable

3.0.2.RELEASE Spring Security 107

Spring Security

Aut henti cati onProvi der. The RunAsl npl Aut henti cati onProvi der performs such
authentication. It simply accepts asvalid any RunAsUser Token presented.

Toensuremaliciouscodedoeshot createaRunAsUser Token and present it for guaranteed acceptance
by theRunAs| npl Aut hent i cati onPr ovi der , the hash of akey isstored in al generated tokens.
The RunAsManager | npl and RunAsl| npl Aut hent i cat i onPr ovi der iscreated in the bean
context with the same key:

<bean i d="runAsManager"
cl ass="org. springframework. security.access.intercept. RunAsManager | npl ">
<property name="key" val ue="ny_run_as_password"/>
</ bean>

<bean i d="runAsAut henti cati onProvi der"
cl ass="org. spri ngframewor k. security.access.intercept. RunAsl npl Aut henti cati onProvi der" >
<property name="key" val ue="ny_run_as_password"/>
</ bean>

By using the same key, each RunAsUser Token can be validated it was created by an approved
RunAsManager | npl . The RunAsUser Token isimmutable after creation for security reasons

3.0.2.RELEASE Spring Security 108

Spring Security

Appendix A. Security Database
Schema

There are various database schema used by the framework and this appendix provides asingle reference
point to them all. Y ou only need to provide the tables for the areas of functonality you require.

DDL statements are given for the HSQL DB database. Y ou can use these as a guideline for defining the
schemafor the database you are using.

A.1 User Schema

Thestandard JDBC implementation of theUser Det ai | sSer vi ce (JdbcDaol npl) requirestables
to load the password, account status (enabled or disabled) and alist of authorities (roles) for the user.

create tabl e users(
user nane var char _i gnorecase(50) not null prinmary key,
password varchar _i gnorecase(50) not null
enabl ed bool ean not null);

create table authorities (
user nane var char _i gnor ecase(50) not null
aut hority varchar _i gnorecase(50) not null
constraint fk_authorities_users foreign key(usernane) references users(usernane));
create uni que index ix_auth_usernanme on authorities (usernane, authority);

Group Authorities

Spring Security 2.0 introduced support for group authorities in JdbcDaol npl . The table structure if
groups are enabled is as follows:

create table groups (
id bigint generated by default as identity(start with 0) primary key,
group_nane varchar _i gnorecase(50) not null);

create table group_authorities (
group_id bigint not null
aut hority varchar (50) not null
constraint fk_group_authorities_group foreign key(group_id) references groups(id));

create table group_nenbers (
id bigint generated by default as identity(start with 0) primary key,
user nane varchar (50) not null
group_id bigint not null
constraint fk_group_nenbers_group foreign key(group_id) references groups(id));

3.0.2.RELEASE Spring Security 109

Spring Security

A.2 Persistent Login (Remember-Me) Schema

Thistableis used to store data used by the more secure persistent token remember-me implementation.
If you areusing JdbcTokenReposi t oryl npl either directly or through the namespace, then you
will need thistable.

create table persistent_|logins (
user nane varchar (64) not null,
series varchar(64) prinmary key,
t oken varchar(64) not null,
| ast _used tinestanp not null);

A.3 ACL Schema

There are four tables used by the Spring Security ACL implementation.

1. acl _si d stores the security identities recognised by the ACL system. These can be unique
principals or authorities which may apply to multiple principals.

2. acl _cl ass defines the domain object typesto which ACLs apply. Thecl ass column stores the
Java class name of the object.

3. acl _obj ect _identity storesthe object identity definitions of specific domai objects.

4, acl _entry stores the ACL permissions which apply to a specific object identity and security
identity.

It is assumed that the database will auto-generate the primary keys for each of the identities. The
JdbcMut abl eAcl Ser vi ce has to be able to retrieve these when it has created a new row in the
acl _sid or acl _cl ass tables. It has two properties which define the SQL needed to retrieve
these values cl assl dentityQuery and si dl denti t yQuery. Both of these default to cal |
identity()

Hypersonic SQL

The default schema works with the embedded HSQLDB database that is used in unit tests within the
framework.

create table acl _sid (
id bigint generated by default as identity(start with 100) not null primary key,
princi pal bool ean not nul |,
sid varchar _i gnorecase(100) not null,
constraint uni que_uk_1 uni que(sid,principal));

create table acl _class (
id bigint generated by default as identity(start with 100) not null primary key,
cl ass varchar_i gnorecase(100) not null,
constrai nt uni que_uk_2 uni que(class));

3.0.2.RELEASE Spring Security 110

Spring Security

create table acl _object_identity (
id bigint generated by default as identity(start with 100) not null primary key,
object_id_class bigint not null
object_id_identity bigint not null
par ent _obj ect bigint,
owner _sid bigint not null
entries_inheriting bool ean not null
constraint uni que_uk_3 uni que(object_id_class,object_id_identity)
constraint foreign_ fk_1 foreign key(parent_object)references acl_object_identity(id),
constraint foreign_fk_2 foreign key(object_id_class)references acl_class(id),
constraint foreign_fk_3 foreign key(owner_sid)references acl_sid(id))

create table acl _entry (
id bigint generated by default as identity(start with 100) not null primary key,
acl _object_identity bigint not null,ace_order int not null,sid bigint not null
mask integer not null, granting bool ean not null, audit_success bool ean not null
audit_failure bool ean not null
constrai nt uni que_uk_4 uni que(acl _object_identity, ace_order),
constraint foreign_fk_4 foreign key(acl_object_identity)
references acl _object_identity(id)
constraint foreign fk_5 foreign key(sid) references acl_sid(id));

PostgreSQL

create table acl _sid(
id bigserial not null primry key,
princi pal bool ean not null
sid varchar (100) not null
constrai nt uni que_uk_1 uni que(sid,principal));

create table acl _class(
id bigserial not null primry key,
cl ass varchar (100) not null
constrai nt uni que_uk_2 uni que(cl ass));

create table acl _object _identity(
id bigserial primry key,
obj ect_id_class bigint not null
object_id_identity bigint not null
parent _obj ect bigint,
owner _si d bigint,
entries_inheriting bool ean not null
constrai nt uni que_uk_3 uni que(obj ect _id_cl ass, object_id_identity),
constraint foreign_fk_1 foreign key(parent_object) references acl_object_identity(id),
constraint foreign fk_2 foreign key(object_id _class) references acl_class(id),
constraint foreign_fk_3 foreign key(owner_sid) references acl_sid(id));

create table acl _entry(
id bigserial primry key,
acl _object _identity bigint not null
ace_order int not null
sid bigint not null,
mask integer not null
granting bool ean not null
audit _success bool ean not nul |
audit_failure bool ean not null
constrai nt uni que_uk_4 uni que(acl _object _identity, ace_order),
constraint foreign_fk_4 foreign key(acl_object_identity)
references acl _object_identity(id),
constraint foreign fk_5 foreign key(sid) references acl_sid(id));

3.0.2.RELEASE Spring Security 111

Spring Security

You will have to set the cl assldentityQuery and sidldentityQuery properties of
JdbcMut abl eAcl Ser vi ce to the following values, respectively:

» select currval (pg_get _serial _sequence('acl _class', 'id))

» select currval (pg_get _serial _sequence('acl_sid', 'id))

3.0.2.RELEASE Spring Security 112

Spring Security

Appendix B. The Security Namespace

This appendix provides areference to the elements avail able in the security namespace and information
on the underlying beans they create (a knowledge of the individual classes and how they work
together is assumed - you can find more information in the project Javadoc and elsewhere in this
document). If you haven't used the namespace before, please read theintroductory chapter on namespace
configuration, as this is intended as a supplement to the information there. Using a good quality
XML editor while editing a configuration based on the schema is recommended as this will provide
contextual information on which elements and attributes are available as well as comments explaining
their purpose. The namespaceiswritten in RELAX NG [http://www.relaxng.org/] Compact format and
later converted into an XSD schema. If you are familiar with this format, you may wish to examine
the schema file [https://src.springsource.org/svn/spring-security/trunk/config/src/main/resources/org/
springframework/security/config/spring-security-3.0.rnc] directly.

B.1 Web Application Security - the <htt p> Element

The <ht t p> element encapsulates the security configuration for the web layer of your application. It
creates aFi | t er Chai nPr oxy bean named "springSecurityFilterChain" which maintains the stack
of security filters which make up the web security configuration ! somecorefiltersare always created
and others will be added to the stack depending on the attributes child elements which are present.
The positions of the standard filters are fixed (see the filter order table in the namespace introduction),
removing a common source of errors with previous versions of the framework when users had to
configure the filter chain explicitly intheFi | t er Chai nPr oxy bean. Y ou can, of course, still do this
if you need full control of the configuration.

All filterswhichrequireareferencetothe Aut hent i cat i onManager will beautomatically injected
with theinternal instance created by the namespace configuration (seethe introductory chapter for more
ontheAut hent i cati onManager).

The<ht t p> namespace block alwayscreatesan Ht t pSessi onCont ext I ntegrati onFil t er,
anExceptionTransl ationFilter andaFilter Securityl nterceptor. Thesearefixed
and cannot be replaced with aternatives.

<ht t p> Attributes
The attributes on the <ht t p> element control some of the properties on the core filters.
servl et -api - provi si on

Provides versions of Ht t pSer vl et Request security methods such as
i sUserInRole() and getPrincipal() which ae implemented by adding a
Securi t yCont ext Hol der Awar eRequest Fi | t er beanto the stack. Defaultsto "true”.

ISeethe introductory chapter for how to set up the mapping from your web. xm

3.0.2.RELEASE Spring Security 113

http://www.relaxng.org/
http://www.relaxng.org/
https://src.springsource.org/svn/spring-security/trunk/config/src/main/resources/org/springframework/security/config/spring-security-3.0.rnc
https://src.springsource.org/svn/spring-security/trunk/config/src/main/resources/org/springframework/security/config/spring-security-3.0.rnc
https://src.springsource.org/svn/spring-security/trunk/config/src/main/resources/org/springframework/security/config/spring-security-3.0.rnc

Spring Security

pat h-type

Controls whether URL patterns are interpreted as ant paths (the default) or regular expressions. In
practice this setsa particular Ur | Mat cher instanceontheFi | t er Chai nPr oxy.

| ower case- conpari sons

Whether test URLSs should be converted to lower case prior to comparing with defined path patterns.
If unspecified, defaults to "true”

real m

Setsthe realm name used for basic authentication (if enabled). Correspondstother eal niName property
on Basi cAut henti cati onEnt ryPoi nt.

entry-point-ref

Normally the Aut hent i cat i onEnt r yPoi nt used will be set depending on which authentication
mechanisms have been configured. This attribute allows this behaviour to be overridden by defining a
customized Aut hent i cat i onEnt r yPoi nt bean which will start the authentication process.

access-deci si on- manager - r ef

Optional attribute specifyingthelD of theAccessDeci si onManager implementationwhich should
be used for authorizing HTTP requests. By default an Af f i r mat i veBased implementation is used
for with aRol eVot er and an Aut hent i cat edVot er .

access- deni ed- page
Deprecated in favour of theaccess- deni ed- handl er child element.
once- per - r equest

Corresponds to the obser veOncePer Request property of Fi | t er Securi tyl nt erceptor.
Defaultsto "true".

creat e-session

Controls the eagerness with which an HTTP session is created. If not set, defaults
to "ifRequired". Other options are "aways' and "never". The setting of this attribute
affect the al | owSessi onCreation and forceEager Sessi onCreati on properties of
Ht t pSessi onCont ext I ntegrati onFilter.all owSessi onCr eat i on will alwaysbetrue
unless this attribute is set to "never". f or ceEager Sessi onCr eat i on is "false" unless it is set
to "always'. So the default configuration allows session creation but does not force it. The exception
isif concurrent session control is enabled, when f or ceEager Sessi onCr eat i on will be set to
true, regardless of what the setting is here. Using "never" would then cause an exception during the
initialization of Ht t pSessi onCont ext I ntegrati onFil ter.

<access-deni ed- handl er >

This element allows you to set the er r or Page property for the default AccessDeni edHandl er
used by the Excepti onTransl ati onFi | t er, (using the err or - page attribute, or to supply

3.0.2.RELEASE Spring Security 114

Spring Security

your own implementation using ther ef attribute. Thisis discussed in more detail in the section on the
ExceptionTransl ationFilter.

The <i ntercept -url > Element

This eement is used to define the set of URL patterns that the application
is interested in and to configure how they should be handled. It is used
to construct the FilterlnvocationSecurityMetadataSource wused by the
FilterSecuritylnterceptor and to exclude particular patterns from the filter chain
entirely (by setting the attribute filters="none"). It is aso responsible for configuring a
Channel Aut henti cati onFi |l ter if particular URLs need to be accessed by HTTPS, for
example. When matching the specified patterns against an incoming request, the matching is done in
the order in which the elements are declared. So the most specific matches patterns should come first
and the most general should come last.

pattern

The pattern which defines the URL path. The content will depend on the pat h- t ype attribute from
the containing http element, so will default to ant path syntax.

met hod

The HTTP Method which will be used in combination with the pattern to match an incoming request.
If omitted, any method will match. If an identical pattern is specified with and without a method, the
method-specific match will take precedence.

access

Lists the access attributes which will be stored in the
Filterlnvocati onSecurityMetadataSource for the defined URL pattern/method
combination. This should be a comma-separated list of the security configuration attributes (such as
role names).

requi r es- channel

Can be “http” or “https’ depending on whether a particular URL pattern should be accessed
over HTTP or HTTPS respectively. Alternatively the value “any” can be used when there
is no preference. If this attribute is present on any <i ntercept-url> element, then a
Channel Aut henti cati onFi | t er will beadded tothefilter stack and its additional dependencies
added to the application context.

If a <port-mappi ngs> configuration is added, this will be wused to by the
Secur eChannel Processor and| nsecur eChannel Processor beansto determine the ports
used for redirecting to HTTP/HTTPS.

filters

Can only take the value “none’. This will cause any matching request to bypass the Spring Security
filter chain entirely. None of the rest of the <ht t p> configuration will have any effect on the request

3.0.2.RELEASE Spring Security 115

Spring Security

and there will be no security context available for its duration. Access to secured methods during the
request will fail.

The <port - mappi ngs> Element

By default, aninstance of Por t Mapper | npl will be added to the configuration for usein redirecting
to secure and insecure URLS. This element can optionally be used to override the default mappings
which that class defines. Each child <por t - mappi ng> element definesapair of HTTP:HTTPS ports.
The default mappings are 80:443 and 8080:8443. An example of overriding these can be found in the
namespace introduction.

The <f or m | ogi n> Element

Used to add an User nanePasswor dAut henti cati onFilter to the filter stack and an
Logi nUr | Aut henti cati onEnt r yPoi nt to the application context to provide authentication on
demand. This will always take precedence over other namespace-created entry points. If no attributes
are supplied, a login page will be generated automatically at the URL "/spring-security-login" 2 The
behaviour can be customized using the following attributes.

| ogi n- page

The URL that should be used to render the login page. Maps to the | ogi nFor niJr | property of the
Logi nUr | Aut henti cat i onEnt r yPoi nt . Defaults to "/spring-security-login”.

| ogi n- processi ng-url

Maps to the filterProcessesUrl property of
User nanePasswor dAut henti cati onFi | t er . Thedefault valueis"/j_spring_security _check".

default-target-url

Mapstothedef aul t Tar get Ur | property of User nanmePasswor dAut henti cationFilter.
If not set, the default value is /" (the application root). A user will be taken to this URL after logging
in, provided they were not asked to login while attempting to access a secured resource, when they will
be taken to the originally requested URL.

al ways- use-defaul t-target

If set to "true", the user will always start at the value given by def aul t -t ar get - ur |, regardless
of how they arrived at the login page. Maps to the al waysUseDef aul t Tar get Ur| property of
User nanePasswor dAut henti cati onFi | t er. Default valueis"false".

aut hentication-failure-url

Maps to the aut henti cati onFai |l ureUrl property of
User namePasswor dAut henti cati onFi | t er . Definesthe URL the browser will be redirected

2This feature is really just provided for convenience and is not intended for production (where a view technology will have
been chosen and can be used to render a customized login page). The class Def aul t Logi nPageCeneratingFilter is
responsible for rendering the login page and will provide login forms for both normal form login and/or OpenlD if required.

3.0.2.RELEASE Spring Security 116

Spring Security

to on login failure. Defaults to "/spring_security loginAogin_error”, which will be automatically
handled by the automatic login page generator, re-rendering the login page with an error message.

aut henti cati on-success-handl er -ref

This can be used as an dternative to def aul t-target-url and al ways-use-default-
t ar get , giving you full control over the navigation flow after a successful authentication. The value
should be he name of an Aut hent i cati onSuccessHandl er bean in the application context.

aut hentication-fail ure-handl er-r ef

Can be used as an dternative to aut henti cati on-failure-url, giving you full control
over the navigation flow after an authentication failure. The value should be he name of an
Aut henti cati onFai | ur eHandl er beanin the application context.

The <ht t p- basi c> Element

Adds a Basi cAut henti cationFil ter and Basi cAut henti cati onEntryPoi nt to the
configuration. The latter will only be used as the configuration entry point if form-based login is not
enabled.

The <r emenber - ne> Element

Adds the Renmenber MeAuthenticationFilter to the stack. This in turn
will be configured with either a TokenBasedRenenber MeServices, a
Per si st ent TokenBasedRenmenber MeSer vi ces or a user-specified bean implementing
Renmenber MeSer vi ces depending on the attribute settings.

dat a- source-r ef

If thisisset, Per si st ent TokenBasedRenenber MeSer vi ces will be used and configured with
aJdbcTokenReposi t oryl npl instance.

t oken-repository-ref

Configures a Per si st ent TokenBasedRenenber MeSer vi ces but alows the use of a custom
Per si st ent TokenReposi t ory bean.

servi ces-r ef

Allowscomplete control of theRermenber MeSer vi ces implementation that will be used by thefilter.
The value should be the Id of abean in the application context which implements this interface.

t oken-repository-ref

Configures a Per si st ent TokenBasedRenenber MeSer vi ces but alows the use of a custom
Per si st ent TokenReposi t ory bean.

3.0.2.RELEASE Spring Security 117

Spring Security

The key Attribute

Maps to the "key" property of Abst r act Remenber MeSer vi ces. Should be set to a unique value
to ensure that remember-me cookies are only valid within the one application 3,

t oken-val i di ty-seconds

Maps to the tokenVali ditySeconds property of Abstract Remenber MeSer vi ces.
Specifies the period in seconds for which the remember-me cookie should be valid. By default it will
be valid for 14 days.

user -servi ce-ref

Theremember-me servicesimplementationsrequire accesstoaUser Det ai | sSer vi ce, sotherehas
to be one defined inthe application context. If thereisonly one, it will be selected and used automatically
by the namespace configuration. If there are multiple instances, you can specify a bean Id explicitly
using this attribute.

The <sessi on- managenent > Element

Session-management related functionality is implemented by the addition of a
Sessi onManagenent Fi | t er tothefilter stack.

session-fixation-protection

Indicates whether an existing session should be invalidated when auser authenticates and anew session
started. If set to "none" no change will be made. "newSession" will create a new empty session.
"migrateSession” will create a new session and copy the session attributes to the new session. Defaults
to "migrateSession".

If session fixation protection is enabled, the Sessi onManagenent Fi | t er is inected with a
appropriately configured Def aul t Sessi onAut henti cati onStr at egy. See the Javadoc for
this class for more details.

The <concurrency-cont rol > Element

Adds support for concurrent session control, alowing limits to be placed on the
number of active sessions a user can have. A Concurrent SessionFilter will
be created, and a Concurrent SessionControl Strategy will be used with the
Sessi onManagenent Fi l ter. If af or m | ogi n element has been declared, the strategy object
will aso be injected into the created authentication filter. An instance of Sessi onRegi stry (a
Sessi onRegi st ryl npl instance unless the user wishes to use a custom bean) will be created for
use by the strategy.

The max- sessi ons attribute

Mapsto the maxi nunSessi ons property of Concur r ent Sessi onControl Strat egy.

3This doesn't affect the use of Per si st ent TokenBasedRemenber MeSer vi ces, where the tokens are stored on the server
side.

3.0.2.RELEASE Spring Security 118

Spring Security

The expi red-url attribute

The URL auser will be redirected to if they attempt to use a session which has been "expired" by the
concurrent session controller because the user has exceeded the number of allowed sessions and has
logged in again elsewhere. Should be set unlessexcept i on-i f - maxi mum exceeded isset. If no
valueis supplied, an expiry message will just be written directly back to the response.

The error-if-maxi num exceeded attribute

If set to "true" a Sessi onAut henti cati onExcepti on will be raised when a user attempts to
exceed the maximum allowed number of sessions. Thedefault behaviour isto expiretheoriginal session.

The session-regi stry-alias and sessi on-regi stry-ref attributes

The user can supply their own Sessi onRegi stry implementation using the sessi on-
regi stry-ref attribute. The other concurrent session control beans will be wired up to useit.

It can also be useful to have areference to the internal session registry for use in your own beans or an
admin interface. Y ou can expose the interal bean using the sessi on-regi st ry-al i as attribute,
giving it a name that you can use elsewhere in your configuration.

The <anonynous> Element

Adds an AnonynousAut henticationFilter to the stack and an
AnonynousAut henti cati onProvi der. Required if you are using the
I S_AUTHENTI CATED_ANONYMOUSLY attribute.

The <x509> Element

Adds support for X.509 authentication. An X509Aut henti cati onFi | t er will be added to the
stack and an Ht t p403For bi ddenEnt r yPoi nt bean will be created. The latter will only be used
if no other authentication mechanisms are in use (it's only functionality isto return an HTTP 403 error
code). A Pr eAut hent i cat edAut hent i cat i onPr ovi der will also be created which delegates
the loading of user authoritiesto aUser Det ai | sSer vi ce.

The subj ect - pri nci pal - r egex attribute

Defines a regular expression which will be used to extract the username from the certificate (for use
withthe User Det ai | sSer vi ce).

The user - servi ce-ref attribute

Allowsaspecific User Det ai | sSer vi ce to be used with X.509 in the case where multipleinstances
areconfigured. If not set, an attempt will be made to |ocate a suitabl e instance automatically and use that.

The <openi d- | ogi n> Element

Similar to <form | ogi n> and has the same attributes. The default value for | ogi n-
processi ng- url is"/j_spring_openid_security check". AnQpenl DAut henti cati onFilter
and Openl DAut henti cati onProvi der will be registered. The latter requires a reference to

3.0.2.RELEASE Spring Security 119

Spring Security

a User Det ai | sServi ce. Again, this can be specified by Id, using the user - servi ce-r ef
attribute, or will be located automatically in the application context.

The <l ogout > Element

Adds a LogoutFilter to the filter stack. This is configured with a
Securi t yCont ext Logout Handl er .

The | ogout - ur | attribute

The URL which will cause a logout (i.e. which will be processed by the filter). Defaults to "/
j_spring_security _logout”.

The | ogout - success-url attribute
The destination URL which the user will be taken to after logging out. Defaultsto "/".
Thei nval i dat e- sessi on attribute

Mapstothei nval i dat eHt t pSessi on of the Securi t yCont ext Logout Handl er . Defaults
to "true", so the session will be invalidated on logout.

The <customfil ter> Element

Thiselement isused to add afilter to thefilter chain. It doesn't create any additional beans but is used to
select abean of typej avax. servl et . Fi | t er whichisalready defined in the appllication context
and add that at a particular position in the filter chain maintained by Spring Security. Full details can
be found in the namespace chapter.

B.2 Authentication Services

Before Spring Security 3.0, an Aut hent i cati onManager was automatically registered internaly.
Now you must register one explicitly using the <aut henti cati on- nanager > element. This
createsan instance of Spring Security'sPr ovi der Manager class, which needsto be configured witha
list of oneor more Aut hent i cat i onProvi der instances. These can either be created using syntax
elements provided by the namespace, or they can be standard bean definitions, marked for addition to
thelist using theaut henti cati on- provi der element.

The <aut hent i cati on- manager > Element

Every Spring Security application which usesthe namespace must haveincludethis element somewhere.
It is responsible for registering the Aut hent i cati onManager which provides authentication
services to the application. It also allows you to define an alias name for the internal instance for use in
your own configuration. Its use is described in the namespace introduction. All elements which create
Aut henti cat i onPr ovi der instances should be children of this element.

The <aut hent i cati on- provi der > Element

Unless used with a ref attribute, this element is shorthand for configuring a
DaoAut henti cati onProvi der. DaoAut henti cati onProvi der loads user information

3.0.2.RELEASE Spring Security 120

Spring Security

from aUser Det ai | sSer vi ce and compares the username/password combination with the values
supplied at login. The User Det ai | sSer vi ce instance can be defined either by using an available
namespaceelement (j dbc- user - servi ce orby usingtheuser - ser vi ce- r ef attributeto point
to a bean defined elsewhere in the application context). You can find examples of these variations in
the namespace introduction.

The <passwor d- encoder > Element

Authentication providers can optionaly be configured to use a password encoder as described
in the namespace introduction. This will result in the bean being injected with the appropriate
Passwor dEncoder instance, potentially with an accompanying Sal t Sour ce bean to provide salt
values for hashing.

Using <aut henti cati on- provi der >to refer to an Aut henti cati onProvi der Bean

If you have written your own Aut hent i cat i onPr ovi der implementation (or want to configure
one of Spring Security's own implementations as a traditional bean for some reason, then you can use
the following syntax to add it to theinternal Pr ovi der Manager 'slist:

<security: authenticati on- manager >

<security:authentication-provider ref="myAuthenticationProvider" />
</security:authentication-nmanager >
<bean id="nyAut henticati onProvi der" cl ass="com sonet hi ng. M/Aut henti cati onProvi der"/>

B.3 Method Security

The <gl obal - et hod- securi t y> Element

This element is the primary means of adding support for securing methods on Spring Security beans.
Methods can be secured by the use of annotations (defined at the interface or classlevel) or by defining
aset of pointcuts as child elements, using AspectJ syntax.

Method security uses the same AccessDeci si onManager configuration as web security, but this
can be overridden as explained above the section called “access- deci si on- manager - r ef ”,
using the same attribute.

The secur ed- annot ati ons and j sr 250- annot at i ons Attributes

Setting these to "true" will enable support for Spring Security's own @ecur ed annotations and
JSR-250 annotations, respectively. They are both disabled by default. Use of JSR-250 annotations also
addsaJsr 250Vot er tothe AccessDeci si onManager , so you need to make sure you do thisif
you are using a custom implementation and want to use these annotations.

Securing Methods using <pr ot ect - poi nt cut >

Rather than defining security attributes on an individual method or class basis using the @ecur ed
annotation, you can define cross-cutting security constraints across whol e sets of methodsand interfaces
in your service layer using the <pr ot ect - poi nt cut > element. This has two attributes:

3.0.2.RELEASE Spring Security 121

Spring Security

e expressi on - the pointcut expression

e access - the security attributes which apply
Y ou can find an example in the namespace introduction.

The <after-invocati on-provi der > Element

This element can be used to decorate an Aft er I nvocat i onPr ovi der for use by the security
interceptor maintained by the <gl obal - met hod- securi t y> namespace. Y ou can define zero or
more of these within the gl obal - met hod- securi ty element, each with ar ef attribute pointing
toan After |l nvocati onProvi der bean instance within your application context.

LDAP Namespace Options

LDAPiscovered in somedetailsin its own chapter. Wewill expand on that here with some explanation
of how the namespace options map to Spring beans. The LDAP implementation uses Spring LDAP
extensively, so some familiarity with that project's APl may be useful.

Defining the LDAP Server using the <l dap- ser ver > Element

This element setsup a Spring LDAP Cont ext Sour ce for use by the other LDAP beans, defining the
location of the LDAP server and other information (such as ausername and password, if it doesn't allow
anonymous access) for connecting to it. It can also be used to create an embedded server for testing.
Details of the syntax for both options are covered in the LDAP chapter. The actual Cont ext Sour ce
implementation is Def aul t Spri ngSecuri t yCont ext Sour ce which extends Spring LDAP's
LdapCont ext Sour ce class. The manager - dn and nanager - passwor d attributes map to the
latter'suser Dn and passwor d properties respectively.

If you only have one server defined in your application context, the other LDAP namespace-defined
beans will use it automatically. Otherwise, you can give the element an "id" attribute and refer to it
from other namespace beans using the ser ver - r ef attribute. This is actually the bean Id of the
Cont ext Sour ce instance, if you want to useit in other traditional Spring beans.

The <I| dap- pr ovi der > Element

This element is shorthand for the creation of an LdapAut henti cati onProvi der
instance. By default this will be configured with a Bi ndAut henti cat or instance and a
Def aul t Aut hori ti esPopul at or. As with all namespace authentication providers, it must be
included as achild of theaut hent i cati on- provi der element.

The user - dn- pat t er n Attribute

If your users are at a fixed location in the directory (i.e. you can work out the DN directly from the
username without doing adirectory search), you can use this attribute to map directly to the DN. It maps
directly totheuser DnPat t er ns property of Abst r act LdapAut henti cat or.

The user - sear ch- base and user-search-filter Attributes

If you need to perform a search to locate the user in the directory, then you can set
these attributes to control the search. The Bi ndAut henti cat or will be configured with a

3.0.2.RELEASE Spring Security 122

Spring Security

Fi | t er BasedLdapUser Sear ch and the attribute values map directly to the first two arguments of
that bean'sconstructor. If these attributesaren't set and nouser - dn- pat t er n hasbeen supplied asan
aternative, then the default search values of user - search-filter="(ui d={0})" anduser -
sear ch- base="" will be used.

group-search-filter, group-search-base, group-rol e-
attributeandrol e-prefix Attributes

The value of gr oup- sear ch- base is mapped to the gr oupSear chBase constructor argument
of Def aul t Aut hori ti esPopul at or and defaults to "ou=groups'. The default filter value is
"(uniqgueMember={0})", which assumes that the entry is of type "groupOfUniqueNames'. gr oup-
rol e-attribute mapstothe groupRol eAttri but e attribute and defaults to "cn". Similarly
rol e-prefix mapstorol ePrefi x and defaultsto "ROLE_".

The <passwor d- conpar e> Element

This is used as child element to <I dap- pr ovi der > and switches the authentication strategy from
Bi ndAut henti cat or to Passwor dConpari sonAut henti cat or. This can optionaly be
supplied with ahash attribute or with achild <passwor d- encoder > element to hash the password
before submitting it to the directory for comparison.

The <| dap- user - servi ce> Element

This element configures an LDAP UserDetail sService. The class used is
LdapUser Det ai | sSer vi ce whichisacombinationof aFi | t er BasedLdapUser Sear ch and
aDef aul t Aut hori ti esPopul at or . Theattributesit supports havethe same usageasin <l dap-
provi der >.

3.0.2.RELEASE Spring Security 123

	Spring Security
	Table of Contents
	Preface
	Part I. Getting Started
	1. Introduction
	1.1 What is Spring Security?
	1.2 History
	1.3 Release Numbering
	1.4 Getting Spring Security
	Project Modules
	Core - spring-security-core.jar
	Web - spring-security-web.jar
	Config - spring-security-config.jar
	LDAP - spring-security-ldap.jar
	ACL - spring-security-acl.jar
	CAS - spring-security-cas-client.jar
	OpenID - spring-security-openid.jar

	Checking out the Source

	2. Security Namespace Configuration
	2.1 Introduction
	Design of the Namespace

	2.2 Getting Started with Security Namespace Configuration
	web.xml Configuration
	A Minimal <http> Configuration
	What does auto-config Include?
	Form and Basic Login Options
	Setting a Default Post-Login Destination

	Using other Authentication Providers
	Adding a Password Encoder

	2.3 Advanced Web Features
	Remember-Me Authentication
	Adding HTTP/HTTPS Channel Security
	Session Management
	Detecting Timeouts
	Concurrent Session Control
	Session Fixation Attack Protection

	OpenID Support
	Attribute Exchange

	Adding in Your Own Filters
	Setting a Custom AuthenticationEntryPoint

	2.4 Method Security
	The <global-method-security> Element
	Adding Security Pointcuts using protect-pointcut

	2.5 The Default AccessDecisionManager
	Customizing the AccessDecisionManager

	2.6 The Authentication Manager and the Namespace

	3. Sample Applications
	3.1 Tutorial Sample
	3.2 Contacts
	3.3 LDAP Sample
	3.4 CAS Sample
	3.5 Pre-Authentication Sample

	4. Spring Security Community
	4.1 Issue Tracking
	4.2 Becoming Involved
	4.3 Further Information

	Part II. Architecture and Implementation
	5. Technical Overview
	5.1 Runtime Environment
	5.2 Core Components
	SecurityContextHolder, SecurityContext and Authentication Objects
	Obtaining information about the current user

	The UserDetailsService
	GrantedAuthority
	Summary

	5.3 Authentication
	What is authentication in Spring Security?
	Setting the SecurityContextHolder Contents Directly

	5.4 Authentication in a Web Application
	ExceptionTranslationFilter
	AuthenticationEntryPoint
	Authentication Mechanism
	Storing the SecurityContext between requests

	5.5 Access-Control (Authorization) in Spring Security
	Security and AOP Advice
	Secure Objects and the AbstractSecurityInterceptor
	What are Configuration Attributes?
	RunAsManager
	AfterInvocationManager
	Extending the Secure Object Model

	5.6 Localization

	6. Core Services
	6.1 The AuthenticationManager, ProviderManager and AuthenticationProviders
	DaoAuthenticationProvider

	6.2 UserDetailsService Implementations
	In-Memory Authentication
	JdbcDaoImpl
	Authority Groups

	6.3 Password Encoding
	What is a hash?
	Adding Salt to a Hash
	Hashing and Authentication

	Part III. Web Application Security
	7. The Security Filter Chain
	7.1 DelegatingFilterProxy
	7.2 FilterChainProxy
	Bypassing the Filter Chain

	7.3 Filter Ordering
	7.4 Use with other Filter-Based Frameworks

	8. Core Security Filters
	8.1 FilterSecurityInterceptor
	8.2 ExceptionTranslationFilter
	AuthenticationEntryPoint
	AccessDeniedHandler

	8.3 SecurityContextPersistenceFilter
	SecurityContextRepository

	8.4 UsernamePasswordAuthenticationFilter
	Application Flow on Authentication Success and Failure

	9. Basic and Digest Authentication
	9.1 BasicAuthenticationFilter
	Configuration

	9.2 DigestAuthenticationFilter
	Configuration

	10. Remember-Me Authentication
	10.1 Overview
	10.2 Simple Hash-Based Token Approach
	10.3 Persistent Token Approach
	10.4 Remember-Me Interfaces and Implementations
	TokenBasedRememberMeServices
	PersistentTokenBasedRememberMeServices

	11. Session Management
	11.1 SessionManagementFilter
	11.2 SessionAuthenticationStrategy
	11.3 Concurrency Control

	12. Anonymous Authentication
	12.1 Overview
	12.2 Configuration
	12.3 AuthenticationTrustResolver

	Part IV. Authorization
	13. Authorization Architecture
	13.1 Authorities
	13.2 Pre-Invocation Handling
	The AccessDecisionManager
	Voting-Based AccessDecisionManager Implementations
	RoleVoter
	AuthenticatedVoter
	Custom Voters

	13.3 After Invocation Handling

	14. Secure Object Implementations
	14.1 AOP Alliance (MethodInvocation) Security Interceptor
	Explicit MethodSecurityInterceptor Configuration

	14.2 AspectJ (JoinPoint) Security Interceptor

	15. Expression-Based Access Control
	15.1 Overview
	Common Built-In Expressions

	15.2 Web Security Expressions
	15.3 Method Security Expressions
	@Pre and @Post Annotations
	Access Control using @PreAuthorize and @PostAuthorize
	Filtering using @PreFilter and @PostFilter

	Built-In Expressions
	The PermissionEvaluator interface

	Part V. Additional Topics
	16. Domain Object Security (ACLs)
	16.1 Overview
	16.2 Key Concepts
	16.3 Getting Started

	17. Pre-Authentication Scenarios
	17.1 Pre-Authentication Framework Classes
	AbstractPreAuthenticatedProcessingFilter
	AbstractPreAuthenticatedAuthenticationDetailsSource
	J2eeBasedPreAuthenticatedWebAuthenticationDetailsSource

	PreAuthenticatedAuthenticationProvider
	Http403ForbiddenEntryPoint

	17.2 Concrete Implementations
	Request-Header Authentication (Siteminder)
	Siteminder Example Configuration

	J2EE Container Authentication

	18. LDAP Authentication
	18.1 Overview
	18.2 Using LDAP with Spring Security
	18.3 Configuring an LDAP Server
	Using an Embedded Test Server
	Using Bind Authentication
	Loading Authorities

	18.4 Implementation Classes
	LdapAuthenticator Implementations
	Common Functionality
	BindAuthenticator
	PasswordComparisonAuthenticator
	Active Directory Authentication

	Connecting to the LDAP Server
	LDAP Search Objects
	FilterBasedLdapUserSearch

	LdapAuthoritiesPopulator
	Spring Bean Configuration
	LDAP Attributes and Customized UserDetails

	19. JSP Tag Libraries
	19.1 Declaring the Taglib
	19.2 The authorize Tag
	19.3 The authenticationTag
	19.4 The accesscontrollist Tag

	20. Java Authentication and Authorization Service (JAAS) Provider
	20.1 Overview
	20.2 Configuration
	JAAS CallbackHandler
	JAAS AuthorityGranter

	21. CAS Authentication
	21.1 Overview
	21.2 How CAS Works
	21.3 Configuration of CAS Client

	22. X.509 Authentication
	22.1 Overview
	22.2 Adding X.509 Authentication to Your Web Application
	22.3 Setting up SSL in Tomcat

	23. Run-As Authentication Replacement
	23.1 Overview
	23.2 Configuration

	Appendix A. Security Database Schema
	A.1 User Schema
	Group Authorities

	A.2 Persistent Login (Remember-Me) Schema
	A.3 ACL Schema
	Hypersonic SQL
	PostgreSQL

	Appendix B. The Security Namespace
	B.1 Web Application Security - the <http> Element
	<http> Attributes
	servlet-api-provision
	path-type
	lowercase-comparisons
	realm
	entry-point-ref
	access-decision-manager-ref
	access-denied-page
	once-per-request
	create-session

	<access-denied-handler>
	The <intercept-url> Element
	pattern
	method
	access
	requires-channel
	filters

	The <port-mappings> Element
	The <form-login> Element
	login-page
	login-processing-url
	default-target-url
	always-use-default-target
	authentication-failure-url
	authentication-success-handler-ref
	authentication-failure-handler-ref

	The <http-basic> Element
	The <remember-me> Element
	data-source-ref
	token-repository-ref
	services-ref
	token-repository-ref
	The key Attribute
	token-validity-seconds
	user-service-ref

	The <session-management> Element
	session-fixation-protection

	The <concurrency-control> Element
	The max-sessions attribute
	The expired-url attribute
	The error-if-maximum-exceeded attribute
	The session-registry-alias and session-registry-ref attributes

	The <anonymous> Element
	The <x509> Element
	The subject-principal-regex attribute
	The user-service-ref attribute

	The <openid-login> Element
	The <logout> Element
	The logout-url attribute
	The logout-success-url attribute
	The invalidate-session attribute

	The <custom-filter> Element

	B.2 Authentication Services
	The <authentication-manager> Element
	The <authentication-provider> Element
	The <password-encoder> Element

	Using <authentication-provider> to refer to an AuthenticationProvider Bean

	B.3 Method Security
	The <global-method-security> Element
	The secured-annotations and jsr250-annotations Attributes
	Securing Methods using <protect-pointcut>
	The <after-invocation-provider> Element

	LDAP Namespace Options
	Defining the LDAP Server using the <ldap-server> Element
	The <ldap-provider> Element
	The user-dn-pattern Attribute
	The user-search-base and user-search-filter Attributes
	group-search-filter, group-search-base, group-role-attribute and role-prefix Attributes
	The <password-compare> Element

	The <ldap-user-service> Element

