반도체 공학 (김동명, 한빛미디어)의 정오표(2012년 7월 10일 현재)

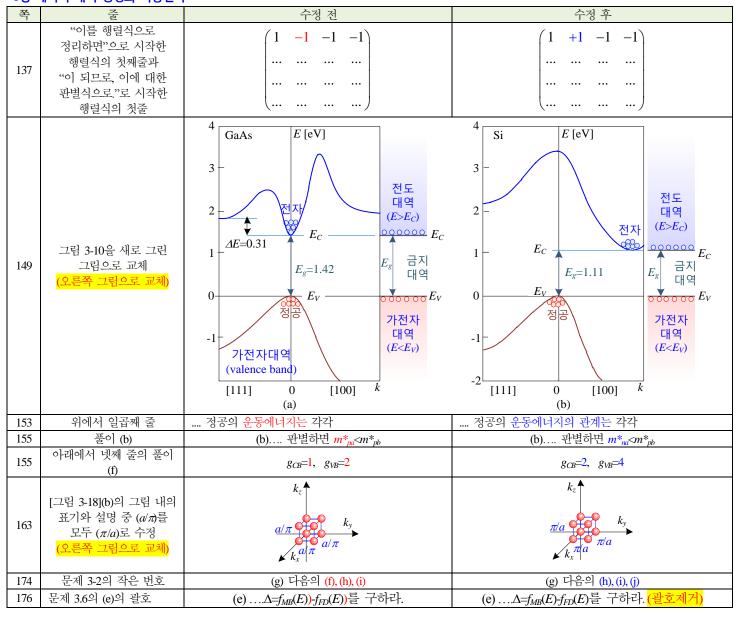
표지, 서문, 기타

쪽	줃	수정 전	수정 후		
제목	영문제목 추가 필요	반도체 공학	반도체 공학 Microelectronic Semiconductor Devices		
머리말 둘째 쪽	위에서 10째줄 위에서 12째줄 아래에서 11쨰줄	다이오드는 바이폴라 <mark>소자로,</mark> 지표(이동도, 확산길이)에 영향을 대부분 학생들이	다이오드는 바이폴라 소자로서, 지표(이동도, 확산길이)의 영향을 대부분의 학생들이		
머리말 셋째 쪽	위에서 12째줄	·2단자 소자 조절(7~ <mark>8장</mark>)	·2단자 소자 조절(7~9장)		
005	머리말의 두번째 쪽 16줄	평균수명(ᠵ, <mark>ᠵ,,</mark>) 동안	평균수명(<i>ᢏ, ᢏ</i>) 동안		

1장 고체의 원자 배열

10 7	18 고세의 원자 매달					
쪽	줃	수정 전	수정 후			
030	[班 1-2]	단위셀 면적 $A \equiv \bar{a}_1 \cdot \bar{b}_1$	$A \equiv \left \vec{a}_1 \times \vec{b}_1 \right $			
038	[그림1-8]	<u>아래쪽 그림</u> 속의 원자 위치 b와 d	b와 d를 바꿔 주십시오			
050	연습문제 1.6의 그림	latice constant	lattice constant			
025	[그림 1-1]	(e) 의 오른 쪽 화살표 옆의 V ₁₃	삭제해 주세요.			
026	아래에서 6줄 끝	[1/scm ²]	$[1/s \text{ cm}^2]$			
028	[표 1-1] 단결정	인듐비소(In As)←띄어쓰기	인듐비소(InAs)			
029	[그림 1-4] 설명	(a) $E_p(x)$	(a) $E_p(r)$			
	[]]]	(b) $E_p(x+nT) = E_p(x)$	(b) $E_p(r+nT)=E_p(r)$			
034	[그림 1-6](d)	x축 가까이의 <i>a</i> (3/4,3/4,3/4)	→ 삭제해 주십시오.			
036	아래에서 4째줄	에서 [그림 1-6(a)]와 같은	에서 [그림 1-6(c)]와 같은			
040	[그림 1-9]의 왼쪽 그림	where p,q,r: intergers	: <i>p,q,s</i> =정수			
041	위에서 5줄	밀러 지수 [<i>hkl</i>]	밀러 지수 (hkl)			
042	맨 아랫줄	{hkl}	(hkl)			
046	[그림 1-12](b)	(b)에 표시된 변의 길이 2 <i>⊯a</i>	4πа			
048	[그림 1-14]	(a)의 둘째 단계 그림 중 dopants/imputities	dopants/impurities			

2장 반도체 특성 이해를 위한 양자역학 기초


2상	강장 반도체 특성 이해를 위한 양자역학 기초					
쪽	줄	수정 전	수정 후			
	첫째 식	$\Psi^*\Psi d\upsilon = \Psi \Psi^* d\upsilon = \Psi d\upsilon$	3차원 공간:Ψ*Ψdv=ΨΨ*dv= Ψ dv, 1차원 공간:Ψ*Ψdx=ΨΨ*dx= Ψ dx			
064	둘째식	$\iiint \Psi^* \Psi dx dy dz = 1$	3차원 공간: ∫Ψ*Ψdv=∭Ψ*Ψdxdydz=1 1차원 공간: ∫Ψ*Ψdx=1			
064	셋째식 (<mark>공간이</mark> 허락하면)	$ < Q >= \iiint \Psi^*(x, y, z; t) Q_{op} \Psi(x, y, z; t) dx dy dz $ $ = \iiint \psi^*(x, y, z) Q_{op} \psi(x, y, z) dx dy dz $	3차원 공간: $< Q >= \iiint \Psi^*(x,y,z;t)Q_{op}\Psi(x,y,z;t)dxdydz$ $= \iiint \psi^*(x,y,z)Q_{op}\Psi(x,y,z)dxdydz$ 1차원 공간: $< Q >= \int \Psi^*(x,t)Q_{op}\Psi(x;t)dx$ $= \int \psi^*(x,t)Q_{op}\Psi(x)dx$			
077	아래에서 셋째 줄	$x_{o+} = \left(-\phi_{o+} + \omega t\right)/k$	$x_{o+} = \left(+\phi_{o+} + \omega t\right)/k$			
088	맨 아래 수식	$\phi_m(y) = \begin{cases} \dots \\ 0 x < 0, x > a \end{cases}$	$\phi_m(y) = \begin{cases} \dots \\ 0 y < 0, y > b \end{cases}$			
089 090	예제 풀이의 (c), (d): 양자화된 에너지 준위	$E_{nm} = \frac{\hbar^2 k^2}{2m^*} = \dots = \dots = \frac{\hbar^2 \pi^2}{2m^* \hbar^2} \left(\frac{n^2}{a^2} + \frac{m^2}{b^2}\right)$ $\begin{cases} E_{11} = \frac{\hbar^2 \pi^2}{2m^* \hbar^2} \left(\frac{1^2}{a^2} + \frac{1^2}{b^2}\right), & E_{12} = \frac{\hbar^2 \pi^2}{2m^* \hbar^2} \left(\frac{1}{a^2} + \frac{2^2}{b^2}\right), \\ E_{21} = \frac{\hbar^2 \pi^2}{2m^* \hbar^2} \left(\frac{2^2}{a^2} + \frac{1}{b^2}\right), & E_{22} = \frac{\hbar^2 \pi^2}{2m^* \hbar^2} \left(\frac{2^2}{a^2} + \frac{2^2}{b^2}\right), \dots \end{cases}$	$E_{nm} = \frac{\hbar^2 k^2}{2m^*} = \dots = \dots = \frac{\hbar^2 \pi^2}{2m^*} \left(\frac{n^2}{a^2} + \frac{m^2}{b^2} \right)$ $\begin{cases} E_{11} = \frac{\hbar^2 \pi^2}{2m^*} \left(\frac{1^2}{a^2} + \frac{1^2}{b^2} \right), & E_{12} = \frac{\hbar^2 \pi^2}{2m^*} \left(\frac{1}{a^2} + \frac{2^2}{b^2} \right), \\ E_{21} = \frac{\hbar^2 \pi^2}{2m^*} \left(\frac{2^2}{a^2} + \frac{1}{b^2} \right), & E_{22} = \frac{\hbar^2 \pi^2}{2m^*} \left(\frac{2^2}{a^2} + \frac{2^2}{b^2} \right), \dots \end{cases}$			
052	윗칸의 제일 아래 왼쪽 그림	$E_{ m g}$ 를 나타내는 화살표의 위쪽	화살표가 E_C 에서 끝나게 수정			

054	위에서 6줄	$\dots E_p = (x+nT) = E_p(x) \dots$	(b) $E_p(r+nT) = E_p(r)$	
	[그림 2-1]의 (c)	세로축을 왼쪽으로 조금 옮겨서 (b)와 같이 가운데	원자에 맞추어 주세요.	
055	[그림 2-1]의 (c) 설명	(c) 분포	(c) 분포 (a=T)	
056	참고 2-2	$h = 6.63.10^{-34} [J \cdot s] = 4.135.10^{-15} [eV \cdot s], \hbar = h/2\pi$ $= 1.10^{-34} [J \cdot s]$ $1 [eV] = 1.6 \cdot 10^{-19} [C \cdot V] = 1.6 \cdot 10^{-19} [J]$ $\longleftrightarrow 1 [J] = 1/(1.6 \cdot 10^{-19}) [eV] = 6.24 \cdot 10^{-18} [eV]$	$h = 6.63 \times 10^{-34} \text{ [J's]} = 4.135 \times 10^{-15} \text{ [eV's]},$ $\hbar = h/2\pi = 1 \times 10^{-34} \text{ [J's]}$ $1 \text{ [eV]} = 1.6 \times 10^{-19} \text{ [C \cdot V]} = 1.6 \times 10^{-19} \text{ [J]}$ $\longleftrightarrow 1 \text{ [J]} = 1/(1.6 \times 10^{-19}) \text{ [eV]} = 6.24 \times 10^{18} \text{ [eV]}$	
057	[그림 2-2](a)	2-2] (a) 다색광 Anode V _A Anode V _A HIII- V _G Anode V _A HIII- V _G Anode V _A HIII- Photographic Anode V _A Anode V _A HIII- Photographic Anode V _A Anode V _A Anode V _A HIII- Photographic Anode V _A		
059	아래에서 5줄	각주파수 ω[rad]	각주파수 ω[rad/s]	
059	아래에서 4줄	플랑크 상수 $h = 6.63.10^{-34}$ [J·s])	플랑크 상수 $h = 6.63 \times 10^{-34} [\text{J·s}])$	
060	위에서 첫 수식	$p = m^* \upsilon = \frac{h}{\lambda} = \frac{hv}{c}$	$p = m^* \upsilon = \frac{h}{\lambda}$	
066	그림 2-5의 제일 윗칸 오른쪽 수식	$\lambda = c/\nu = h/p$	$\lambda = h/p$	
067	참고 2-6	전하유동밀도 ∇·D̄=ρ(x) 전위분포 (ɸ(x))[V]	$\nabla \cdot \overrightarrow{D} = \rho(r)$ 전위분포 $(V(x))$ [V]	
068	위에서 8줄	같이 시간에와 공간에 대한	같이 공간에와 시간에 대한	
074	맨 아랫줄	변화율(Ψ'(x)=∂ψ(x)/∂x)이	변화율($\psi'(x)=\partial \psi(x)/\partial x$)이	
075	"자유전자" 절의 둘째줄	electrostatistically free space	electrostatically free space	
075	아래에서 첫식	$E_p(x) = 0 (\infty < x < +\infty)$	$E_p(x) = 0 (-\infty < x < +\infty)$	
076	아래에서 6줄과 바로 아래 수식	파동함수 $\Psi(x,y,z;t)$ 는 다음과 같다. $\Psi(x,y,z;t)=$	파동함수 $\Psi(x,t)$ 는 다음과 같다. $\Psi(x,t)=$	
077	·		파동함수를 구성하는 성분 중 Ψ ₊ (x,t)는	
078	8 아래에서 9줄 이는 곧 전파로서의 전자가		이는 곧 파동으로서의 전자가	
078	맨 아래 수식	$E = E_k + E_p = E_k = \frac{\hbar^2 k^2}{2m_o}$	$E = E_k + E_p = E_k = \frac{\hbar^2 k^2}{2m^*}$	
080	위에서 첫 식	< <i>p</i> _{op} >		
080	아래에서 넷째 식	$\begin{cases} \Psi_1(x,t) = Ae^{j(k_1x - \omega_1 t)} \\ \Psi_2(x,t) = \dots \end{cases}$	$\begin{cases} \Psi_1(x,t) = Ae^{j(kx-\omega t)} \\ \Psi_2(x,t) = \dots \end{cases}$	
081	위에서 둘째 식	$\Psi(x,t) = \dots = A \left\{ e^{j(k_1 x - \omega_1 t)} + e^{j[(k + \Delta k)x - (\omega + \Delta \omega)t]} \right\}$	$\Psi(x,t) = \dots = A \left\{ e^{j(kx-\omega t)} + e^{j[(k+\Delta k)x-(\omega+\Delta\omega)t]} \right\}$	
081	위에서 6줄	$\Psi(x,t) = \dots = \dots \sin\left[\frac{1}{2}(2k - \Delta k)x - (2\omega + \Delta \omega)t\right]$	$\Psi(x,t) = \dots = \dots = \dots \sin\left[\frac{1}{2}(2k + \Delta k)x - (2\omega + \Delta \omega)t\right]$	
081	아래에서 둘째 식	-래에서 둘째 $x_o = \frac{\phi_{go}}{\Delta k} - \frac{\Delta \omega}{\Delta k} t \qquad x_o = \frac{\phi_{go}}{\Delta k} + \frac{\Delta \omega}{\Delta k} t$		
081	아래에서 첫 식	$v_g = \frac{dx_o}{dt} = \frac{d}{dt} \left(\frac{\phi_{go}}{\Delta k} - \frac{\Delta \omega}{\Delta k} t \right) = \frac{\Delta \omega}{\Delta k}$	$v_{g} = \frac{dx_{o}}{dt} = \frac{d}{dt} \left(\frac{\phi_{go}}{\Delta k} + \frac{\Delta \omega}{\Delta k} t \right) = \frac{\Delta \omega}{\Delta k}$	
085	위에서 첫식	<i>n</i> ±1,	n=±1,	
088	푸이의 의에서 $\partial^2 \phi(y) 2m^* E_y$ $\partial^2 \phi(y)$ 2 2 $\partial^2 \phi(y)$ 2 $\partial^2 \phi(y)$ 3 $\partial^2 \phi(y)$ 2 $\partial^2 \phi(y)$ 3 $\partial^2 \phi(y)$ 4 $\partial^2 \phi(y)$ 3 $\partial^2 \phi(y)$ 4 $\partial^2 \phi(y)$ 4 $\partial^2 \phi(y)$ 5 $\partial^2 \phi(y)$ 4 $\partial^2 \phi(y)$ 5 $\partial^2 \phi(y)$ 5 $\partial^2 \phi(y)$ 6 $\partial^2 \phi(y)$ 7 $\partial^2 \phi(y)$ 7 $\partial^2 \phi(y)$ 8 $\partial^2 \phi(y)$ 9 $\partial^2 \phi(y)$ 8 $\partial^2 \phi(y)$ 9		$\frac{\partial^2 \phi(y)}{\partial y^2} + \frac{2m^* E_y}{\hbar^2} \phi(y) = \frac{\partial^2 \phi(y)}{\partial y^2} + k_y^2 \phi(y) = 0$	
088	맨 아래 수식	$\psi(x,y) = \psi(x)\phi(y) = \dots$	$\Psi_{nm}(x,y) = \psi_n(x)\phi_m(y) = \dots$	

089	그림 2-16 의 둘째 그림의 <i>V</i> 2(y) 빠짐	$\psi_1(x)$	$\psi_{2}(y)$
090	그림2-18	x 그림 2-18) "E ₁₂ " state의 "(-2,-1)"과 "(-1,-2)"가 서로 바뀐 것을 오른 쪽과 같이 수정합니다.	$E(k) = E(k_0, k_y)$ $(-2, -2)$ $(+2, -2)$ $(+2, -2)$ $(+1, -2)$ $(-2, -1)$ $(-2, -1)$ $(-1, -1)$
093	맨아래 수식	$(k \tan k_o a + k_o)(k_o \tan ka - k) = 0$	$(k \tan k_o a + k_o)(k_o \tan k_o a - k) = 0$
093	위에서 둘째식	$ (k \tan k_o a + k_o)(k_o \tan k a - k) = 0 $ $ (k \tan k_o a + k_o)(k_o \tan k a - k) = 0 $	$ (k \tan k_o a + k_o)(k_o \tan k_o a - k) = 0 $ $ (k \tan k_o a + k_o)(k_o \tan k_o a - k) = 0 $
095	그림 2-21 범례 중 빨간 실선:	빨간 실선: k _o acot(k _o a) 앞에 - 부호 삽입	$-k_o a \cot(k_o a)$
095	수식의 우측	$E + \Delta E = \frac{\hbar^2 k_o^2}{2m^*} < 0$	$E + \Delta E = \frac{\hbar^2 k_o^2}{2m^*} > 0$
096	그림 2-22의 설명	Case B	Case A
096	아래에서 11줄	첫 번째 교점의 ka 또는 k_oa 가 증가하므로 이에 해당하는 에너지 준위도 증가한다.	첫 번째 교점의 ka 또는 k_oa 가 증가하므로 에너지 우물의 최저 에너지로부터 바닥 상태 에너지 준위 $(E_1-(-\Delta E)=E_1+\Delta E)$ 도 상승한다.
097	그림 아래에서 3-4줄	[그림] E>0인 전자가 에너지 우물 내에 갇힌 경우의 전파특성을 이해하고자 한다.	[그림] E>0인 전자의 전파특성을 이해하고자 한다.
097	수식의 오른 편 k 와 λ	k 와 λ 를 나타낸 수식 내의 모든 m	모두 <i>m</i> *로 수정
098	맨 윗식의 오른 편 λ	λ를 나타낸 수식 내의 모든 m	<i>m</i> *로 수정
101	그림 2-26(b)	붉은 글씨의 $\psi_{2+}(\mathbf{x}) = \mathbf{C}e^{-ijk2x}$	<i>Ψ</i> ₂₊ (x)=Ce ^{+jk2x <} ←(-부호 삭제)
106	그림 2-28	영역 III의 전달파 수식 앞의 붉은 글씨 계수: E 영역 III의 №3 앞의 계수 E	F
107	그림 2-29	중턱 III의 //3 효의 세구	F F
108	아래에서 2,3식	$\left(\frac{B}{A}\right) = \frac{j}{2} \left(\frac{F}{A}\right) \left(\frac{k_2^2 - k_1^2}{k_1 k_2}\right) \sin(k_2 a)$ $\left(\frac{F}{A}\right) = e^{-j2k_1 a} \left[\cos(k_2 a) - \frac{j}{2} \left(\frac{k_2^2 + k_1^2}{k_1 k_2}\right) \sin(k_2 a)\right]^{-1}$	$\left(\frac{B}{A}\right) = e^{jk_1 a} \frac{j}{2} \left(\frac{F}{A}\right) \left(\frac{k_2^2 - k_1^2}{k_1 k_2}\right) \sin(k_2 a)$ $\left(\frac{F}{A}\right) = e^{-jk_1 a} \left[\cos(k_2 a) - \frac{j}{2} \left(\frac{k_2^2 + k_1^2}{k_1 k_2}\right) \sin(k_2 a)\right]^{-1}$
109	반사 계수 수식	$R = \frac{ B ^2 v_r}{ A ^2 v_1} = \frac{ B ^2 k_2}{ A ^2 k_1} = \left \frac{B}{A} \right ^2 = 1 - T$	$R = \frac{ B ^2 v_r}{ A ^2 v_i} = \frac{ B ^2 k_1}{ A ^2 k_1} = \left \frac{B}{A} \right ^2 = I - T$
110	밑에서 3줄	<i>E=hn</i> > <i>ΔE</i> → <i>n</i> 을 심벌 폰트로	$E=hv>\Delta E$
112	위에서 3줄	궤도양자수 <i>m</i> 은	궤도양자수 <i>l</i> 은
112	밑에서 2줄	배타원리(pauli's exclusion principl)	배타원리(Pauli's exclusion principle)
	위에서 셋째식	$R_{nl}(r) = \sqrt{\left(\frac{2m_o q^2}{nh^2}\right)^3 \frac{(n-l-1)!}{[2n(n+l)!]^3}} e^{-\rho/2} \rho^l L_{n+l}^{2l+1}(\rho)$	$R_{nl}(r) = \sqrt{\left(\frac{Z}{4\pi\varepsilon} \cdot \frac{2m^*q^2}{n\hbar^2}\right)^3 \frac{(n-l-1)!}{\left[2n(n+l)!\right]^3}} e^{-\rho/2} \rho^l L_{n+l}^{2l+1}(\rho)$
114	위에서 넷째식	$L_{n+l}^{2l+1}(2r/na)$	$L_{n+l}^{2l+1}\left(2Zr/na_{o}\right)$
	위에서 여섯째식	$\frac{a}{a} = \frac{4\pi\varepsilon_o \hbar^2}{m_o q^2} = 0.529$	$a_o = \frac{4\pi\varepsilon_o \hbar^2}{m_o q^2} = 0.529$

	아래에서 셋째식 (+ → -)	$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\Theta(\theta)}{\partial\theta} \right) + \frac{m^2}{\sin^2\theta} \Theta(\theta) = -l(l+1)\Theta(\theta)$	$\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\Theta(\theta)}{\partial\theta} \right) - \frac{m^2}{\sin^2\theta} \Theta(\theta) = -l(l+1)\Theta(\theta)$
	아래에서 둘째식		
	맨 아래서 첫식	$P_l^m(\cos heta)$: 부 라게르 다항식	$P_l^m(heta)$: 부 르장드르 다항식
115	위에서 둘째식	$R_{nl}(r) = \sqrt{\left(\frac{2m_o q^2}{nh^2}\right)^3 \frac{(n-l-1)!}{\left[2n(n+l)!\right]^3}} e^{-\rho/2} \rho^l L_{n+l}^{2l+1}(\rho)$	$R_{nl}(r) = \sqrt{\left(\frac{Z}{4\pi\varepsilon} \cdot \frac{2m^*q^2}{nh^2}\right)^3 \frac{(n-l-1)!}{2n[(n+l)!]^3}} e^{-\rho/2} \rho^l L_{n+l}^{2l+1}(\rho)$
113	위에서 셋째식	$\rho = \frac{2m_o q^2}{nh^2} r$	$\rho = \frac{Z}{4\pi\varepsilon} \cdot \frac{2m^*q^2}{nh^2} r$
116	표 2-3의 3p 파동함수	$\dots = \frac{4\sqrt{2}}{9(3a_o)^{3/2}} \left(1 - \frac{r}{6a_o}\right) e^{-r/3a_o} \dots$	= $\frac{4\sqrt{2}}{9(3a_o)^{3/2}} \left(\frac{r}{a_o}\right) \left(1 - \frac{r}{6a_o}\right) e^{-r/3a_o}$
116	맨 아래 수식	$\rho_{nln}(r,\theta,\varphi) = \psi_{nlm}(r,\theta,\varphi) ^2 r^2 \sin\theta$	$\rho_{nlm}(r,\theta,\varphi) = \psi_{nlm}(r,\theta,\varphi) ^2 r^2 \sin\theta$
119	밑에서 둘째 줄	$a_o = \frac{K\hbar^2}{m^* q^2} \cong 0.5279$	$a_o = \frac{K\hbar^2}{m * q^2} \cong 0.529$

3장 에너지 대역 형성과 이동전하

4장 열평형 상태 반도체 내의 이동전하: 전자와 정공의 농도 쪽 숙 수저 저

쪽	줃	수정 전	수정 후
181	제일 아래 수식	$p_o = \int_{VB}^{E_V} g_V(E) (1 - f(E)) dE$	삭제하십시오.
189	[그림 4-5[의 설명	$E_{g S }=1.11$ [eV]	$E_{gS}=1.12 [\mathrm{eV}]$
192	 	GaAs♀ N _V : 7.0x101 ⁸	7.0x10 ¹⁸
203	[표 4-6]의 p형 반도체 다수 캐리어 농도 <i>N_{amaj}</i>	$n_o = N_D$	$p_o\!\!=\!\!N_{\!A}$
203	[표 4-6]의 p형 반도체 소수 캐리어 농도 <i>N_{omin}</i>	$p_o=n_{\rm i}^2/N_D$	$n_o=n_i^2/N_A$
203	[표 4-6]의 p형 반도체 총 불순물 농도 N _{imp}	$N_{inp}\!\!=\!\!N_{\!D}$	$N_{imp}\!\!=\!\!N_{\!A}$
203	[표 4-6]의 페르미 준위 <i>E_F</i>	$E_F \!\!<\!\! E_i$	$E_F\!\!>\!\!E_i$
207	그림 4-13 교체 <mark>(오른쪽 그림<u>으</u>로 통째 교체)</mark>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N _D =N _D ⁺ + n _d [cm ⁻³]: 도너 농도 n _d [cm ⁻³]: 이온화되지 않은 중성 도너 농도 N _D ⁺ [cm ⁻³]: 이온화된 도너 농도 N _A [cm ⁻³]: 이온화된 억셉터 농도 n _a [cm ⁻³]: 이온화되지 않은 중성 억셉터 농도 N _A =N _A + n _a [cm ⁻³]: 억셉터 농도
210	[표4-9]의 억셉터 이온화 에너지	$E_{aa} = \frac{E_a E_V}{E_a}$	$E_{aa}=E_a-E_V$
214	위에서 둘째 식	$n_i(T) = \sqrt{N_C(T)N_V(T)} \exp\left(-\frac{E_g}{kT}\right)$	$n_i(T) = \sqrt{N_C(T)N_V(T)} \exp\left(-\frac{E_g}{2kT}\right)$
215	위에서 둘째 식	$n_i(T) = \sqrt{N_C N_V} \exp\left(-\frac{E_g}{kT}\right) \cong 0$	$n_i(T) = \sqrt{N_C(T)N_V(T)} \exp\left(-\frac{E_g}{2kT}\right) \approx 0$
	예제 4-3 풀이 (a)의 둘째 식	$n_i(T) = \sqrt{N_C N_V} \exp\left(-\frac{E_g}{kT}\right) \cong 0$ $n_i(T) = \sqrt{N_C(T)N_V(T)} \exp\left(-\frac{E_g}{kT}\right) \stackrel{\text{If } L}{\longrightarrow} \frac{L}{L}$ $\log n_i(T) = \frac{1}{2} \log(N_C(T)N_V(T)) - \frac{E_g}{kT}$	$n_i(T) = \sqrt{N_C(T)N_V(T)} \exp\left(-\frac{E_g}{2kT}\right) \approx 0$ $n_i(T) = \sqrt{N_C(T)N_V(T)} \exp\left(-\frac{E_g}{2kT}\right) \stackrel{\text{H.L.}}{\smile}$ $\log n_i(T) = \frac{1}{2} \log(N_C(T)N_V(T)) - \frac{E_g}{2kT}$
218	예제 4-3 풀이 (b)	반도체는 <mark>5족인</mark> 붕소	반도체는 3 <mark>족인</mark> 붕소
	예제 4-3 풀이의 (e) 아래에서 둘쨰와 셋째 줄	밴드갭이 작은 A가 밴드갭이 큰 D보다 열 에너지에 의한 고유 캐리어 농도가 높으므로 (N_{omaj}, N_{omin}) _A >>(N_{omaj}, N_{omin}) _b 가 된다.	A와 D는 밴드갭이 동일하고 열 에너지와 고유 캐리어 농도가 같으므로 (N _{amaj} ·N _{o,min}) _A =(N _{o,min}) _D 가 된다.
220	위에서 셋째 식	$E_i - E_F = kT \ln \left(\frac{p_o}{n_i}\right) = kT \ln \left(\frac{N_D}{n_i}\right) > 0$	$E_i - E_F = kT \ln \left(\frac{p_o}{n_i} \right) = kT \ln \left(\frac{N_A}{n_i} \right) > 0$
220	[표 4-11] 기준에너지(<i>E_{ref}</i>)	E_{fi} = E_f + δE_{fi} , E_{fp} = E_f - δE_{fp}	$E_{Fr} = E_F + \delta E_{Fr}, E_{Fp} = E_F - \delta E_{Fp}$
227	연습문제 4.2 고유 캐리어 농도	$n_i \cong 1 \times 10^8$	$n_i \cong 1 \times 10^6$
228	연습문제 4.3 (d)	(d) 온도에 따른 <mark>다수 캐리어 농도를</mark> 그림(<i>N_{amn}</i> vs. <i>T</i>)으로 나타내라.	(d) 온도에 따른 다수 캐리어와 소수 캐리어 농도를 그림(N _{a,maj} N _{a,min} vs. T)으로 나타내라.

5장 전하의 이동과 전류 형성

	2에의 에어의 단표 ㅇㅇ		,	
쪽	줃	수정 전	수정 후	
234	위에서 여덟째 수식	Flux = D(-dN(x)/dx	Flux=D(-dN(x)/dx) ← 닫음괄호	
239	첫줄	(mean free path,)	(mean free time,)	
241	그림 5-6 <mark>(오른쪽 그림으로 교체)</mark>	ΔE_C E_C E_V	E $\Delta E = E_{ko}$ E_{C} E_{V}	
254	첫줄 수식 $Flux = D\left(-\frac{dN(x)}{dx}\right) [1/cm^2s]$		$Flux _{diff} \equiv D\left(-\frac{dN(x)}{dx}\right) [1/\text{cm}^2\text{s}]$	
261	그림 5-16의 설명 (b)의 설명과 (c)의 설명을 맞바꿔야 함	(b) 불균일한 농도 분포를 갖는 n형 반도체의 접합 전 에너지 대역도 (c) 열평형 상태의 반도체 내부 전하밀도 분포와 내부 전계	(b) 열평형 상태의 반도체 내부 전하밀도 분포와 내부 전계 (c) 불균일한 농도 분포를 갖는 n형 반도체의 접합 전 에너지 대역도	
262	위에서 넷째 수식	$\mathcal{E}_{bi}(x) = \mathcal{E}_{bi}(x) = -\frac{D_n}{\mu_n} \frac{1}{n_o(x)} \frac{dn_o(x)}{dx} = \cdots$	$\mathcal{E}_{bi}(x) = -\frac{D_n}{\mu_n} \frac{1}{n_o(x)} \frac{dn_o(x)}{dx} = \cdots$	
273	예제 5-2의 문제 (c)	(c)[그림 5-17]과 같은 홀 측정 장치에 V₄(<0)를	(c)[그림 5-18]과 같은 홀 측정 장치에 $V_a(>0)$ 를	
275	275쪽 수식의 크기		쪽 수식과 같은 크기로 줄여주세요.	
278	연습문제 5.6	(a) 두께가 <mark>0.1인</mark>	(a) 두께가 0.1 [μm]인	

6장 과잉 캐리어와 연속방정식

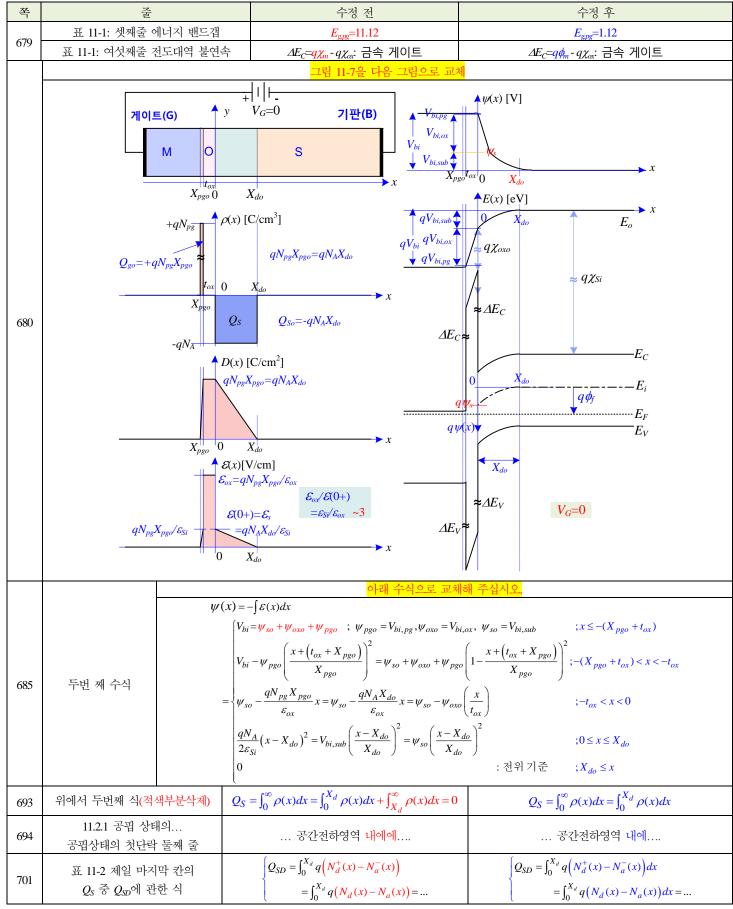
쪽	가 <mark>의 캐디어와 연속망성식</mark> 줄	수정 전	수정 후
,	2		$n(t)=n_o+\delta n(t)$
284	[그림 6-3]의 (b) <mark>(오른쪽 그림으로 교체</mark>)	$n(t)=n_o+\delta n(t)=$ 일정 n_o $\delta n(t)$ E_F E_i E_F E_v $\delta p(t)=p_o+\delta p(t)=$ 일정	E_{C} E_{F} E_{i} E_{V} p_{o} $p(t)=p_{o}+\delta p(t)$ E_{Fn} E_{Fn} E_{Fn}
285	6.1.1의 위에서 셋째 줄 수식	전류 <i>J=J_p+J_n=</i> 0, <i>J=<mark>J_{drij},+</mark>J_{dij}=</i> 0	전류 <i>J=J_p+J_n=0, J=J_{drift}+J_{diff}=</i> 0
290	아래에서 여섯째 줄	차이(np-ni²)를 문제 (a),(b) w	차이(<i>np-n</i> _i ²)를
		문제 (a),(b) \overline{w} 풀이(a)의 첫줄 \overline{w} 풀이 (a)의 첫식: $\delta N(t_1=\tau_o)=\Delta N_o$	$ au_o$ (o를 아랫첨자로 바꿔주세요.) $\delta N(t_1= au_o)=rac{\Delta N_o}{a}$
296 296	예제 6-2 문제와 풀이	불어 (b)의 첫대. $\partial N(t_1 = \tau_o) = \Delta N_o$ $\frac{\partial N(t_2 = 3\tau_o)}{\partial N(t_1 = \tau_o)} = \frac{1}{20}$ $\stackrel{\text{=}}{=} \text{한} \text{(b)} 의 셋째줄 v$ $\stackrel{\text{=}}{=} r(t_1 = \tau_o) = \frac{\partial N(t_1)}{\tau_o} = \frac{\Delta N_o}{\tau_o}$ $\frac{\stackrel{\text{=}}{=} r(t_2 = 3\tau_o)}{\stackrel{\text{=}}{=} r(t_1 = \tau_o)} = \frac{\partial N(t_2)}{\partial N(t_1)} = \frac{1}{20}$	$\frac{\delta N(t_1 = \tau_o)}{\delta N(t_1 = \tau_o)} = \frac{1}{e^2} = 0.135$ $\frac{\tau_o}{r'(t_1 = \tau_o)} = \frac{\delta N(t_1)}{\tau_o} = \frac{\Delta N_o}{e \cdot \tau_o}$ $\frac{r'(t_2 = 3\tau_o)}{r'(t_1 = \tau_o)} = \frac{\delta N(t_2)}{\delta N(t_1)} = \frac{1}{e^2} = 0.135$
301	소제목	■ <mark>균일 농도</mark> 반도체에서 시변 확산방정식	■균일하게 도핑된 반도체에서 시변 확산방정식
306	위에서 첫째와 둘째 수식의 괄호	$p(t,x=p_o(x)+\delta p(t,x) \text{ [cm}^3]$ 「十二… $n(t,x=n_o(x)+\delta n(t,x) \text{ [cm}^3]$ 全二…	$p(t,x)=p_o(x)+\delta p(t,x)$ [cm³] 다수 $n(t,x)=n_o(x)+\delta n(t,x)$ [cm³] 소수
309	확산길이 문단의 둘째 줄	확산길이(<mark>diffusiuon</mark> length)	확산길이(diffusion length)
313	[그림 6-11]의 (b) <mark>(오른쪽 그림으로 교체</mark>)	ΔN তি $N(t)$: ΔN লাভ গাল লাভ লাভ গাল লাভ লাভ লাভ গাল লাভ লাভ লাভ লাভ লাভ লাভ লাভ লাভ লাভ ল	ΔN 하 하 한 기
323	위애서 둘째 수식	$p = p_o + \delta p = \dots = \frac{n_o}{n_o} \exp(\dots)$	$p = p_o + \delta p = \dots = p_o \exp(\dots)$
323	위애서 넷째 수식	$E_i - E_{Fp} = \dots = kT \ln \left(1 + \frac{\delta n}{p_o} \right) = \dots$	$E_i - E_{Fp} = \dots = kT \ln \left(1 + \frac{\delta p}{p_o} \right) = \dots$
324	표 바로 아래 첫줄 수식	$p = p_o \exp\left(\frac{E_F - E_{Fn}}{kT}\right) Q_g = Q_S = \cdots$	$p = p_o \exp\left(\frac{E_F - E_{Fp}}{kT}\right) Q_g = Q_S = \cdots$
335	셋째 수식 바로 아래	포획률과 <mark>방츌률이</mark>	포획률과 방출률이
336	아래에서 넷째 수식	$f_{FD}(E_t) = \frac{c_n n' + c_p p'}{c_n (n+n') + c_p (p+p')}$	$f_{FD}(E_t) = \frac{c_n n + c_p p}{c_n (n+n') + c_p (p+p')}$
344	연습문제 6.2	(d) <u>⊨</u> ,에서의	수정없이 원래대로 두세요!!!!
347	연습문제 6.7(c)	동일한 농도 (&=N ₀ 20)의	동일한 농도 (ðn=10 ¹⁵ [cm ⁻³])의

7장 반도체 접힙의 형성과 에너지 대역도

쪽	줄	수정 전	수정 후
355	[그림 7-5]의 맨 오른쪽 그림 중 gV _{hip} 를 qV _{hip} 로 수정 (오른쪽 그림으로 교체)	$ \begin{array}{c c} & n \\ & N_D[\text{cm}^{-3}] \end{array} $ $ \begin{array}{c c} & qV_{bin} & qV_{bi} \\ \hline & qV_{bin} & E_C \end{array} $ $ \begin{array}{c c} & E_F \\ & E_i \\ \hline & E_V \end{array} $	$ \begin{array}{c c} & n \\ & N_D[\text{cm}^{-3}] \end{array} $ $ \begin{array}{c c} & QV_{bin} & qV_{bi} \\ \hline & QV_{bip} & E_C \\ \hline & QV_{bip} & E_C \end{array} $ $ \begin{array}{c c} & E_C \\ \hline & E_i \\ \hline & E_V \end{array} $
370	위에서 셋째 줄	n형 공간 전하영역 <i>N_d(x)=0,N_d(x)=<mark>N_A</mark>이므로</i>	n형 공간 전하영역 N _d (x)=0, N _d (x)=N _D 이므로
376	위에서 둘째 식	$V_{bi} = \frac{1}{q} E_{F1} - E_{F2} = V_{th} \ln \left(\frac{N_A N_D}{n_i^2} \right) $ [V]	$\begin{split} V_{bi} &= \frac{1}{q} \left E_{F1} - E_{F2} \right = V_{th} \ln \left(\frac{N_A N_D}{n_i^2} \right) = \frac{E_g}{q} - \Delta V \\ &; \ \Delta V \equiv V_{th} \ln \left(\frac{N_A N_D}{N_C N_V} \right) \ [V] \end{split}$
387	위에서 셋째 식	$-q\varphi(x) \equiv E_C(x) - E_C \qquad (x = \infty)$	$-q\varphi(x) \equiv E_C(x) - E_C(x = \infty)$
404	아래에서 셋째 식	$V_{bi} = V_{th} \ln \left(\frac{N_A N_D}{n_i^2} \right), _A X_{pi} = N_D X_{ni}$	$V_{bi} = V_{th} \ln \left(\frac{N_A N_D}{n_i^2} \right), N_A X_{pi} = N_D X_{ni}$
408	연습문제 7.1(f)	최대 전계의 세기를 비교하라.	최대 전계의 세기를 구하라.
410	위에서 여섯째 줄	에너지 장벽을 모두 구하라 .	에너지 장벽을 구하라.

8 장 pn 접합 다이오드의 전류-전압 특성

쪽	중	수정 전	수정 후	
422	[크림 0 집이 스킨	$\delta n_p(x) = \Delta n_p \exp\left[\frac{x + (X_p + W_p)}{L_n}\right]$	$\delta n_p(x) = \Delta n_p \exp\left[\frac{x + X_p}{L_n}\right]$	
433	[그림 8-6]의 수식	$\delta p_n(x) = \Delta p_n \exp\left[\frac{-\left(x - \left(\frac{X_n + W_n}{V_n}\right)\right)}{L_p}\right]$	$\delta p_n(x) = \Delta p_n \exp\left[\frac{-\left(x - X_n\right)}{L_p}\right]$	
439	위에서 첫째 수식	$J_{min,drff} = \dots$	$J_{\mathit{min,diff}} = \dots$	
469	[그림 8-26] 아래 둘째 줄	avalanche <mark>breakjdown</mark> voltage)	avalanche breakdown voltage)	
471	[그림 8-27] 아래 셋째, 넷째, 다섯째 줄	zener	Zener	
472	위에서 둘째 수식	$\ldots, L=L(N_A, N_A, V_R)$	$\dots, L=L(N_A, N_D, V_R)$	
472	위에서 넷째 수식	zener	Zener	


9장 금속-반도체 접합과 반도체 이종접합

쪽	출		수정 전		수정 후
505	[표 9-3]		밴드갭 <i>qф</i> , [eV]		밴드갭 E_g [eV]
522	9.3의 제목		9.3 옴성 금속-반도체		9.3 옴성 금속-반도체 접합
527	그림 9-15		그림 9-15		979쪽의 그림 14-12를 가져와서 교체
527	그림 9-16 교체 <mark>(아래 그)</mark> 전혀 charge 전혀 유 electric fie	문포 ux density 분포 density 분포 density	그림 9-15 $\rho(x) = q(p(x) - n(x) + N_d(x) - N_d(x)) - N_d(x)$ $D(x) = \int \rho(x) dx \text{ [C/cm}^2]$ $\varepsilon(x) = \frac{D(x)}{\varepsilon(x)} \text{ [V/cm]}$ $\psi(x) = -\int \varepsilon(x) dx \text{ [V]}$ $E_o(x) = -q\psi(x) \text{ [eV]}$	(x)) [C/cm ³] 연속 (계면상태=0 연속 또는 불연속 연속	$\frac{dD(x)}{dx} = \frac{d\left[\varepsilon(x)\varepsilon(x)\right]}{dx} = \rho(x) \text{ [C/cm}^3]$ $\nabla \cdot \vec{D} = \rho \text{[C/cm}^3] : \text{Poisson's Eq.}$ $D(x) = \varepsilon(x)\varepsilon(x) \text{ [C/cm}^2]$ $\vec{D} = \varepsilon \vec{\varepsilon} \text{ [C/cm}^2]$ $\varepsilon(x) = -\frac{d\psi(x)}{dx} \text{ [V/cm]}$ $\vec{\varepsilon}(x, y, z) = -\nabla \psi(x, y, z) \text{ [V/cm]}$ $E(x) = -q\psi(x) + E_{ref} \text{ [eV]}$
	전도 대역 에너지 conduction band		$E_C(x) = E_o(x) - q\chi(x) \text{ [eV]}$	연속 또는 불연속	$\Delta E = -qV$ $\mathcal{E}(x) = \frac{1}{q} \frac{dE(x)}{dx}$ $\mathcal{E}(x) = \frac{1}{q} \frac{dE(x)}{dx}$ $\mathcal{E}(x) = \frac{1}{q} \frac{dE(x)}{dx}$ $\mathcal{E}(x) = \frac{1}{q} \frac{dE(x)}{dx}$
	가전자 대역 에너지 conduction band		$E_V(x) = E_C(x) - E_g(x) \text{ [eV]}$	연속 또는 불연속	$N(E) = N(E_{ref})e^{\pm \Delta E(x)/kT}$ $N(x) = N(x_{ref})e^{\pm \Delta E(x)/kT}$ ΔE_C ΔE_V
539	[그림 9-25]의 제목	따른	른 에너지 대역도와 소수 캐리어 농도 분포		따른 에너지 대역도
545	아래에서 첫째 수식		$J_n(x) = J_{n,drift}^p + J_{n,diff}^p = \cdots$		$J_n^p(x) = J_{n,drift}^p + J_{n,diff}^p = \cdots$

10장 바이폴라 트랜지스터의 전류-전압 특성

	마이들다 드렌시끄러의 전류·전급 즉		
쪽	줃	수정 전	수정 후
554	세번째 그림 맨왼쪽 y축 좌표	pc(x²) pn 접합 다이오드의 전류-전압 특성	<i>p_E(x')</i> 바이폴라 트랜지스터의 전류-전압 특성
554	10장 학습내용 첫줄		
561	위에서 첫째 수식	$I_g = A \int_{-X_p}^{X_n} qG_{SRH} dx = \cdots$	$I_{g,th} = A \int_{-X_p}^{X_n} q g_{th} dx = \cdots$
561	[그림 10-5]내의 둘째 수식	$\rightarrow I_{g,th} \uparrow = \dots = qA \frac{n_i}{2\tau_o} W_{CR}$	$\rightarrow I_{g,th} \uparrow = \dots = qA \frac{n_i}{2\tau_o} W_{SCR}$
562	[그림 10-6]내의 첫째 수식	以 $\uparrow \rightarrow \cdots = \frac{P_{opt}}{h\nu} \uparrow, \cdots$	$\biguplus \uparrow \rightarrow \cdots = \frac{P_{opt}}{\tau_o h \nu} \uparrow, \cdots$
566	위에서 14째 줄	확산길이(D nB)를	확산길이(<i>L_{nB}</i>)를
570	[그림 10-15]의 (c)		
572	[그림 10-16]의 (a)~(d)		
575	[그림 10-17]의 (a), (b)	그림 속의 왼쪽 에미터 영역 소스 케기의 노드부프 포기	$p_E(x')$
604	[그림 10-25]	소수 캐리어 농도분포 표기: $p_C(x')$	T E C
615	[그림 10-29]의 (a)		
627	[그림 10-35]의 (a)와 (b)		
614	위에서 3째줄	공간전하영역의 확정과	공간전하영역의 확장과
582	그림 10-19 n _{Eo} =N _{DE} n _{Bo} =n	아래 그림으 $_{i_i^2}/N_{AB} \; n_{Co} = N_{DC}$ $p_E(x')$ $\wedge \wedge$	으로 통째 교체 n _B (x)
	I_E J_{pE} I_R I_{RB} V_{BE} I_B	V_{BC} 전자 이동 J_{E} 전자 이동 J_{E} 전공 이동	$n_{B}(0) = n_{Bo}e^{V_{BE}/V_{th}}$ $n_{B}(W_{B}) = n_{Bo}e^{V_{BC}/V_{th}}$ $p_{C}(0) = p_{Co}e^{V_{BC}/V_{th}}$ $p_{C}(W_{C}) = p_{Co}$ n_{Bo} W_{C} W_{B} V_{C} W_{B} V_{C}
596	아래에서 9째 줄	동작온도에 의해 <mark>결정</mark> 된다	동작온도에 의해 지배된다
622	10.4.3. 의 3쨰줄	quas-electric field)	quasi-electric field)
628	첫줄 제목	■콜렉터-에미터 붕괴 전압(<i>BVඎ</i>)	■콜렉터-에미터 붕괴 전압(<i>BV_{CEO}</i>)
632	제목아래 3쨰 줄	"시 <mark>특성 이해 해석</mark> 가장 기본이 되는 해석적 모델	"시 특성 이해와 해석의 가장 기본이 되는 해석적 모델
634	둘째 줄의 그림 번호	결합하면 [그림 <u>10-36(b)</u>]에	결합하면 [그림 10-37(b)]에
666	문제 107의 첫줄	베이스 영역의 억셉터(acceptor) 농도 $N_{AB}(x)$ 가 서로 다른 두 개의 npn 형 바이폴라 트랜지스터가 있다.	베이스 영역의 도너(donor) 농도 N_{DB} X)가 서로 다른 두 개의 pnp 형 바이폴라 트랜지스터가 있다.
667	문제 107의 (b)	평균수명 (४,८)을 비교하여 설명하라.	평균수명 (४ _{८८})을 비교하여 설명하라.

11장 MOS 구조의 전기적 특성

702	2 위에서 넷째줄 수식		$\psi_s = (V_{bi,sub} + V_{bi,sub}) = \cdots$	$\psi_s = (V_{bi,sub} + V_{sub}) = \cdots$
705	밑에서 둘째 수식		$\frac{N(E)}{N_{ref}(E_{ref})} = \dots = e^{\mp \Delta \psi / kT} \Leftrightarrow \dots$	$\frac{N(E)}{N_{ref}(E_{ref})} = \dots = e^{\mp \Delta \psi / V_{th}} \Leftrightarrow \dots$
705			$N_{ref}(E_{ref})$	$N_{ref}(E_{ref})$
		둘째 줄 평탄대역의 반도체 표면상태	평탄에너지 대역	중성전하((x)=0:모든 영역)
		약한 반전상태의		
		표면전하농도 수식	$Q_S = Q_{SD} + Q_{Sn} \cong \frac{Q_{Sp}}{Q_{Sp}} < 0$	$Q_S = Q_{SD} + Q_{Sn} \cong Q_{SD} < 0$
		약한 반전상태의	낮은 농도의 반전 이동 전하	다수 캐리어의 공핍과 낮은 농도의 반전 이동 전하
715	[丑11-3]	반도체 표면상태	大는 6소의 현현 의중 현미	어무 게다이라 중합자 옷은 중소가 한잔 이중 잔이
/13	[3411-3]	임계상태의	$Q_S = Q_{SD} + Q_{Sn} \cong Q_{Sp} < 0$	$Q_S = Q_{SD} + Q_{Sn} \cong Q_{SD} < 0$
		표면전하 농도		
		임계 상태의 반도체 표면상태:	임계 상태	강한 반전의 임계상태 (n(0)=N _A)
		강한 반전상태의		
		표면전하 농도	$Q_S = Q_{SD} + Q_{Sn} \cong Q_{Sp} < 0$	$Q_S = Q_{SD} + Q_{Sn} \cong Q_{Sn} < 0$
	7.5	님 11-31 안의 수식	$Q_S = Q_{SD} + Q_{Sm} = Q_S$	$Q_S = Q_{SD} + Q_{Sm} = Q_{Sm}$
		의 아래첨자가 분리됨)	$^{m}Q_{Sm}=Q_{Sp}, Q_{SD}=0$	$Q_{Sm} = Q_{Sp}, Q_{SD} = 0$ (또는 아래 그림으로 통째 교체)
		\	W 40 W 40	$V_G = V_{FB} < 0, \ \psi_S = 0$
		丑	$면에 다수캐리어인 \Delta E_{C} 축 축$	평탄 에너지 대역
		$\Delta E_C \neq \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	공의 축적 ole Accumulation)	(Flat Band)
				E
				E _C
		$qV_G < qV_{FB}$	E_C $qV_G = q rac{oldsymbol{V_{FB}}}{oldsymbol{V_{FB}}}$	E_i
710	$q\psi_s$ 0 $q\psi$		E_i	$q\psi_s=0$ $q\phi_f$ E_F
718			(x) $q\phi_f$ x E_F	E_V
			E_V	$\oint \rho(x)$
		$\Delta E_V \approx$	$Q_{S}=Q_{SD}+Q_{Sm}=Q_{Sm}$ $\Delta E_{V} \approx 3$:
		· #	$Q_{SD} = Q_{SD} + Q_{Sm} - Q_{Sm}$ $Q_{Sm} = Q_{Sp}, Q_{SD} = 0$	Q_{pg} =0 Q_{S} =0
		$\setminus \setminus_X$	$Q_S = Q_{Sp} > 0$	X_{pg} =0 $\begin{vmatrix} t_{ox} \end{vmatrix}$ 0 X_d =0
	\ '		2. 2.4	x
			$0 \\ X_d=0$	
			(a)	(b)
				(0)
	두번	째 박스 속 수식 중	$V_{bi} =$	$V_{bi} =$
501	, ,	4번째 줄	$\begin{cases} V_{bi} = \\ V_{G} = \end{cases} \begin{cases} \frac{V_{bi,ox}}{V_{bi,sub}} = = \frac{C_{S}}{C_{ox}} = \frac{t_{ox}}{X_{d}} \frac{\varepsilon_{Si}}{\varepsilon_{ox}} \end{cases}$	$\begin{cases} V_{bi} = \\ V_{G} = \end{cases} \begin{cases} \frac{V_{bi,ox}}{V_{bi,sub}} = = 2 \frac{C_{S}}{C_{ox}} = 2 \frac{t_{ox}}{X_{d}} \frac{\varepsilon_{Si}}{\varepsilon_{ox}} \end{cases}$
731	두버	째 바스 소 수시 주		$\RightarrowV_T = + 2\frac{C_{ST}}{C_{OY}} 2\phi_f + + 2\phi_f$
	두번 째 박스 속 수식 중 맨 아랫줄 수식		$\RightarrowV_T = + \frac{C_{ST}}{C_{ox}} 2\phi_f + + 2\phi_f$	
732	아래	[그림11-36] 셋째줄 수식 끝부분	$\psi_{oxT} = \dots = \frac{C_{SDT}}{C_{ox}} 2\phi_f$	$\psi_{oxT} = \dots = 2 \frac{C_{SDT}}{C_{ox}} 2\phi_f$
732		래에서 8번쨰 줄	$\dots C_{ST} = \frac{\varepsilon_{Si}}{X_{d max}}$	$\psi_{oxT} = \dots = 2\frac{C_{SDT}}{C_{ox}} 2\phi_f$ $\dots C_{ST} = \frac{\varepsilon_{Si}}{X_{d,max}} = C_{SD,min}$ $C_{ox}\psi_{ox} = 2C_S\psi_S \rightarrow \psi_{oxT} = 2\frac{C_{ST}}{C_{ox}}\psi_{ST} = 2\frac{C_{ST}}{C_{ox}} 2\phi_f$
732	아래에서 7번쨰 줄		$C_{ox}\psi_{ox} = C_S\psi_S \to \psi_{oxT} = \frac{C_{ST}}{C}\psi_{ST} = \frac{C_{ST}}{C}2\phi_f$	$C_{ox}\psi_{ox} = 2C_S\psi_S \to \psi_{oxT} = 2\frac{C_{ST}}{C}\psi_{ST} = 2\frac{C_{ST}}{C}2\phi_f$
<u> </u>			c_{ox} c_{ox}	c_{ox} c_{ox}

			V = 4	V = A
733	[표11-4]로부터 위로 3째줄 수식		$V_T = \phi_{ms} \dots$ $= \phi_{ms} + 2\phi_f \left(\frac{C_{SD,max}}{C_{ox}}\right) + \dots$ $= \phi_{ms} + 2\phi_f \left(\dots + \frac{C_{SD,max}}{C_{ox}}\right)$ $= V_{FB} + 2\phi_f \left(\dots + \frac{C_{SD,max}}{C_{ox}}\right)$	$V_T = \phi_{ms} \dots$ $= \phi_{ms} + 2\phi_f \left(2 \frac{C_{SD,min}}{C_{ox}} \right) + \dots$ $= \phi_{ms} + 2\phi_f \left(\dots + 2 \frac{C_{SD,min}}{C_{ox}} \right)$ $= V_{FB} + 2\phi_f \left(\dots + 2 \frac{C_{SD,min}}{C_{ox}} \right)$
			(0)	X
734	위에서 첫째 수식의 둘째줄		$V_T \equiv \dots = \phi_{ms} \dots + \left(\frac{C_{SDT}}{C_{ox}}\right) 2\phi_f \dots$	$V_T \equiv \dots $ $= \phi_{ms} \dots + \left(2 \frac{C_{SDT}}{C_{ox}}\right) 2 \phi_f \dots$
		수정전	$\phi_{ms} = \phi_m - \phi_s = V_{FB} = -\frac{kT}{q} \ln\left(\frac{N_{pg}N_A}{n_i^2}\right) = \frac{kT}{q} \ln\left(\frac{N_{pg}N_A}{N_CN_V}\right)$ $= \frac{E_g}{q} + \frac{kT}{q} \ln\left(\frac{N_{pg}N_A}{N_CN_V}\right)$	$\left(\frac{N_{pg}N_A}{cN_Ve^{-E_g/kT}}\right) = \frac{kT}{q}\ln\left(\frac{N_{pg}N_A}{N_CN_V}e^{E_g/kT}\right)$
737	위에서 첫 식	수정후	$\phi_{ms} = \phi_m - \phi_s = V_{FB} = -\frac{kT}{q} \ln \left(\frac{N_{pg} N_A}{n_i^2} \right) = -\frac{kT}{q} \ln \left(\frac{N_C N_V}{N_{pg} N_A} \right)$ $= -\frac{E_g}{q} + \frac{kT}{q} \ln \left(\frac{N_C N_V}{N_{pg} N_A} \right)$	$\frac{N_{pg}N_A}{N_CN_Ve^{-E_g/kT}} = \frac{kT}{q}\ln\left(\frac{N_CN_V}{N_{pg}N_A}e^{-E_g/kT}\right)$
740	예제 11-2의 (d)		$V_T = \dots = \dots \left(1 + \frac{N_A}{N_{pg}} + \frac{C_{SDT}}{C_{ox}}\right)$ $= -0.996\times \left(\dots + \frac{0.215}{0.531}\right) = 0.339 \text{ [V]}$	$V_T = \dots = \dots \left(1 + \frac{N_A}{N_{pg}} + 2\frac{C_{SDT}}{C_{ox}}\right)$ $= -0.996\times \left(\dots + 2\frac{0.215}{0.531}\right) = 0.716 \text{ [V]}$
745	제일 아래 수식		$C_g = \left(\frac{1}{j\omega}\right) \left(\frac{\upsilon_{ac}(t)}{i_{ac}(t)}\right) = \left(\frac{1}{j2\pi f}\right) \left(\frac{\upsilon_{ac}(t)}{i_{ac}(t)}\right)$	$C_g = \left(\frac{1}{j\omega}\right) \left(\frac{i_{ac}(t)}{\upsilon_{ac}(t)}\right) = \left(\frac{1}{j2\pi f}\right) \left(\frac{i_{ac}(t)}{\upsilon_{ac}(t)}\right)$
748	위에서 여덟째 줄		를 다시 정리해 보자.	를 다시 정리하면 다음과 같다.
752	그림 11-43 의 (b)		C_{F}	C_{FB}
769	아래에서 둘째 & 넷째	수식	$ Q_g = Q_g = \cdots$	$ Q_g = Q_S = \cdots$
			·MOS	_
772	배경색으로 요약한 부는	쿤 수식	$V_T = \dots = V_{FB} + \frac{C_{SD,min}}{C_{ox}} 2\phi_f + \dots$ $= V_{FB} + 2\phi_f \left(1 + \dots + \frac{C_{SD,min}}{C_{ox}}\right)$	$V_T = \dots = V_{FB} + 2 \frac{C_{SD,min}}{C_{ox}} 2\phi_f + \dots$ $= V_{FB} + 2\phi_f \left(1 + \dots + 2 \frac{C_{SD,min}}{C_{ox}} \right)$
774	· 임계 전압의 비교에 관한 수식		$V_T = V_{FB} + \dots = V_{FB} + \frac{C_{SD,min}}{C_{ox}} 2\phi_f + \dots$ $= V_{FB} + 2\phi_f \left(1 \dots + \frac{C_{SD,min}}{C_{ox}} \right)$	$V_T = V_{FB} + = V_{FB} + 2 \frac{C_{SD,min}}{C_{ox}} 2\phi_f +$ = $V_{FB} + 2\phi_f \left(1 + 2 \frac{C_{SD,min}}{C_{ox}} \right)$
776	위로부터 첫째 식		$V_T = V_{FB} \dots = V_{FB} + \dots$ $= V_{FB} + 2\phi_f \left(1 + \frac{N_A}{N_{pg}} + \frac{C_{SD,min}}{C_{ox}} \right)$	$V_T = V_{FB} = V_{FB} +$ $= V_{FB} + 2\phi_f \left(1 + \frac{N_A}{N_{pg}} + 2\frac{C_{SD,min}}{C_{ox}} \right)$
783	연습문제 11.3.의 (b)		(b) 반전된 <mark>전자</mark> 농도	(b) 반전된 정공 농도
783	연습문제 11.3.의 (i)		(i) 반전된 <mark>전자</mark> 에 의한 전하량 (<i>Qsm</i>)를 구하라.	(i) 반전된 정공에 의한 전하량 (Q_{SpT})를 구하라.
784	연습문제 114의 (i)		(i)A의 C-V 특성 곡선과	(i)강한 반전상태의 경계가 되는 임계전압이 A의 임계전압과
755	■ C-V 특성 곡선을 교체해 주십시오. 조 수정 전			<mark>날까지를 아래에 새로 작성한 내용으로 완전</mark>
756	756 ■C-V 특성 곡선을 이용한 평탄대역 전압의 추출 V _G =V _{FB} 또는 Ψ _S < <v<sub>th)에서 표면전위의 변화에 따른 MOS 구조의 캐패시턴스의 변화가 0인 점을 찾아 3 - 13 -</v<sub>			캐패시턴스의 변화가 0인 점을 찾아 평탄
			- 13 -	

전압을 측정하는 용도로도 사용한다. 즉, 산화막 캐패시턴스는 게이트 전압과 표면전위에 무관하게 일정하고, 평탄대역 전압 근처에서 기판 캐패시턴스도 게이트 전압에 무관하게 일정하므로

를 이용하여 ${f MOS}$ 구조의 평탄대역 전압 V_{FB} 를 구할 수 있으며 [표 11-6]에 이를 요약하였다.

수정 후 (혹시 수정 전과 후의 분량 차이가 있을 수 있으니 길이 조정이 필요하면 연락 주십시오.)

■ C-V 특성 곡선을 이용한 평탄대역 전압의 추출

MOS 구조의 전기적 특성을 나타내는 특성지표 중 평탄대역 전압 V_{FB} 을 명확히 정의하고, 이를 바탕으로 이론적으로 정확히 계산할 수 있어야 함은 물론이고, 실험적으로 편리하고 정확하게 추출하는 것도 매우 중요하다. 그런데, n-채널 MOS 구조의 임계전압은 기판 표면전위가 기판 페르미 전위의 2배이고 기판 표면에 반전된 전자의 농도가 기판의 정공 농도와 같을 때(V_S =2 ϕ_R n(0)= N_A)의 게이트 전압으로서 다음과 같이 정리할 수 있다.

$$V_{T} \equiv V_{G} \Big|_{\psi_{S} = 2\phi_{f}}^{n(0) = N_{A}} = V_{FB} + \psi_{pg} + \psi_{ox} + \psi_{S} = V_{FB} - \frac{Q_{SD,max}}{C_{ox}} + 2\phi_{f} \left(1 + \frac{N_{A}}{N_{pg}}\right)$$

실제 MOS 구조는 게이트 산화막과 기판의 경계면(Si/SiO₂)에 표면전위에 의존하는 계면전하 $Q_{ii}(\psi_S)$ 가 존재한다. 따라서, 게이트와 기판의 페르미 전위 차이 $\phi_{ms}=\phi_{m}$ - ϕ_{s} , 산화막 내의 고정전하(Q_{ss}), 그리고, 계면전하로 인한 영향을 고려하면 게이트 전압에 의존하는 평탄대역 전압은 다음과 같이 나타낼 수 있다.

$$V_{FB} = V_G \Big|_{\psi_S = 0} = \left(\phi_{ms} - \frac{Q_{ss}}{C_{ox}} - \frac{Q_{it}(V_{GS})}{C_{ox}} \right)$$

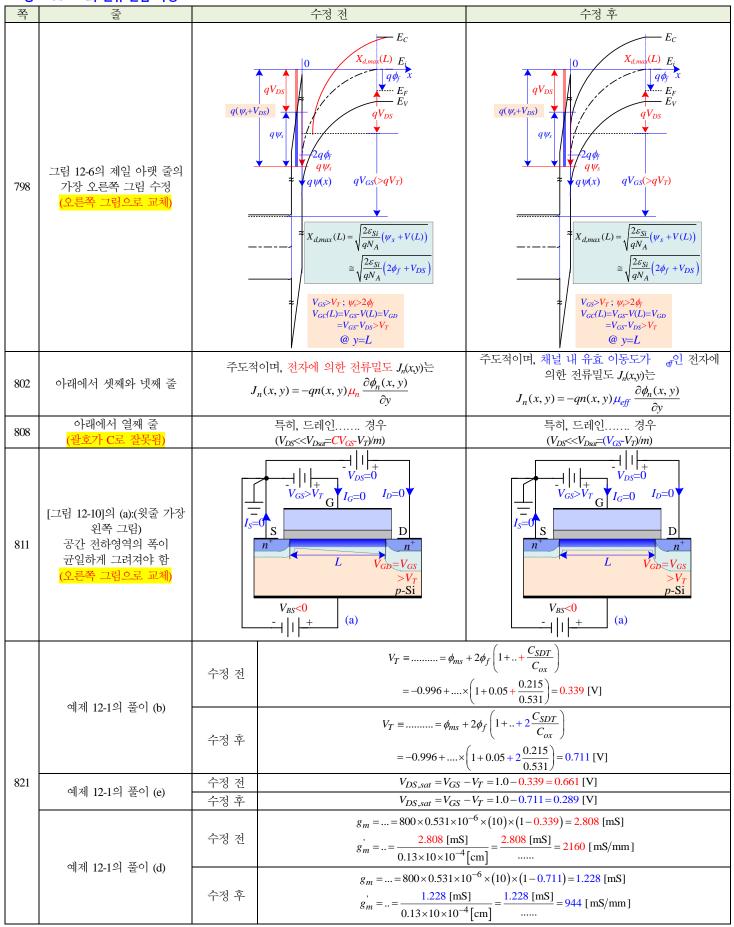
그런데, 실제 MOS 구조의 계면전하 분포는 잘 알려져 있지 않으며, 실험적으로 얻어야 하는 경우가 대부분이므로 평탄대역 전압을 이론적 수식을 통해 정확히 계산하는 것은 비현실적이다. 따라서, MOS 구조의 평탄대역 전압을 실험적으로 측정하는 방법에는 I-V 특성과 C-V 특성 등 다양한 방법이 있다.

그 중 실험적으로 측정한 C-V 특성곡선을 이용하여 평탄대역 전압을 추출하는 방법이 간편하고 효율적인 방법으로서 널리 사용된다. 앞서 설명한 바와 같이 평탄대역 전압은 다수캐리어 축적상태와 다수 캐리어 공핍상태의 경계가 되는 전압으로 기판 표면전위가 0이 되는 전압이다. 평탄대역 전압을 경계로 한 기판 영역 커패시턴스 C_S 를 요약하면 다음과 같다.

$$C_S(V_G) = C_{SD}(\psi_S) + C_{Sm}(\psi_S) \cong \begin{cases} C_{Sm}(\psi_S) = \sqrt{\frac{\varepsilon_{Si}qN_A}{2V_{th}}}e^{-\psi_S/2V_{th}} & \left(\psi_S < 0, V_{GS} < V_{FB} : 다수 캐리어 축적상태\right) \\ C_{SD}(\psi_S) = \frac{\varepsilon_{Si}}{X_d(\psi_S)} = \sqrt{\frac{\varepsilon_{Si}qN_A}{2\psi_S}}\left(\psi_S > 0, V_{GS} > V_{FB} : 다수 캐리어 공핍상태\right) \end{cases}$$

따라서, 표면전위 $\psi_s=0$ 을 경계로 기판표면의 전하량 Q_s 는 표면전위 의존도가 급격히 변하며, C-V 특성 곡선에서도 평탄대역 전압을 경계로 게이트 전압 의존도가 가장 급격히 변하는 특성을 얻게 된다.

이 현상을 기반으로 하여 실험적으로 얻은 C-V 특성 곡선에서 게이트 전압에 따른 커패시턴스 변화율의 2차 미분이 0이 되는 전압을 평탄대역 전압으로 이용하며, 이를 수식으로 정리하면 다음과 같다.


$$\left.\frac{\partial^{2}C_{g}}{\partial V_{G}^{2}}\right|_{\substack{V_{G}=V_{FB}\\|V_{S}|=0V_{th}}}=0 \Leftrightarrow V_{FB}\equiv V_{G}\left|\frac{\partial^{2}C_{g}}{\partial V_{G}^{2}}=0\right|$$

평탄대역 전압 근처에서 MOS 구조의 커패시턴스 특성을 [표 11-6]에 요약하였다.

[표 11-6]의 제일 아래 칸의 수식을 다음의 수정 후 수식으로 교체해 주십시오.

756 $\frac{\partial C_S}{\partial \psi_S}\Big|_{\substack{\psi_S|\ll V_{th} \\ V_G\approx V_{FB}}} = \frac{\partial^2 Q_S}{\partial \psi_S^2}\Big|_{\substack{\psi_S|\ll V_{th} \\ V_G\approx V_{FB}}} = \frac{\partial (Q_{SD} + Q_{Sm})}{\partial \psi_S}\Big|_{\substack{\psi_S|\ll V_{th} \\ V_G\approx V_{FB}}} \cong \frac{\partial}{\partial \psi_S} \left(\sqrt{\frac{\varepsilon_{Si}qN_A}{V_{th}}}\right) = 0$ $\frac{\partial^2 C_g}{\partial V_G^2}\Big|_{\substack{V_G=V_{FB} \\ \psi_S|=0V_{th}}} = 0 \Leftrightarrow V_{FB} \equiv V_G\Big|_{\substack{\partial^2 C_g \\ \partial V_G^2=0}}$

12장 MOSFET의 전류-전압 특성

역제 12-1의 풀이 (e)		
수정 후 $R_{ch} _{V_{GS}=1.0[\mathrm{V}]} = \dots = \frac{1}{800\times0.531\times10^{-6}\times(10)\times(1-0.711)} = 821[\Omega]$ $V_{DS,sat} = V_{GS} - V_T = 3.0 - 0.339 = 2.661[\mathrm{V}]$ $I_{DS,sat} = \dots = \frac{800}{2}\times0.531\times10^{-6}\times(10)\times(3-0.339)^2 = 15.0[\mathrm{mA}]$ $V_{DS,sat} = V_{GS} - V_T = 3.0 - 0.711 = 2.289[\mathrm{V}]$ $\uparrow \forall \delta \Rightarrow I_{DS,sat} = \dots = \frac{800}{2}\times0.531\times10^{-6}\times(10)\times(3-0.711)^2 = 11.1[\mathrm{mA}]$ $g_m = \dots = 800\times0.531\times10^{-6}\times(10)\times(3-0.339) = 11.304[\mathrm{mS}]$		
후정 전 $I_{DS,sat} = = \frac{800}{2} \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.339)^2 = 15.0 \text{ [mA]}$ $V_{DS,sat} = V_{GS} - V_T = 3.0 - 0.711 = 2.289 \text{ [V]}$ $I_{DS,sat} = = \frac{800}{2} \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.711)^2 = 11.1 \text{ [mA]}$ $g_m = = 800 \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.339) = 11.304 \text{ [mS]}$		
학정 전 $I_{DS,sat} = = \frac{800}{2} \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.339)^2 = 15.0 \text{ [mA]}$ $V_{DS,sat} = V_{GS} - V_T = 3.0 - 0.711 = 2.289 \text{ [V]}$ $I_{DS,sat} = = \frac{800}{2} \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.711)^2 = 11.1 \text{ [mA]}$ $g_m = = 800 \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.339) = 11.304 \text{ [mS]}$		
$V_{DS,sat} = V_{GS} - V_T = 3.0 - 0.711 = 2.289 \text{ [V]}$ $I_{DS,sat} = \dots = \frac{800}{2} \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.711)^2 = 11.1 \text{ [mA]}$ $g_m = \dots = 800 \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.339) = 11.304 \text{ [mS]}$		
$I_{DS,sat} = \dots = \frac{1}{2} \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.711)^{2} = 11.1 \text{ [mA]}$ $g_{m} = \dots = 800 \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.339) = 11.304 \text{ [mS]}$		
영 _m = = $\frac{11.304 \text{ [mS]}}{0.13 \times 10 \times 10^{-4} \text{ [cm]}} = \frac{11.304 \text{ [mS]}}{0.13 \times 10 \times 10^{-4} \times 10 \text{ [mm]}} = 8,695 \text{ [mS/mm]}$	$g_{m}' = \dots = \frac{11.304 \text{ [mS]}}{0.13 \times 10 \times 10^{-4} \text{ [cm]}} = \frac{11.304 \text{ [mS]}}{0.13 \times 10 \times 10^{-4} \times 10 \text{ [mm]}} = 8,695 \text{ [mS/mm]}$	
에서 12-1의 돌아 (g) $g_m = = 800 \times 0.531 \times 10^{-6} \times (10) \times (3 - 0.711) = 9.724 \text{ [mS]}$		
수정 후 $g_m' = \dots = \frac{9.724 \text{ [mS]}}{0.13 \times 10 \times 10^{-4} \text{[cm]}} = \frac{9.724 \text{ [mS]}}{0.13 \times 10 \times 10^{-4} \times 10 \text{[mm]}} = 7,480 \text{ [mS/mm]}$		
수정 전 $ R_{ch} _{V_{GS}=3.0~[\mathrm{V}]} = = \frac{1}{800\times0.531\times10^{-6}\times(10)\times(3-0.339)} = 88.46~[\Omega] $ 예제 12-1의 풀이 (h)		
수정 후 $R_{ch} _{V_{GS}=3.0~[\mathrm{V}]} = \dots = \frac{1}{800\times0.531\times10^{-6}\times(10)\times(3-0.711)} = 102.84~[\Omega]$		
(b)에 표기된 slope=λ 기울기 ∞λ		
824 그림 12-13 linear 선형영역		
saturation 포화영역		
833 [표 12-7]의 구분 중 전위차 87 VST		
1 1 7 5 1 W m		
840 위에서 첫 수식의 맨 오른편 $m=1+\frac{C_{dm}}{C_{ox}}=\frac{V_{sub}}{V_{GS}} \qquad m=1+\frac{C_{dm}}{C_{ox}}=\frac{V_{GS}}{V_{sub}}$		
C_{ox} V_{GS} C_{ox} V_{sub}		
840 위에서 첫 수식의 맨 오른편 $m = 1 + \frac{C_{dm}}{C_{ox}} = \frac{V_{sub}}{V_{GS}}$ $m = 1 + \frac{C_{dm}}{C_{ox}} = \frac{V_{GS}}{V_{sub}}$ $m = 1 + \frac{C_{dm}}{C_{ox}} = \frac{V_{GS}}{V_{sub}}$ 843 아래에서 셋째 수식 $I_D(V_{DS}) \cong I_{Do}e^{(V_{GS}-V_T(V_{DS})/mV_{th})} = I_{Do} \cdots$ $I_D(V_{DS}) \cong I_{Do}e^{(V_{GS}-V_T(V_{DS})/mV_{th})}$		
850 아래쪽 박스 속 셋째항 제목 · 입출력 직결합 어드미턴스(게이트 드레인) · 출력 어드미턴스(드레인-소스)		
넷째항 제목 · 출력 어드미턴스(드레인-소스) · 입출력 직결합 어드미턴스(게이트 드레인	<u>)</u>	
898 연습문제 12-2 맨 아랫줄 MOSFET으로 가정한다 MOSFET(N _{ne} >>N _A)으로 가정한다.		
800 연습문제 12-3 아래에서 도이하 등 MOSERTOL 스스 도이하 등 MOSERTOL 스스		
657 다섯째 줄 6 일인 MOSTET* 1 6 일인 MOSTET(V _{Pg} / V _A)* 1		

13 장 접합형 전계효과 트랜지스터의 전류-전압 특성

쪽	<u> </u>	수정 전	수정 후
912	아래에서 넷째 줄	공간전하영역 두꼐는	\dots 공간전하영역 두께 $X_d(V_{GS})$ 는 \dots
916	위에서 다섯째 줄	즉, 채널소멸 전압은	즉, 변형된 채널소멸 전압은
930	그림 13-10	기울기=ス	기울기 ∞λ
940	에제 13-4의 풀이 전류이득 차단주파수 바로 다음 줄에 오른쪽 수식 추가	(-)	$\frac{10^{-4}}{(10^{-4})(10^{-4})} = qN_D \mu_n \left(\frac{aW}{L}\right) \left(1 - \sqrt{(V_{bi} - V_{GS})/V_{po}}\right)$ $\frac{10^{-4}}{(0.1)} \left(\frac{10}{0.1}\right) \times \left(1 - \sqrt{(0.996 - 0)/5.43}\right) = 43.9 \text{ [mS]}$
945	연습문제 13-4의 문제 끝줄	<i>&</i> GaAs=€ _{AlGaAs} 로 가정함	<i>&</i> GAAs= <i>&</i> AIGAAs로 가정함

14장 반도체 광소자

쪽	줄	수정 전	수정 후
963	중성영역에서 확산전류 분포	$\left. \frac{J_{n,opt}}{J_{n,opt}} = qD_n \frac{\partial \delta n_p(x)}{\partial x} \right _{x=0} = \cdots$	$J_n \equiv qD_n \left. \frac{\partial \delta n_p(x)}{\partial x} \right _{x=0} = \cdots$
903	관계식	$J_{p,opt} = qD_p \left. \frac{\partial \delta p_n(x)}{\partial x} \right _{x=0} = \cdots$	$J_p \equiv -qD_p \left. \frac{\partial \delta p_n(x)}{\partial x} \right _{x'=0} = \cdots$
982	아래에서 여덟째 줄	정공 농도가 가장 높은 에너지 준위($E_{n,max}$)는	정공 농도가 가장 높은 에너지 준위($E_{p,max}$)는 각각

	각각	