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Problem Set 5.1, Page 258

Questions 1-10 are about the “subspace requirements"» + w and cv (and then all
linear combinations cv + dw) stay in the subspace.

1 One requirement can be met while the other fails. Show thinalng

(a) A set of vectors ifR? for whichwv + w stays in the set b@v may be outside.

(b) A set of vectors iR? (other than two quarter-planes) for which everystays in
the set bub + w may be outside.

(@) The set of vectors with integer components (adding w produces integers,
multiplying by 1 may not).

(b) One option for the set is to take two lines throy@h0). Thencv stays on these
lines butv + w may not.

2 Which of the following subsets @3 are actually subspaces ?

(a) The plane of vector@y, b, bs) with by = bs.
(b) The plane of vectors withy = 1.
(c) The vectors witth,b2b3 = 0.
(d) Alllinear combinations ob = (1,4,0) andw = (2,2, 2).
(e) All vectors that satisfy; + by + b3 = 0.
() All vectors withb;, < by < b3.
The only subspaces are (a) the plane with= o (d) the linear combinations af
andw (e) the plane witth; + by + b3 = 0.
3 Describe the smallest subspace of the matrix spddbat contains

o[d o8] o [1d] w[id]e]d 0]

a b a a

0 0 0 0
4 Let P be the plane iR? with equationz + y — 2z = 4. The origin(0,0,0) is not in
P! Find two vectors inP and check that their sum is notIh.

For the plane) + y — 2z = 4, the sum of4, 0, 0) and(0, 4, 0) is not on the plane. (The
key is that this plane does not go throu@ho, 0).)

5 Let P, be the plane througtD, 0,0) parallel to the previous planB. What is the
equation forP, ? Find two vectors iPy and check that their sum is iR.

The parallel plan®, has the equation + y — 2z = 0. Pick two points, for example
(2,0,1) and(0,2,1), and their sun{2,2,2) is in P.

6 The subspaces @2 are planes, lineRR? itself, or Z containing only(0, 0, 0).

(@) Al matrices{ ] (b) All matrices{ } (c) All diagonal matrices.
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(a) Describe the three types of subspace’-of

(b) Describe all subspacesbBX, the space of by 2 diagonal matrices.
(@) The subspaces Bf? areR? itself, lines througtt0, 0), and(0, 0) by itself  (b) The
subspaces dR* areR* itself, three-dimensional planes- v = 0, two-dimensional
subspaceén; - v = 0 andn, - v = 0), one-dimensional lines throudh, 0, 0,0), and
(0,0,0,0) by itself.

7 (a) The intersection of two planes throu@hO0, 0) is probably a but it could
be a . ltcan'tbeZ!

(b) The intersection of a plane throudh,0,0) with a line through(0,0,0) is
probably a but it could be a .

(c) If S and T are subspaces dR®, prove that their intersectio8 N T is a
subspace oR°. HereS N T consists of the vectors that lie in both subspaces.
Check the requirements an+ w andcv.

(a) Two planes througfo, 0,0) probably intersect in a line throudh, 0, 0)
(b) The plane and line probably intersect in the pdiny, 0)
(c) If v andy are in bothS andT’, v + y andcw are in both subspaces.

8 SupposeP is a plane througl0, 0,0) andL is a line through(0,0,0). The smallest
vector spac® + L containing botlP andL is either or .

The smallest subspace containing a plBnand a lineL is either P (when the linel,
is in the planéP) or R3 (whenlL is not inP).

9 (@) Show that the set afivertiblematrices inM is not a subspace.
(b) Show that the set agfingularmatrices inM is not a subspace.
(8) The invertible matrices do not include the zero matrixtrey are not a subspace

0 0], . _
is not singular: not a subspace.

0 1
10 True or false (check addition in each case by an example):

(b) The sum of singular matrice{% 8] + [

(@) The symmetric matrices iMI (with AT = A) form a subspace.
(b) The skew-symmetric matrices M (with AT = — A) form a subspace.
(c) The unsymmetric matrices Ml (with AT # A) form a subspace.

(a) True The symmetric matrices do form a subspace Tb)e The matrices with
AT = —A do form a subspace (dfalse The sum of two unsymmetric matrices
could be symmetric.

Questions 11-19 are about column spac&s(A) and the equationAv = b.

11 Describe the column spaces (lines or planes) of these phatimatrices :

1 2 1 0 1 0
00] B = 02] C = 20].

0 0 0 0 0 0

A:

The column space ofl is thez-axis = all vectors(z,0,0). The column space aB
is thexy plane= all vectors(z,y,0). The column space af is the line of vectors
(z,2z,0).
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12 For which right sides (find a condition @n, b, b3) are these systems solvable ?

1 4 2 U1 b1 1 4 bl
(a) [ 2 8 41 lvrzl — lbzl (b) l 2 9] {Zl] — le]
-1 —4 =2 [us b3 -1 —4 2 b3

(a) Elimination leads td) = by, — 2b; and0 = by + b3 in equations 2 and 3:
Solution only ifby = 2b; andby = —b, (b) Elimination leads t® = b, + 2b3 in
equation 3: Solution only ifis = —b;.

13 Adding row 1 of A to row 2 produced3. Adding column 1 to column 2 producés
Which matrices have the same column space ? Which have thersarspace?

1 3 1 3 1 4
A_[2 6] and B_[?) 9} and C_[2 8}

A combination of the columns af' is also a combination of the columns 4f Then
1 3 1 2
C =

9 ¢|andA = {2 4
different column space.
14 For which vectorgb,, b2, b3) do these systems have a solution ?

1 1 1 I bl 1 1 1 I bl
[0 i 1HHb] and lo | 1]H:H
0 0 1 I3 b3 0 0 0 I3 b3

1 1 1 T b1
and [ 0 0 1 ‘| [ T2 ‘| = [ b2 ‘| .
0 0 1 I3 b3

(a) Solution for everyp (b) Solvable only ifbs =0 (c) Solvable only ifbs = bs.

15 (Recommended) If we add an extra colubnio a matrixA, then the column space gets
larger unless . Give an example where the column space gets larger
and an example where it doesn't. Why isv = b solvable exactly when the
column spaceloesn’tget larger ? Then it is the same fdrand [A b} .

The extra columm enlarges the column space unléss already inthe column space.
(4 b] = 1 0 1] (largercolumnspace) |1 0 1| (bisincolumn space)
~ {0 0 1] (nosolutiontoAv =b) |0 1 1| (Av = b has a solution)

16 The columns ofAB are combinations of the columns of. This means:The
column space ofAB is contained in(possibly equal tohe column space ofl.
Give an example where the column spaced @nd AB are not equal.

The column space ofl B is contained in(possibly equal to) the column space 4f
The exampleB = 0 and A # 0 is a case whenl B = 0 has a smaller column space
thanA.

17 Supposedv = b and Aw = b* are both solvable. TheAz = b + b* is solvable.
What isz? This translates into: 16 andb* are in the column spac€(A), then
b+ b"isalsoinC(A).

The solutiontedz = b+ b" isz = x + y. If bandb” are inC(A4) so isb + b™.

} have the same column spacB. = Ll)) 2] has a
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18 If Ais any 5 by 5 invertible matrix, then its column spaceis . Why?

The column space of any invertible 5 by 5 matrixRS. The equatiordx = b is
always solvable (by = A~'b) so everyb is in the column space of that invertible
matrix.

19 True or false (with a counterexample if false) :

(a) The vector$ that are not in the column spa€& A) form a subspace.

(b) If C(A) contains only the zero vector, thehis the zero matrix.

(c) The column space @A equals the column space df

(d) The column space of — I equals the column space df(test this).
(a) False Vectors that arenot in a column space don’t form a subspace.
(b) True Only the zero matrix ha€®(A) = {0}. (c) True C(A) = C(24).

(d) False C(A — I) # C(A) whenA = [ or A = {1

0 8} (or other examples).

20 Construct a 3 by 3 matrix whose column space contéing, 0) and(1,0,1) but not
(1,1,1). Construct & by 3 matrix whose column space is only a line.

1 1 0 1 1 2 1 2 0
A=1|1 0 0] and [1 0 1] do not havg(1,1,1) in C(A4). A= |2 4 O]

010 01 1 3 6 0
hasC(A) = line.

21 Ifthe9 by 12 systemAwv = b is solvable for every, thenC(A) must be .

WhenAv = b is solvable for allb, everyb is in the column space of. So that space
isRY.

Challenge Problems

22 Supposss andT are two subspaces of a vector spdteThesum S + T contains all
sumss + t of a vectors in S and a vectot in T. ThenS + T is a vector space.

If S andT are lines inR™, what is the difference betweehi+ T andS U T ?
That union contains all vectors frofhand all vectors fronT. Explain this statement:
ThespanoSUT isS + T.

() If w andv are both inS + T, thenu = s; + t; andv = s5 + t2. Sou + v =
(814 82) + (t1 + t2) isalsoinS + T. And so iscu = c¢s; + ct;: a subspace

(b) If S andT are differentlines, thels U T' is just the two linesr{ot a subspageut
S + T is the whole plane that they span.

23 If S is the column space oft andT is C(B), thenS + T is the column space of
what matrix M ? The columns ofA and B and M are all inR™. (I don’t think
A + B is always a correct/.)

If S =C(A)andT = C(B) thenS + T is the column space dff = [A B].
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24 Show that the matricesl and [A AB] (this has extra columns) have the same
column space. But find a square matrix withf A2) smaller tharC'(A).
The columns ofd B are combinations of the columns 4f So all columnsof A AB)|
are already irC(A). ButA = {8 (1)

For square matrices, the column spacRIswhen A is invertible

] has a larger column space thdh = {8 8}

25 An n by n matrix hasC(4) = R™ exactly whenA is an matrix.

(Key question) The column space of arby n matrix A is all of R™ exactly whenA

is invertible. In this invertible case, every vectbris in C(A) because we can solve
Av = b. And if A were not invertible, elimination would lead to a row of zerathien
Av = b could not be solved for some (most!) vectérs

Problem Set 5.2, Page 269

Questions 1-4 and 5-8 are about the matrices in Problems 1 ard

1 Reduce these matrices to their ordinary echelon fdrms

A:

1 2 2 4 6
1 2 3 6 9] B =
001 2 3

2 4 2
044].
0 8 8

Which are the free variables and which are the pivot var&@ble

1 2 2 4 6 . 2 4 2
- Free variabless, v4, v - Freeuvs
(@) U= 8 8 (1) (2) g] Pivot variables) , v3 (b) U= 8 3 é Pivotv, vy

2 For the matrices in Problem 1, find a special solution for daeh variable. (Set the
free variable to 1. Set the other free variables to zero.)

(a) Freevariables,, v4, v5 and solutiong—2, 1,0, 0,0),(0,0,—-2,1,0),(0,0,—3,0,1)
(b) Free variables: solution(1, —1,1). Special solution for each free variable.

3 By combining the special solutions in Problem 2, descrilerggolution toAv = 0
andBwv = 0. The nullspace contains only= 0 when there are no .

The complete solution tdv = 0is (—2vs, v, —2v4 — vy, v4, v5) With v, vy, v5 free.
The complete solution tBv = 0 is (2vs, —vs, v3). The nullspace contains only= 0
when there are no free variables.

4 By further row operations on eadh in Problem 1, find the reduced echelon foin
True or false The nullspace oR equals the nullspace &f.

1 2 0 0 0 1 0 -1
R=|0 0 1 2 3|,R=|0 1 1],Rhasthesame nullspacedsandA.
000 0O 0 0 0
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5 By row operations reduce this nedvand B to triangular echelon forry. Write down
a 2 by 2 lower triangulafl such thatB = LU.

0 0 -3
6 For the samed and B, find the special solutions tdv =0 and Bv = 0. For anm by
n matrix, the number of pivot variables plus the number of fragables is .
(a) Special solution§3,1,0) and(5,0,1) (b) (3,1,0). Total of pivot and free is.

7 In Problem 5, describe the nullspacesbénd B in two ways. Give the equations for
the plane or the line, and give all vectarshat satisfy those equations as combinations
of the special solutions.

(&) The nullspace ofl in Problem 5 is the planev + 3y + 5z = 0; it contains all
the vectorg3y + 5z, y, 2) = y(3,1,0) 4+ 2(5, 0, 1) = combination of special solutions.
(b) Theline through(3, 1, 0) has equationsv+ 3y + 5z = 0 and—2v+ 6y + 7z = 0.
The special solution for the free variahlgis (3,1, 0).

8 Reduce the echelon fornis in Problem 5 toR. For eachR draw a box around the
identity matrix that is in the pivot rows and pivot columns.

1 -3 —5] . o 1 =3 0] ... [1 o0
R:[O 0 O]W'th":[l]’R_[O 0 l]wnhl—[o 1}.

Questions 9—-17 are about free variables and pivot variables

9 True or false (with reason if true or example to show it isdals

(a) A square matrix has no free variables.
(b) An invertible matrix has no free variables.
(c) An'm by n matrix has no more tham pivot variables.
(d) Anm by n matrix has no more tham pivot variables.
(a) False Any singular square matrix would have free variables Toje An in-

vertible square matrix has free variables. (c)True(only n» columns to hold pivots)
(d) True(only m rows to hold pivots)

10 Construct 3 by 3 matriced to satisfy these requirements (if possible) :

(a) A has no zero entries btt = 1.
(b) A has no zero entries b = 1.
(c) A has no zero entries bilit = U.
(d) A=U =2R.

(&) Impossiblerow1 (b)A =invertible (c) A=allones (d)A=2I,R=1.
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11

12

13

14

15

16

17

Put as many'’s as possible in a 4 by 7 echelon mattixwhose pivot columns are

(@ 2,4,5

(b) 1,3,6,7

(c) 4and 6.

0 1111 11 11 1 1 1 11 0 001 1 11
000 1111 0 01 1111 0 00 0 011

0 00 01 11 0 000 0 11 0 0000 0O
000 0O0O0OTO0/[0OOOOOOT1]000O0O0O0TO 0
Put as manyi's as possible in a 4 by 8&ducedechelon matrixR so that the free
columns are

(@ 2,4,5,6

(b) 1,3,6,7,8.

110 1 1 1 0 0 0110 0 1 11

0 0111100 0001 0 1 11 : . .
0 0000010l'"loooo 1111l Notice the identity
0O 00 OO 0 O0 1 0O 0 OO 0O 0 O0O0

matrix in the pivot columns of thegeducedrow echelon formsR.

Suppose column 4 of a 3 by 5 matrix is all zero. Theiis certainly a variable.
The special solution for this variable is the vector

If column 4 of a 3 by 5 matrix is all zero then is afreevariable. Its special solution
isv =(0,0,0,1,0), because 1 will multiply that zero column to giviey = 0.

Suppose the first and last columns of a 3 by 5 matrix are the ¢aateero). Then
is a free variable. Find the special solution for this vaegab

If column 1= column 5 theny; is a free variable. Its special solution(is1,0, 0,0, 1).

Suppose am by n matrix has- pivots. The number of special solutionsis . The
nullspace contains only = 0 whenr = . The column space is all ®" when
T =

If a matrix has» columns and- pivots, there arex — r special solutions. The nullspace
contains onlyv = 0 whenr = n. The column space is all @™ whenr = m. All
important!

The nullspace of a 5 by 5 matrix contains only= 0 when the matrix has
pivots. The column space R® when there are pivots. Explain why.

The nullspace contains onty= 0 whenA has 5 pivots. Also the column spaceRs,
because we can solvev = b and every is in the column space.

The equation: — 3y — z = 0 determines a plane iR®. What is the matrix4 in this
equation ? Which are the free variables ? The special sokitice(3, 1, 0) and .

A=[1 —3 —1]givesthe plane — 3y — z = 0; y andz are free variables. The
special solutions ar¢3,1,0) and(1,0, 1).
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18 (Recommended) The plane— 3y — z = 12 is parallel to the plane — 3y — 2z = 0
in Problem 17. One particular point on this plang1g, 0,0). All points on the plane
have the form (fill in the first components)

0 ] |
1

-1

v
Fill in 12 then4 then1 to get the complete solution to — 3y — z = 12: [y] =
z

+y +z

1
0

12 4 1
8 +y (1) +z (1) = Yparticulart Ynullspace

19 Prove that/ andA = LU have the same nullspace wheris invertible :

If Uv =0 thenLUv=0. If LUv =0, howdo you knowUv =07

If LUv = 0, multiply by L=! to find Uv = 0. ThenU and LU have the same
nullspace.

20 Suppose columt + column3 + column5 = 0 in a4 by 5 matrix with four pivots.
Which column is sure to have no pivot (and which variableeg}? What is the special
solution ? What is the nullspace ?

Column 5 is sure to have no pivot since it is a combination ofiexacolumns. With
4 pivots in the other columns, the special solutios is (1,0,1,0,1). The nullspace
contains all multiples of this vectar(a line inR?).

Questions 21-28 ask for matrices (if possible) with specifgroperties.

21 Construct a matrix whose nullspace consists of all comlinapf(2, 2,1,0) and(3, 1,0, 1).
For special solutiong2,2,1,0) and (3,1,0,1) with free variablesvs,vs: R =
10 -2 -3
01 -2 -1
22 Construct a matrix whose nullspace consists of all mulsipig4, 3,2, 1).
1 0 0 —4
The nullspaceofl = [0 1 0 —3]| isthe line through4, 3,2, 1).
0 01 =2

23 Construct a matrix whose column space contéins, 5) and(0, 3, 1) and whose nullspace
containg(1, 1, 2).

} andA can be any invertible 2 by 2 matrix times tHis

10 —1/2

A=1|1 3 —2] has(1,1,5) and(0,3,1) in C(A) and(1,1,2) in N(A). Which
5 1 -3

other A’'s?

24 Construct a matrix whose column space contéins, 0) and(0, 1, 1) and whose nullspace
containg(1, 0, 1) and(0,0, 1).

This construction is impossible: 2 pivot columns and 2 fragables, only 3 columns.
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25

26

27

28

29

30

31

32

Construct a matrix whose column space contging, 1) and whose nullspace is the
line of multiples of(1, 1,1, 1).

1 -1 0 0

1 0 -1 O] has(1,1,1)in C(A) and only the linc, ¢, ¢, c) in N(A).
10 0 -1

Construct a 2 by 2 matrix whose nullspace equals its coluranespThis is possible.

A:

A= {8(1)} hasN (A4)=C(A) and also (a)(b)(c) are all false. Notigef(A™)= [(1) 8} .

Why does no 3 by 3 matrix have a nullspace that equals its cokpace ?

If nullspace= column space (with pivots) thenn — r = r. If n = 3 then3 = 2r is
impossible.

(Important) If AB = 0 then the column space @ is contained in the of A.
Give an example oft and B.

If AtimeseverycolumnaB is zero, the column space Bfis contained in thaullspace

of A. An exampleisd = U andB = { ! _ﬂ HereC(B) equalsN(A).

11 -1
(ForB = 0,C(B) is smaller.)

The reduced fornR of a 3 by 3 matrix with randomly chosen entries is almost sore t
be . What reduced fornR is virtually certain if the randoml is 4 by 3?

For A = random 3 by 3 matrixR is almost sure to bé. For 4 by 3,R is most likely
to beI with fourth row of zeros. What about a random 3 by 4 matrix?

Show by example that these three statements are genfedably

(a) A andAT have the same nullspace.
(b) A andAT have the same free variables.
(c) If Ris the reduced form oft thenR™ is the reduced form ofi™.
0 1 , T 10
A= {O O] shows that (a)(b)(c) are all false. Noticef(A" ) = [O 0]'

If the nullspace ofA consists of all multiples ob = (2,1,0,1), how many pivots
appear inJ ? What isR ?

If N(A) = line throughv = (2,1,0,1), A hasthree pivotg4 columns and 1 special

1 0 0 -2
solution). Its reduced echelon form canBe= [0 10 —1] (add any zero rows).
001 0

If the special solutions té&?v = 0 are in the columns of thes¥, go backward to find
the nonzero rows of the reduced matri¢es

2 3 0
N:ll O] anszlO] and N =
0 1 1

1 (empty3 by 1).

Any zero rows come after these ron8:=[1 —2 -3], R= [
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33 (a) What are the five 2 by 2 reduced echelon matrig@ghose entries are all 0's and
1's?

(b) What are the eight 1 by 3 matrices containing only 0's aB¢ 1Are all eight of
them reduced echelon matricB$

(a) [(1) (1)},{(1) 8] [(1) (1)] [8 (1)} {8 8} (b) All 8 matrices areR’s!

34 Explain why A and— A always have the same reduced echelon f&m

One reason thak is the same fod and— A: They have the same nullspace. They also
have the same column space, but that is not required for tvwoaasito share the same
R. (R tells us the nullspace and row space.)

Challenge Problems

35 If Ais4 by4 and invertible, describe all vectors in the nullspace of4hy 8 matrix
B=[A A].

The nullspace oB = [ A A] contains all vectors = {_Z] for y in R*.

36 How is the nullspaceéV (C) related to the spacd¥ (A4) andN (B), if C = { g } ?

If Cv =0thenAv = 0andBv = 0. SON(C) = N(A) N N(B) = intersection

37 Kirchhoff’'s Law says thaturrent in = current outat every node. This network has
six currentsys,...,ys (the arrows show the positive direction, eaghcould be
positive or negative). Find the four equatioAg = 0 for Kirchhoff’'s Law at the
four nodes. Reduce @y = 0. Find three special solutions in the nullspacedof

1 " 2
kY o ; Iy

Currents y1 —ys+ys = —y1 + 42 ++ys = —y2 +ya +ys = —ya — Y5 — Y6 = 0.
These equations add o= 0. Free variablegs, y5, ys: watch for flows around loops.
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Problem Set 5.3, Page 280

1 (Recommended) Execute the six steps of Worked Exagple to describe the column
space and nullspace dfand the complete solution tév = b:

2 4 6 4 by 4
A=112 5 7 6] b_[bQ]_ 3]
2 3 5 2 bs 5
2 4 6 4 by 2 4 6 4 by 2 4 6 4 by
2 5 7 6 bg]—>|}) 1 1 2 bg—b1‘|%l0 1 1 2 b2—b1 ‘|
2 3 5 2 bg 0-1-1-2 bs—by 0 0 0 0 bg+by—2by

Awv = b has a solution whebs + b, — 2b; = 0; the column space contains all combi-
nations of(2, 2,2) and(4, 5, 3). This is the planebs + b2 — 2b; = 0 (!). The nullspace
contains all combinations of, = (—1,—-1,1,0) andss = (2,—2,0,1); Vcomplete =

VUp + €181 + C282;

1 01 -2 4
[R d]= [O 1 1 2 —1] gives the particular solution, = (4, —1,0, 0).
0 0O 0 0

2 Carry out the same six steps for this matdxwith rank one. You will findtwo condi-
tions onby, be, b3 for Av = b to be solvable. Together these two conditionsipirto

the space.
3 b1 10
9] b_[@]_[go]
6 bs 20

17 [2 1 3]
TR
2

A:

= O N
Do W =

2 1 3 by 2 1 3 by 1 1/2 3/2 5
6 39 by|—>|0 0 0 by—3by| Then[R d]=1]0 0 0 0
4 2 6 by 0 0 0 by—2by 00 0 0

Av = b has a solution wheh, — 3b; = 0 andbs — 2b; = 0; C(A) = line through
(2,6,4) which is the intersection of the planés — 3b; = 0 andbs — 2b; = 0;
the nullspace contains all combinationssgf= (—1/2,1,0) ands; = (—3/2,0,1);
particular solutiorv,, = d = (5,0,0) and complete solution, + c¢151 + c22.

Questions 3-15 are about the solution aAv = b. Follow the steps in the text tovp
and vy Start from the augmented matrix [ A b].

3 Write the complete solution as, plus any multiple ofs in the nullspace :

r+3y+3z=1
2z 4+6y+92z =5
—x—3y+3z=25.

—2 -3
v = 0| + v | 1|. The matrix is singular but the equations are
complete 1 0

still solvable;b is in the column space. Our particular solution has freeatdey = 0.



142 Chapter 5. Vector Spaces and Subspaces

4 Find the complete solution (also called tpeneral solutiohto

1 3 1 2 1
l2648] _lB].
0 0 2 4 1

1 1
vcomplete =V + U, = (5, 0, bL O) + ’UQ(—3, 1,0, O) + 1)4(0, 0, -2, 1).

5 Under what condition oby, b2, bs is this system solvable ? Includes a fourth column
in elimination. Find all solutions when that condition hstd

e R

T+2y—2z2=10
2z + 5y — 4z = by
4z + 9y — 8z = bs.

1 2 -2 b 1 2 -2 b
lQ 5 —4 b2‘| — [O 1 0 b2 — 2b1

4 9 —8 b3 0 0 0 bs—2b; —by
Back-substitution gives the particular solutionA@ = b and the special solution to

solvable ifbs — 2b; — by = 0.

5b1 — 2bs [2
AU—OZU—[bQ—le + v3 O]
0 1
6 What conditions oty , b, b3, by make each system solvable ? Fiméh that case :
1 2 b1 7 1 2 3 _ [ by
2 4 |[wo ] | b 2 4 6 zlibQ
2 5 ve | | b3 2 5 7 v2_b3
39 by | 39 12 ]+-73 | by
(a) Solvable ifbs = 2b; and3b; — 3bs + bs — 0. Thenw — | 901 ~203] _,
2 = 201 1 3 4 = U. by —2b |~ Vr
5b1 — 2b3 —1
(b) Solvable ifbo = 2b; and3b; — 3bs + by = 0. v = l b3 —2b1 | + 3 —1] .
0 1
7 Show by elimination thatb,, b, bs) is in the column space if; — 202 + 4b; = 0.
1 3 1
A=1]3 8 2 ]
2 4 0

What combinationy; (row 1) + y2(row 2) + ys(row 3) gives the zero row ?

1 3 1 b 1 3 1 b One more step givg®d 0 0 0] =
[3 8 2 bgl—{o —1 =1 by—3b;| row3 —2(row2)+ 4(row 1)

2 4 0 b3 0 -2 —2 b3—2b provided bz —2bo+4b,=0.

8 Which vectors(by, bo, b3) are in the column space ¢f? Which combinations of the
rows of A give zero ?




5.3. The Complete Solution tdv = b 143

10

11

12

13

14

15

11 1
(a) A= 124].
2 4

8

1 2 1
263] (b) A=
02 5

(a) Everybisin C(A): independent rownly the zero combination givés

(b) We needr; = 2bs, becausérow 3) — 2(row 2) = 0.

In Worked Example5.3 A, combine the pivot columns ofi with the numbers
—9 and3 in the particular solutiom,. What is that linear combination and why ?

1 0 0711 2 3 5 b 1 2 3 5 b
LU c]:l2 10][0022172—2171 ]:l24812 bQ]
3 =1 1][0 0 0 0 by+by—5b 3 6 7 13 by
= [A b]; particularv, = (—9,0,3,0) means—9(1,2,3) + 3(3,8,7) = (0,6, —6).
Thisis Av, = b.
Construct a 2 by 3 systemv = b with particular solutionv, = (2,4,0) and
null (homogeneous) solutiom, = any multiple of(1,1, 1).
[(1) (1) :ﬂ x = Lﬂ hasz, = (2,4,0) andzp = (¢ ¢, c).
Why can’'ta 1 by 3 system hawg = (2, 4,0) andv,, = any multiple of(1,1,1) ?
A 1 by 3 system has at leatsto free variables. Buk, | in Problem 10 only haene.
(a) If Av = b has two solution®; andwv., find two solutions todv = 0.
(b) Then find another solution tdv = b.
() 1 — x> and0 solveAz = 0 (b) A(2x1 — 2x2) =0,A(2x1 —x2) = b
Explain why these are all false :

(a) The complete solution is any linear combinatiowpandv,,.
(b) A systemAwv = b has at most one particular solution.

(c) The solutiony, with all free variables zero is the shortest solution (mimm
length||v||). Find a2 by 2 counterexample.

(d) If Ais invertible there is no solution,, in the nullspace.

(a) The particular solutiom, is always multiplied by 1  (b) Any solution can bg

(c) [g g} [:yc] = [g} Then[}] is shorter (length/2) than[(ﬂ (length 2)

(d) The only “homogeneous” solution in the nullspace js= 0 whenA is invertible.
Suppose column 5 has no pivot. Thegis a variable. The zero vector (is)
(is not) the only solution todv = 0. If Av = b has a solution, then it has
solutions.

If column 5 has no pivotys is afreevariable. The zero vectas notthe only solution
to Az = 0. If this systemAx = b has a solution, it hasfinitely manysolutions.
Suppose row 3 has no pivot. Then that rowis . The equatiolRv = d is only
solvable provided . The equatiomwv = b (is) (is nod) (might not bé solvable.

If row 3 of U has no pivot, that is aero row Ux = c is only solvable provided
c3 = 0. Az = b might not be solvablédecausé/ may have other zero rows needing
morec; = 0.
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16

17

18

19

20

21

Questions 16-21 are about matrices of “full rank”r = m or r» = n.

The largest possible rank of a 3 by 5 matrix is . Then there is a pivot in
every of U and R. The solution toAv = b (always exists (is uniqus.
The column space o is . An example is4 = .

The largest rank is 3. Then there is a pivot in evieny. The solutionalways exists
The column space R®. An exampleisd = [I F] for any3 by 2 matrix F'.

The largest possible rank of a 6 by 4 matrixis . Then there is a pivot in every
of U and R. The solution toAv = b (always exists (is uniqud.
The nullspace ofl is . An example isA = .

The largest rank of a 6 by 4 matrix is 4. Then there is a pivotviengcolumn The
solution isunique The nullspace contains only the zerector An example isA =
R =[I F]forany 4 by 2 matrixF.

Find by elimination the rank oft and also the rank oA™ :
1 4 0 1 0 1
A=1] 2 11 5 ] and A=|1 1 2 1 (rank depends oq).
-1 2 10 11 ¢

Rank= 2; rank= 3 unless; = 2 (then rank= 2). Transpose has the same rank!
Find the rank ofd and also ofAT A and also ofAA™ :

2 0

1 1 ] .

1 2

Both matrices4 have rank 2. AlwaysiT A and AAT havethe same rankasA.
ReduceA to its echelon fornt/. Then find a triangulal so thatA = LU.

1 1 5
Az{l 0 1} and A=

34 10
A_{6521] and A=

1 01 0
2 2 0 3.
0 6 5 4

1 0 0171 0 1 0
a=w=[L O[3 48 Jiamw|2 1 o] [0 2 > 3].
0 3 1]J]]10 0 11 -5
Find the complete solution in the forty + v,, to these full rank systems:
r+y+z=4
@az+y+z=4 (b) 4
r—y+z=4.
x 4 -1 -1 x 4 -1
€) [y =10l +y| 1| +2z| 0] (b ly]z 0 + = 0].Thesecond
z 0 1 z 0 1

equation in part (b) removed one special solution.
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22

23

24

25

If Av = b has infinitely many solutions, why is it impossible faw = B (new right
side) to have only one solution ? Cowld» = B have no solution ?
If Az, = band alsoAxs = b then we can ada; — x> to any solution ofAx = B:

the solutionx is not unique. But there will bao solutionto Az = B if B is notin
the column space.

Choose the numberso that (if possible) the ranks are (a) 1, (b) 2, (c) 3:

6 4 2
-3 -2 —1] and B_[?’l?’}

A:
9 6 ¢ qg 2 g

For A, ¢ = 3 gives rank 1, every othergives rank 2. FoB, ¢ = 6 gives rank 1, every
otherq gives rank 2. These matrices cannot have rank 3.

Give examples of matrices for which the number of solutions tdv = b is

(@) Oor 1, depending ol
(b) oo, regardless ob
(c) 0oroo, depending o
(d) 1, regardless di.

[1 1] 1| _

o | = [P
has infinitely many solutions for evety (c) There are 0 oo solutions wheM has
rankr < m andr < n: the simplest example is a zero matrix. ~ @jesolution for
all b when A is square and invertible (likd = TI).

Write down all known relations betweerandm andn if Av = b has

(a) [1] [z] = [gj has 0 or 1 solutions, depending bn (b)

(a) no solution for somé

(b) infinitely many solutions for every

(c) exactly one solution for sonig no solution for otheb
(d) exactly one solution for every.

(@) r<m,alwaysr <n (b)) r=m,r<n(c) r<m,r=n(d) r=m=n.

Questions 26—33 are about Gauss-Jordan elimination (upwads as well as downwards)
and the reduced echelon matrixR.

26

Continue elimination front/ to R. Divide rows by pivots so the new pivots are all 1.
Then produce zeraabovethose pivots to reacR :

2 4 4 2 4 4
U= 0361 and U = 0361.
0 0O 0 0 5
2 4 4 1 0 -2 2 4 4
lo 3 6|l =R=1|0 1 2] and[O 3 6| >R=1.
0 0 O 0 0 0 0 0 5
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27

28

29

30

31

SupposdJ is square with pivots (an invertible matrix)Explain whyR = 1.

If U hasn pivots, thenR hasn pivotsequal to 1. Zeros above and below those pivots
makeR = I.

Apply Gauss-Jordan elimination {év = 0 andUv = ¢. ReachRv = 0 andRv = d:

wol=[g 51 0] mwe=|g 5l

Solve Rv = 0 to find v,, (its free variable isv, = 1). Solve Rv = d to find v,
(its free variable imy = 0).
-1
2|

1230 1200}, 7‘?_1235 12
0040/ 70010 1"jo048 7[00
Freev, = 0 giveswv,, = (—1,0, 2) because the pivot columns contdin

Apply Gauss-Jordan elimination to reducefte = 0 andRv = d :

—= O

3 0 6 O 30 6 9
U 0]|=]010 20 and U ec|=]100 2 4].
0 00O 0 00 5
SolveUv = 0 or Rv = 0 to find v,, (free variable= 1). What are the solutions to
Rv=d?
1 0 00 0 1 0 0 -1
[Rd] = |0 0 1 0| leads tox,, = |1|; [Rd] = |0 0 1 2]|:
0 00O 0 0 0O 5

no solution because of the 3rd equation
Reduce td/v = ¢ (Gaussian elimination) and thétw = d (Gauss-Jordan):

U1

10 2 3 v 2
Av = 1320] v2 _[5 =b.
2 0 4 9 3 10

vy

Find a particular solutiom, and all homogeneous (null) solutions.

1023 2 102 3 2 1020 —4 _g _g
1320 53|—-]030-33|—-(0100 3;O;mn:x31.
204910 000 36 0001 2 9 0

Find matricesd and B with the given property or explain why you can't:
1

2 ] isv = [ (1) } .

3

1
(b) The only solution oBv = { (1) } isv = l 2 1
3

(&) The only solution ofdiv =
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32

33

34

35

11 1
ForA=|0 2] , the only solution toAx = l?] isx = [ﬂ B cannot exist since 2
0 3 3

equations in 3 unknowns cannot have a unique solution.

Reducel A b]to[R d] and find the complete solution tbv = b:
1 3 1 1 M1
1 2 3 3 0
A= 9 4 6 and b= 6 and then b = 0
115 5 L 0
1 3 1 1 1 3 17
1 2 3 . 1 1 0 -1 2 .
A= 2 4 6 factors intoLU = 9 2 1 0 0 0 and the rank is
1 1 5 1 2 0 1 0 0 0]
r = 2. The special solution tolx = 0 andUxz = 0iss = (-7,2,1). Since
b = (1,3,6,5) is also the last column ofl, a particular solution todx = b is
(0,0, 1) and the complete solutionis= (0,0, 1) + cs. (Or use the particular solution
x, = (7,—2,0) with free variablers = 0.)

Forb = (1,0,0,0) elimination leads t&/x = (1,—1,0,1) and the fourth equa-
tion is0 = 1. No solution for thish.

The complete solution tdv = [ é } isv = [ (1) } +c[ (1) ] Find A.

. 1] . 1 0 10
If the complete solution tolx = {3} isx = {0} + [c] thenA = [3 0].

Challenge Problems

Suppose you know that tieby 4 matrix A has the vectos = (2,3, 1,0) as the only
special solution tdv = 0.

(&) What is therank of A and the complete solution tdv = 0?

(b) What is the exact row reduced echelon fofhof A ? Good question.

(c) How do you know thatdv = b can be solved for ab ?

(@) If s = (2,3,1,0) is the only special solution tdx = 0, the complete solution is
x = cs (line of solution!). The rank oA must bet — 1 = 3.

1 0 -2 0
(b) The fourth variable:, is not freein s, andR must belo 1 -3 O] .
00 01

(c) Ax = b can be solve for alb, becaused and R havefull row rank r = 3.

If you have this information about the solutionsAe = b for a specifich, what does
that tell you about thehapeof A (m andn) ? And possibly about andb.

1. There is exactly one solution.
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. All solutions to Av = b have the formv = [2] +¢[1].
. There are no solutions.

r = n (no special solutions) artdis in the column space

n — r = 1 (one special solution)

. bis notin the column space (30< m)

. Same conclusion as part

. r < n (there are special solutions) ahds in the column space

. All solutions toAv = b have the formv = [[ﬂ +c {

—HOR

. There are infinitely many solutions.

O A WNE O M WD

36 Supposedv = b andCv = b have the same (complete) solutions for evéry
Isittrue thatd = C'?

If Az = bandCx = b have the same solutiond, andC have the same shape and
the same nullspace (take= 0). If b = columnl of 4, « = (1,0,...,0) solves
Axz=bsoitsolvesx=b. ThenA andC share column. Other columns toad =C!

Problem Set 5.4, page 295

Questions 1-10 are about linear independence and linear depdence.

1 Show thatu;, us, us are independent but; , us, us, uy are dependent:

J e li] (1] 18]

Solveciug + cous + csus + c4uyg = 0 or Ac = 0. Thew's go in the columns ofd.

1 11
lO 1 1]
0 0 1

11 1 2 0
independent. BU{O 11 3] [c] = [0] is solved bye = (1,1,—4,1). Then

u; =

1
02] = 0 givescg = ¢ = ¢; = 0. So those 3 column vectors are
C3

0 01 4 0
u1 + us — 4ugz + uy = 0 (dependent).

2 (Recommended) Find the largest possible number of indepretvectors among

1 1 1 0 0 0
~1 0 0 1 1 0
W= g|¥2= | || og|M= | |W=| o|%=]| 1
0 0 1 0 1 1

u1, ug, uz are independent (thel’s are in different positions). All six vectors are on
the plang(1,1,1, 1) - w = 0 so no four of these six vectors can be independent.
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3 Provethatife = 0ord = 0or f = 0 (3 cases), the columns 6f are dependent:

a b ¢

0 d e 1 .

0 0 f

If @ = 0 then columnl = 0; if d = 0 thend(columnl) — a(column2) = 0;if f =0
then all columns end in zero (they are all in thgplane, they must be dependent).

U =

4 If a,d, f in Question 3 are all nonzero, show that the only solutiofito= 0isv = 0.
Then the upper trianguldrf has independent columns.

a b c T 0

Uv = lO d e] ly] = [O] givesz = 0 theny = 0 thenz = 0. A square
0 0 f]lz 0

triangular matrix has independent columns (invertiblerirptvhen its diagonal has no

zeros

5 Decide the dependence or independence of

(a) the vectorg1,3,2)and(2,1,3) and(3,2,1)
(b) the vectorgl, —3,2)and(2,1, —3) and(-3,2,1).

1 2 3 1 2 3 1 2 3

@ (3 1 2]%[0 -5 —71%[0 -5 —7]:invertible:>independent
12 3 1 0 -1 -5 0 0 —18/5

columns.
T 12 -3 1 2 -3 1 2 -3 1 0

(b) | -3 1 2] — [O 7 —7] =10 7 =T|;A|[1l|= [O],columns
L 2 -3 1 o -7 7 0 0 O 1 0

add to0.

6 Choose three independent columnd/odnd A. Then make two other choices.

and A=

O O
OO W
0o O N b~
N O O

2
0
0
4

SO O N
SO Oo W
S © O

Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 andsthet not 1, 2, 3).
Same column numbers (not same columns!)4or

7 If wy,wq, w3 are independent vectors, show that the differenges w, — w3 and
vy = wy — w3 andvs = w; — wo aredependentFind a combination of the’s that
gives zero. Which singular matrix givé®; vy vs ] =[w; ws ws] A?

The sumv; —v2 +v3 = 0 becauséwsy — ws) — (w1 — ws) + (w1 —wsy) = 0. So the

0 1 -1
difference aralependenand the difference matrix is singulat: = [1 0 —1] .
1 -1 0
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8 If wy,wo, w3 are independent vectors, show that the swmns- w, + w3 andvy =

wi + ws andvs = w; + we areindependent (Write c;v;, + covs + c3vs = 0in
terms of thew’s. Find and solve equations for this, to show they are zero.)
If Cc1 ('11)2 —|—’LU3) +c2 ('11)1 +'Ll)3) “+c3 ('11)1 +'Ll)2) =0 then(02 +Cg)’l.U1 + (Cl +Cg)’l.U2 +
(c1 + c2)ws = 0. Since thew'’s are independenty + ¢3 = ¢1 +¢3 = ¢1 +¢c2 = 0.
The only solution is:; = ¢co = ¢3 = 0. Only this combination ob, v5, v3 givesO.

9 Supposeau;, us, us, uy are vectors iR3.

(&) These four vectors are dependent because .
(b) The two vectorat; andus will be dependent if .
(c) The vectorai; and(0,0,0) are dependent because .

(a) The four vectors iR? are the columns of a 3 by 4 matrix. There is a nonzero
solution toAxz = 0 because there is at least one free variable (b) Two vecters ar
dependentifu; wuo] hasrank O or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” buhot “u, is a multiple ofu,” —since u; might be0.)
(c) A nontrivial combination ofs; and0 gives0: Ou; + 3(0,0,0) = 0.

10 Find two independent vectors on the plane 2y — 3z — t = 0in R*. Then find three
independent vectors. Why not four? This plane is the nutisfpd what matrix?

The plane is the nullspace of = [1 2 -3 —1]. Three free variables give three
solutions(x, y, z,t) = (2,—1 — 0 — 0) and(3,0,1,0) and(1,0,0,1). Combinations
of those special solutions give more solutions (all sohgjo

Questions 11-14 are about the spagpanned by a set of vectors. Take all linear com-
binations of the vectors, to find the space they span.

11 Describe the subspace Rf (is it a line or plane oR®?) spanned by

(a) the two vector$l, 1, —1) and(—1,—1,1)

(b) the three vector®, 1,1) and(1,1,0) and(0, 0, 0)
(c) all vectors inR? with whole number components
(d) all vectors with positive components.

(a) LineinR? (b) PlaneinR®  (c) Allof R*  (d) All of R®.

12 The vectom is in the subspace spanned by the columnd efhen has a solu-
tion. The vectok is in the row space ofl when has a solution.
True or false If the zero vector is in the row space, the rows are dependent
b is in the column space wheAxz = b has a solutiong is in the row space when
ATy = c has a solutionFalse The zero vector is always in the row space.

13 Find the dimensions of these 4 spaces. Which two of the spaeeshe same?
(a) column space ofi (b) column space of/ (c) row space ofA (d) row space

of U:
1 1 0 1 1 0
A=|1 3 11 and U=| 0 2 1].
3 1 -1 0 0O

The column space and row spacedéndU all have the same dimensior2=The row
spaces ofA and U are the samgbecause the rows @f are combinations of the rows
of A (and vice versal).
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14

v + w andv — w are combinations ob andw. Write v andw as combinations of
v + w andv — w. The two pairs of vectors the same space. When are they a
basis for the same space?

1

v=3(v+w)+ i(v—w)andw = 3(v + w) — 3(v — w). The two pairspanthe

same space. They are a basis wheandw areindependent

Questions 15-25 are about the requirements for a basis.

15

16

17

18

19

If vy,...,v, arelinearlyindependent, the space they span has dimension. These
vectors are a for that space. If the vectors are the columns ofrahy n matrix,
thenm is thann. If m = n, that matrix is .

Then independent vectors span a space of dimensidrhey are dasisfor that space.
If they are the columns ofl thenm is not lesshann (m > n).

Supposea, v, . . ., vg are six vectors iR*.

(a) Those vectors (do) (do not) (might not) sgah
(b) Those vectors (are) (are not) (might be) linearly inchefent.
(c) Any four of those vectors (are) (are not) (might be) a bé&si R*.

(a) The 6 vectorsnight notspanR* (b) The 6 vectorsire notindependent
(c) Any fourmight bea basis.
Find three different bases for the column spacé&/o& { (1) (1) (1) (1) (1) . Then

find two different bases for the row spacelof

1 01 0 1
01 010
and row2) or (row 1 and rowl + row 2) and (rowl and— row 2) are bases for the row
spaces ol/.

Find a basis for each of these subspace?’af

The column space df = is R? so take any bases f&?2; (row 1

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular o, 1,0,0) and(1,0,1, 1).
(d) The column space and the nullspacd ¢ by 4).

These bases are not unique! @ 1,1,1) for the space of all constant vectors
(¢,c,c,c) (b) (1,-1,0,0),(1,0,-1,0), (1,0,0,—1) for the space of vectors with

sum of components & (¢) (1,-1,-1,0),(1,—1,0,—1) for the space perpendic-

ularto(1,1,0,0) and(1,0,1,1) (d) The columns of are a basis for its column

space, the empty set is a basis (by convention)N@7) = {zero vector}.

The columns ofA aren vectors fromR™. If they are linearly independent, what
is the rank ofA? If they spanR™, what is the rank? If they are a basis ",
what then1.ooking ahead The rankr counts the number of columns.

n-independent columns- rankn. Columns spalR™ =- rankm. Columns are basis
for R™ = rank= m = n. The rank counts the numberiodependentolumns.
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20

21

22

23

24

Find a basis for the plane— 2y +3z = 0in R®. Find a basis for the intersection of that
plane with thery plane. Then find a basis for all vectors perpendicular to theg

One basis i52,1,0), (—3,0,1). A basis for the intersection with they plane is
(2,1,0). The normal vectof1, —2, 3) is a basis for the line perpendicular to the plane.

Suppose the columns of a 5 by 5 matfhare a basis foR®.

(@) The equatiomv = 0 has only the solutiom = 0 because .

(b) If bisin R® thenAv = b is solvable because the basis vectors _R5.

Conclusion :A is invertible. Its rank i$. Its rows are also a basis fR®.

(a) The only solution tcdv = 0 is v = 0 becausdhe columns are independent
(b) Av = b is solvable becausthe columns spalR®. Key point: A basis gives
exactly one solution for everdy.

Suppos&is a5-dimensional subspace Bf. True or false (example if false) :

(a) Every basis fo6 can be extended to a basis 't by adding one more vector.

(b) Every basis foR® can be reduced to a basis ®by removing one vector.

(&) True (b) False because the basis vectorRfomight not be inS.

U comes fromA by subtracting row 1 from row 3:
1 3 2 1 3 2
A=|10 1 1 ] and U=|0 1 1 ] )
1 3 2 0 00

Find bases for the two column spaces. Find bases for the w@paces. Find bases
for the two nullspaces. Which spaces stay fixed in elimimétio

Columnsl and2 are bases for thal{fferent) column spaces oft andU; rows1 and
2 are bases for theequal) row spaces off andU; (1, —1, 1) is a basis for theqqual)
nullspaces.

True or false (give a good reason):

(a) If the columns of a matrix are dependent, so are the rows.

(b) The column space of a 2 by 2 matrix is the same as its ronespac

(c) The column space of a 2 by 2 matrix has the same dimensits @sv space.
(d) The columns of a matrix are a basis for the column space.

(a) FalseA = [1 1] has dependent columns, independentrow  Ralsecolumn

space# row space ford = 8 (1) (c) True Both dimensions= 2 if A is invert-

ible, dimensions= 0 if A = 0, otherwise dimensions 1 (d) False columns may
be dependent, in that case not a basigFgr).
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25 For which numbers andd do these matrices have rapk

A:

1 250 5 .4
0 0 ¢ 2 2 andB_{d }
00 0 d 2 ¢

Ahasrank if c = 0 andd = 2; B

[2 g] has rank2 except where = d or
c= —d.

Questions 26—28 are about spaces where the “vectors” are nmages.

26 Find a basis (and the dimension) for these subspacebpB matrices:

27

28

(a) All diagonal matrices.
(b) All skew-symmetric matrice€A™ = —A).

1007 [0 0 0] [0 0 O
(a)oool,[o10],[ooo
000 000 001
01 0 0 0 17 [0 0 0
(b)l—lOO],[O oo],lo 0 1].
000 [-1 00 0o -10

These are simple bases (among many others) for (a) diagatetes (b) skew-
symmetric matrices. The dimensions aré, 3.

Construct six linearly independehby 3 echelon matrice¥#, . .., Us. What space of
3 by 3 matrices do they span?

1 00 1 0 0 1 10 1 01 1 0 0
I, {0 1 0f,|0 2 0},]0 1 Of,(0 1 Of, [0 1 1
0 0 2 0 0 1 0 0 1 0 01 0 0 1

ces donot form a subspace; thegpan the upper triangular matrices (not everyis
echelon).

; echelon matri-

The echelon matrices span all upper traingular matricesw(ebuld you produce the
matrix with ass = 1 as its only nanzero entry ?)

Find a basis for the space of al by 3 matrices whose columns add to zero.
Find a basis for the subspace whose rows also add to zero.

100010001_1—10and10—1
-1 0 OO -1 0|"|0 O —=-1{"|-1 1 O -1 0 1|

Questions 29-32 are about spaces where the “vectors” are fations.

29

() Find all functions that satisf§ = 0.

(b) Choose a particular function that satisf%s: 3.
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(c) Find all functions that satisf§% = 3.

(@) y(z) = constanC' (b) y(x) = 3« this is one basis for the by 3 matrices with
(2,1,1) in their nullspace4-dim subspace). (c)y(z) = 3z + C = y, + y, Solves
dy/dx = 3.

30 The cosine spadé; contains all combinationg(x) = A cos z + B cos 2x + C cos 3.
Find a basis for the subspaSewith y(0) = 0. What is the dimension of ?

y(0) = 0 requiresA + B + C' = 0. One basis isos x — cos 2z andcos z — cos 3z.
31 Find a basis for the space of functions that satisfy

@@ -2y=0 (b) F-

8

=0.

(@) y(r) = e** is a basis for, all solutions t9’ = 2y (b) y = z is a basis for all
solutions tody/dx = y/x (First-order linear equatios> 1 basis function in solution
space).

32 Supposey, y2,ys are three different functions of. The space they span could
have dimension, 2, or 3. Give an example aof, y2, y3 to show each possibility.

y1(z),y2(x), y3(x) can ber, 2z, 3z (dim1) or z, 2z, 22 (dim2) or z, 22, 23 (dim 3).

33 Find a basis for the spa&of vectors(a, b, ¢, d) with a + ¢ + d = 0 and also for the
spacerl with a + b = 0 ande = 2d. What is the dimension of the intersectiBim T?

Basis forS: (1,0, -1,0),(0, 1,0,0), (1,0,0,—1); basis forT: (1, —1,0,0) and(0,0, 2, 1);
SNT = multiples of(3, —3,2,1) = nullspace foB equation inR* has dimension 1.

34 Which of the following are bases f®&3?

(a)

(b)

(©)

(d)
(a) No,2 vectors don't spalR? (b) No,4 vectors inR? are dependent (c) Yes, a
basis (d) No, these three vectors are dependent

35 Supposé is 5 by 4 with rank4. Show thatAv = b has no solution when theby 5
matrix[ A b] is invertible. Show thatlv = b is solvable wher A b] is singular.

1,2,0)and(0,1,-1)
1,1,-1),(2,3,4),(4,1,-1),(0,1,-1)
1,2,2),(-1,2,1),(0,8,0)
1,2,2),(-1,2,1),(0,8,6)

~—~ o~~~

If the 5 by 5 matrix[ A b] is invertible,b is not a combination of the columns df
If [A b]is singular, and the columns ofA are independent is a combination of
those columns. In this caskv = b has a solution.

36 (a) Find a basis for all solutions tty/dz* = y(z).
(b) Find a particular solution td*y/dz* = y(x) + 1. Find the complete solution.

(a) The functiong) = sinz, y = cosz, y = €, y = e~ * are a basis for solutions to
d*y/dz* = y(z).
(b) Aparticular solutiontal*y/dx* = y(z)+1isy(z) = —1. The complete solution

isSy(z) = =14 ¢,sinx + cocosz + cze® + c4e™® (0r use another basis for the
nullspace of theith derivative).
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Challenge Problems

37 Write the 3 by 3 identity matrix as a combination of the other five permutatio
matrices! Then show that those five matrices are linearlgpeddent. (Assume a
combination gives; P; + - - - + ¢5 P = zero matrix, and prove that each= 0.)

1 1 1 1 1 .
I_ ll ] _ [ 1 1] B ll ] The sixP’'s
1 1 1 1 1

1 are dependent
Those five are independent: Theh hasP;; = 1 and cannot be a combination of the
others. Then thénd cannot be (fron;; = 1) and alsosth (P32 = 1). Continuing,
a nonzero combination of all five could not be zero. Furthelenge: How many
independent by 4 permutation matrices?

38 Intersections and sums hadm(V) + dim(W) = dim(V N'W) + dim(V + W).
Start with a basisty, . . ., u, for the intersectio N 'W. Extend withv,,...,vstoa
basis forV, and separately with1, . . . , w, to a basis fokV. Prove that the:’s, v’s and
w’s together aréndependent. The dimensions have +s)+ (r+t) = (r)+ (r+s+t)
as desired.

The problem is to show that thes, v’s, w’s together are independent. We know the
u’s andv'’s together are a basis féf, and theu’s andw'’s together are a basis fé¥.
Suppose a combination afs, v's, w’s gives0. To be proved All coefficients= zero.

Key idea In that combination givin@, the partz from thew’s andv’s isin V. So
the part from thew’s is —x. This part is now inV and also inW. Butif —x isin
V N W itis a combination ofu’s only. Now the combination uses onlys andv’s
(independent ird/!) so all coefficients ofu’s andv’s must be zero. Thes = 0 and
the coefficients of thev’s are also zero.

39 InsideR™, suppose dimensioV{ + dimension (V) > n. Why is some nonzero vector
in bothV andW? Start with bases, ..., v, andws,...,w,, p+ ¢ > n.
If the left side ofdim (V) + dim(W) = dim(V N'W) + dim(V + W) is greater than
n, thendim(V N W) must be greater than zero. $oN W contains nonzero vectors.
40 Supposed is 10 by 10 and A2 = 0 (zero matrix) : A times each column ofl is 0.
This means that the column spacefs contained in the . If A has rankr,
those subspaces have dimenstod 10 — r. So the rank ofd isr < 5, if A%2 = 0.

If A% = zero matrix, this says that each columnais in the nullspace ofl. If the
column space has dimensienthe nullspace has dimensiof — r, and we must have
r <10 —r andr < 5.

- -

Problem Set 5.5, page 308

1 (a) Row and column space dimensicas, nullspace dimensios 4, dim(IN (AT))
=2 sum=16=m+n (b) Column space iR3; left nullspace contains on.

2 A: Row space basis row 1 = (1,2,4); nullspace(—2, 1,0) and(—4, 0, 1); column
space basis= columnl = (1,2); left nullspace(—2,1). B: Row space basis=
both rows= (1,2,4) and(2, 5, 8); column space basis two columns= (1,2) and
(2,5); nullspace(—4,0,1); left nullspace basis is empty because the space contains
onlyy = 0.
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3 Row space basis rows ofU = (0, 1, 2, 3,4) and(0, 0,0, 1, 2); column space basis
pivot columns (ofA notU) = (1,1,0) and (3,4,1); nullspace basig1,0,0,0,0),
(0,2,-1,0,0), (0,2,0,—2,1); left nullspaceg(1, —1, 1) = last row of E~1!

10 g _3
4 (a) [1 O] (b) Impossibler+(n—r) mustbe3  (c)[1 1] (d) { 3 1}

(e) ImpossibleRow space=column space requiress = n. Thenm —r = n —
r; nullspaces have the same dimension. Section 4.1 will prgvel) and IV (A™T)
orthogonal to the row and column spaces respectively—hesetare the same space.

1 1

2 1 0
rows spanning its nullspace ai™ = 0.

6 A: dim 2,2,2,1: Rows(0,3,3,3) and(0,1,0,1); columns(3,0,1) and (3,0, 0);
nullspace(1,0,0,0) and(0, —1,0,1); N(A™)(0,1,0). B: dim 1,1, 0,2 Row space
(1), column spacél, 4, 5), nullspace: empty basigy (AT) (—4,1,0) and(-5,0,1).

7 Invertible3 by 3 matrix A: row space basis: column space basis (1,0, 0), (0,1,0),
(0,0,1); nullspace basis and left nullspace basiseanpty Matrix B = [A  A]: row
space basi$l,0,0,1,0,0), (0,1,0,0,1,0) and (0,0, 1,0,0,1); column space basis
(1,0,0), (0,1,0), (0,0, 1); nullspace basié-1,0,0,1,0,0) and(0,—1,0,0,1,0) and
(0,0,—1,0,0,1); left nullspace basis is empty.

8 [/ OJand[I I; 0 0]and[0] = 3 by 2 haverow space dimensions 3,3,0 =
column space dimensionsylispace dimensiorss 3, 2; left nullspace dimensiorts 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of rase}ps the same
(b) Same column space and left nullspace. Same rank (dioreatcolumn space).

10 Forrand (3), almost surely rank 3, nullspace and left nullspace contain oflly0, 0).
Forrand (3, 5) the rank is almost surelyand the dimension of the nullspace2is

11 (a) No solution means that < m. Alwaysr < n. Can’t comparen andn here.
(b) Sincem — r > 0, the left nullspace must contain a nonzero vector.

11 10 1 2 21

12 A neat choice is[() 2] {1 9 O] = l2 4 01;

1 0 1 01
not match2 + 2 = 4. Only v = 0 is in bothIN(A) andC (A™T).

13 (a) False Usually row space“ column space (same dimension!) (bjue A and—A
have the same four subspaces False(choosed andB same size and invertible: then
they have the same four subspaces)

14 Row space basis can be the nonzero row#/of(1, 2, 3,4), (0,1,2,3), (0,0,1,2);
nullspace basi¢0, 1, —2, 1) as forU; column space basid, 0, 0), (0, 1,0), (0,0,1)
(happen to hav€(A) = C(U) = R3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the;am, 3,4) is in the
new left nullspace after the row exchange.

16 If Av = 0 andwv is arow ofA thenv - v = 0.

17 Row space= yz plane; column space xy plane; nullspace- x axis; left nullspace
= z axis. Forl + A: Row space= column space- R?, both nullspaces contain only
the zero vector.

5 A= { ] has those rows spanning its row sp@te- [I —2 1] hasthe same

r+(n—r)=n = 3does
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18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Row3—2row 2+ row 1 = zero row so the vectokg1, —2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accidehtfonatrix).
(a) Elimination onAxz = 0 leads to0 = b3 — by — by so(—1,—1,1) is in the left
nullspace. (b)4 by 3: Elimination leads tds; — 2b; = 0 andby + by — 4b; = 0, SO
(—=2,0,1,0)and(—4,1,0,1) are in the left nullspacaVhy? Those vectors multiply the
matrix to givezero rows Section 4.1 will show another approachr = b is solvable
(bisin C(A)) whenb is orthogonal to the left nullspace.
(a) Special solutiong—1,2,0,0) and(—i, 0,—3,1) are perpendicular to the rows of
R (and thenER). (b) ATy = 0 hasl independent solutios last row of E—1.
(E~'A = R has a zero row, which is just the transposeidfy = 0).
() wandw (b) vandz (c) rank< 2if u andw are dependent or if andz
are dependent (d) The rankab™ + wzT is 2.

1 2 1 0 3 27 has column space spanned
A=[u w][vT 2] = l2 2] {1 1} = l4 2] by v andw, row space

4 1 5 1] spanned by andz.
As in Problem 22: Row space basi$, 0, 3), (1,1, 2); column space basid, 4, 2),
(2,5,7); the rank of (3 by 2) times (2 by 3) cannot be larger than thé iEreither
factor, so rank< 2 and the 3 by 3 product is not invertible.
ATy = d putsd in therow spaceof A; unique solution if theeft nullspacenullspace
of AT) contains onlyy = 0.
(@) True(A andA™T have the same rank) (WalseA =[1 0]andAT have very
different left nullspaces (c)alse (A can be invertible and unsymmetric even if
C’EA) =C(AT)) (d) True(The subspaces fot and— A are always the same. If
AT = Aor AT = — A they are also the same fdr")
The rows ofC = AB are combinations of the rows é&f. So rankC' < rankB. Also
rankC < rankA, because the columns 6fare combinations of the columns df
Choosed = bc/a to make[2 B] arank-1 matrix. Then the row space has bési$)
and the nullspace has basisb, a). Those two vectors are perpendicular !
B andC (checkers and chess) both have rank2+# 0. Row 1 and 2 are a basis for the
row space of”, BTy = 0 has 6 special solutions with1 and 1 separated by a zero;
N(C7T) has(-1,0,0,0,0,0,0,1) and(0,—1,0,0,0,0, 1,0) and columns3, 4,5, 6 of
I; N(C) is a challenge.
a1 = 1,a12 = 0,a13 = 1,a22 = 0,a32 = 1,a31 = 0,a23 = 1,a33 = 0,a21 = 1.
There are vectors along the floor and along a wall thanateperpendicular In fact
the vectors where the wall meets the floor are in both subsface not perpendicular
to themselves).
Everyy in N(AT) hasATy = 0. Each row ofAT (= each column oft) has azerodot
product withy—those dot products are the zeros on the right hand side gf = 0.
The planeP is exactly the nullspace of the matrik= [1 1 1 1]. ThenP is the row
space of4, and the vectov = (1, 1,1, 1) is a basic forP™.
The vector(1, 4, 5) in the row space off would have to be orthogonal {@, 5, 1) in
the nullspace—and it's not. So no matrix

The subspaces fal = uwv™ are pairs of orthogonal linex(andv*, v andub).
If B has those same four subspaces tBea cA with ¢ # 0.
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35 (@) AX = 0 if each column ofX is a multiple of(1,1,1); dim(nullspace
(b) If AX = B then all columns ofB add to zero; dimension of th&’s
(€) 3+ 6 = dim(M?>*3) = 9 entries in & by 3 matrix.

36 The key is equal row spaces. First row 4f= combination of the rows oB: only
possible combination (noticB is 1 (row 1 of B). Same for each row sb = G.

o w

37 If avectorv is in the subspacé, thenv is perpendicular to every vector fi-. There-
fore v belongs to(S+)+. Those lines show thaf is contained in (S4)1. But if
S has dimensionl, S+ will have dimension: — d and (S+)+ will have dimension
n—(n—d)=d.

If the d-dimensional spac# is contained in thel-dimensional spaceS+)+, the two
spaces must be the same! (Why is that true ?)

38 This problem shows that and AT A have the same nullspace (a very important fact,
proved again on page 391). The proof here starts frohslv = 0, which putsAv
in the nullspace ofA™. But Awv is also in the column space of (Av is always a
combination of the columns, by matrix multiplication). 8@ is in N (AT) andC(A),
perpendicular to itself and therefora = 0.

Conclusion:AT Av = 0 leads todv = 0. And certainlyAv = 0 leads toAT Av = 0
(just multiply by A). SON (AT A) = N(A).

Problem Set 5.6, page 319

—1 1 0 c 1
1A=|-1 0 1]; nullspace contain%o]; [01 is not orthogonal to that nullspace.
0 —1 1 c 0

2 ATy =o0fory = (1,-1,1); currentalong edge 1, edge 3, back on edge 2 (full loop).
3 Elimination leads to

—v1 +ve =by —v; +v2=b
—v9 +v3 = by — by and then —vy +wv3 =>by — by
—vg +v3 = b3 0=0b3 —bz+ by

The two nonzero rows oR arel —1 0 and0 1 —1 (signs were reversed to make the
pivot = +1). Row3 of R is zero. The tree has edges from ndade 2 and node to 3.

4 The equationsin 5.6.3 can be solved whg#r b2 +b; = 0 (this is actually Kirchhoff’s
\oltage Law). These are exactly all the vectbthat are orthogonal tg = (1, —1,1).

(If YTb + 0, then KVL fails and4v = b has no solution.)

5 Kirchhoff's Current LawATy = f is solvable forf = (1, —1,0) and not solvable for
f =(1,0,0); f mustbe orthogonal t6l, 1, 1) in the nullspace;f; + f2 + f3 = 0.

2 -1 -1 3 1 c
6 ATAv = l—l 2 —1|v= [—3] = f producey = |—1| 4+ | c|; potentials
-1 -1 2 0 0 c

v =1,—1,0and currents-Av = 2, 1, —1; f sends 3 units from node 2 into node 1.
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7 The triangle graph had™ A = graph Laplacian:

10

11

12

13

14

-1 -1 0 -1 1 0 2 -1
[1 0_1H_1 01]:[_1 )
0 1 1 0 -1 1 -1 -1 2

All vectors(c, ¢, ¢) are in nullspace oft = nullspace ofA™ A.

(|
— =
| I

-1 1 00 1 -1 0
-1 0 1 0 1 1 0
A= 0 -1 1 0] leads tov = 1 andy = |—1| and| 1| solving
0 -1 01 1 0 -1
0 0 -1 1 0 1
ATy = 0.

Elimination onAv = b always leads tayTb = 0 in the zero rows ofU and R:
—by + by — b3 = 0 andbs — by + b5 = 0 (thosey’s are from Problem 8 in the
left nullspace). This is Kirchhoff'$oltageLaw around the twdoops

_(1) _% (1) 8 The nonzero rows df/ keep
o edges 1, 2, 4. Other spanning trees
The echelonformoflisU = 8 8 —(1) (1) from edges, 1, 2, 5; 1, 3, 4: 1, 3, 5
0 0 0 0 1,4,5;2,3,4;2,3,5;2,4,5.

(a) The diagona?, 3, 3,2 counts edges that go in or out of hode2, 3,4 on the
graph. WhenAT multiplies A, those diagonal entries are dot products (iou¥
AT) - (columni of A) = ||columni||? = number of—1's or 1’s in columni =
degree of node.

(b) Columni (from node:) overlays column; (from nodej) only when an edge
connects nodesand;j. Then the row ofA for that edge has-1 and1 in those
columns—those numbers multiply to givel.

The nullspace ofA™ A contains(1,1,1,1) just like N(A). Therankist — 1 = 3. A

vector f is in the column space of T A (= row space by symmetry) exactly whefris

orthogonal to the nullspace—which means tfiat- f2 + f3 + f1 = 0. If you add up
the4 equationsA™ Av = f, you see this again.

Then by n adjacency matrixor the4 node graph is

|
O == O
— = O

0
1 2 _
1 W=
0

[Nl )
—_ N W
— 0 N
DO =N

1
1
0
1

You can check that the j entry of W2 is the number of-step pathdrom to j. When
1 = j those paths go out and back. Only énstep path connects nodeand2, going
through node3.

The number of loops in this connected grapmis-m +1 =7 -7+1 = 1.
What answer if the graph has two separate components (ns edgeeen)?
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15 Start from (4 nodes)- (6 edgesh (3 loops)= 1. If a new node connects toold
node,5 — 7+ 3 = 1. If the new node connects old nodes, a new loop is formed:
5—-8+4=1.

16 (a) 8 independent columns (b must be orthogonal to the nullspace gs add
to zero (c) Each edge goes into 2 nodes, 12 edges make diggdrias sum to 24.

17 A complete grapthas5 + 4 + 3+ 2 + 1 = 15 edges. Withn nodes that count is
14+ (n—1)=n(n—-1)/2. Tree ha$ edges.

18 N(A) contains all multiplies of1, 1, ..., 1) andno other vectorsThe equationglv =
0 tell you thatv; = v; when nodes and j are connected by an edge. Thevery
v; = v; whenever the graph is connected—just go from nottenodej using edges
in the graph.
19 (a) Withn nodes and all edged,™ A will haven — 1 along its diagonal (the degree
of every edge). It will gave-1 in every off-diagonal entry (a complete graph has
an edge between every pair of nodesdj).

(b) If the edge connecting nodésand3 is removed, this reduces lythe degrees
(AT A)1; and (AT A)33 on the diagonal: those degrees are now 2. And
(ATA);3 = (AT A)3; = 0 because that edge is gone.

20 With batteriesh,; to b5 in the5 edges of the square graph, the equatidifAv —b) = 0
gives the voltages; , v, v3,v4 atthe4 nodes. Heré = (1,1,1,1,1).

2-1-1 0] v “1-1 0 0 0 } )
t e | =1 3-1-1||w| | 1 0-1-1 0 -1
Atdv=A"bis| | 1 35 9| |w|=| 0 1 1 0-1 } =1 1
0-1-1 2| |uw 000 0 1 1]/, 2

Notice that adding thé equations give8 = 0: good. The solutiow gives voltages

-2 1 where the particular
_ | =5/4 1 solution
V=UptUn = —3/4 Tl was chosen to
0 1 havev, = 0.

Chapter 5 Notes, page 321

lezt+y#y+xandz+ (y+ 2) # (x +y) + zand(c; + c2)x # c1x + cox.
2 Whene(zq,z2) = (cz1,0), the only broken rule is 1 times equalsz. Rules (1)-(4)
for additionz + y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Als®rand no—x
(b) c(x + y) is the usualzy)©, while cx + cy is the usualz®)(y°). Those are equal.
With ¢ = 3,2 = 2,y = 1 thisis3(2 + 1) = 8. The zero vector is the number 1.

. . |0 0.1, |1 -1 -2 2
4 The zero vector in matrix spadd is {O 0],§A_[1 ] and—A_[_2 2}.

The smallest subspace ®f containing the matrixd consists of all matricesA.
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5 When f(z) = 22 andg(z) = 5z, the combinatior8f — 4g in function space is
h(z) = 3f(x) — 4g(z) = 32% — 20x.

6 Rule 8isbroken: Itf(z) is defined to be the usugilcz) then(ci +co)f = f((c1 +
c2)z) is not generally the same asf + cof = f(c1x) + f(c22).



