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5

Problem Set 5.1, Page 258

Questions 1–10 are about the “subspace requirements” :v +w and cv (and then all
linear combinationscv + dw) stay in the subspace.

1 One requirement can be met while the other fails. Show this byfinding

(a) A set of vectors inR2 for whichv +w stays in the set but12v may be outside.

(b) A set of vectors inR2 (other than two quarter-planes) for which everycv stays in
the set butv +w may be outside.

(a) The set of vectors with integer components (addingv + w produces integers,
multiplying by 1

2 may not).

(b) One option for the set is to take two lines through(0, 0). Thencv stays on these
lines butv +w may not.

2 Which of the following subsets ofR3 are actually subspaces ?

(a) The plane of vectors(b1, b2, b3) with b1 = b2.

(b) The plane of vectors withb1 = 1.

(c) The vectors withb1b2b3 = 0.

(d) All linear combinations ofv = (1, 4, 0) andw = (2, 2, 2).

(e) All vectors that satisfyb1 + b2 + b3 = 0.

(f) All vectors with b1 ≤ b2 ≤ b3.

The only subspaces are (a) the plane withb1 = b2 (d) the linear combinations ofv
andw (e) the plane withb1 + b2 + b3 = 0.

3 Describe the smallest subspace of the matrix spaceM that contains

(a)

[
1 0
0 0

]
and

[
0 1
0 0

]
(b)

[
1 1
0 0

]
(c)

[
1 0
0 0

]
and

[
1 0
0 1

]
.

(a) All matrices

[
a b
0 0

]
(b) All matrices

[
a a
0 0

]
(c) All diagonal matrices.

4 Let P be the plane inR3 with equationx + y − 2z = 4. The origin(0, 0, 0) is not in
P ! Find two vectors inP and check that their sum is not inP.

For the planev+ y− 2z = 4, the sum of(4, 0, 0) and(0, 4, 0) is not on the plane. (The
key is that this plane does not go through(0, 0, 0).)

5 Let P0 be the plane through(0, 0, 0) parallel to the previous planeP. What is the
equation forP0 ? Find two vectors inP0 and check that their sum is inP0.

The parallel planeP0 has the equationv + y − 2z = 0. Pick two points, for example
(2, 0, 1) and(0, 2, 1), and their sum(2, 2, 2) is in P0.

6 The subspaces ofR3 are planes, lines,R3 itself, orZ containing only(0, 0, 0).
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(a) Describe the three types of subspaces ofR2.
(b) Describe all subspaces ofD, the space of2 by 2 diagonal matrices.

(a) The subspaces ofR2 areR2 itself, lines through(0, 0), and(0, 0) by itself (b) The
subspaces ofR4 areR4 itself, three-dimensional planesn · v = 0, two-dimensional
subspaces(n1 · v = 0 andn2 · v = 0), one-dimensional lines through(0, 0, 0, 0), and
(0, 0, 0, 0) by itself.

7 (a) The intersection of two planes through(0, 0, 0) is probably a but it could
be a . It can’t beZ !

(b) The intersection of a plane through(0, 0, 0) with a line through(0, 0, 0) is
probably a but it could be a .

(c) If S and T are subspaces ofR5, prove that their intersectionS ∩ T is a
subspace ofR5. HereS ∩ T consists of the vectors that lie in both subspaces.
Check the requirements onv +w andcv.

(a) Two planes through(0, 0, 0) probably intersect in a line through(0, 0, 0)
(b) The plane and line probably intersect in the point(0, 0, 0)
(c) If v andy are in bothS andT , v + y andcv are in both subspaces.

8 SupposeP is a plane through(0, 0, 0) andL is a line through(0, 0, 0). The smallest
vector spaceP+ L containing bothP andL is either or .

The smallest subspace containing a planeP and a lineL is eitherP (when the lineL
is in the planeP) or R3 (whenL is not inP).

9 (a) Show that the set ofinvertiblematrices inM is not a subspace.
(b) Show that the set ofsingularmatrices inM is not a subspace.

(a) The invertible matrices do not include the zero matrix, so they are not a subspace

(b) The sum of singular matrices

[
1 0
0 0

]
+

[
0 0
0 1

]
is not singular: not a subspace.

10 True or false (check addition in each case by an example) :

(a) The symmetric matrices inM (with AT = A) form a subspace.
(b) The skew-symmetric matrices inM (with AT = −A) form a subspace.

(c) The unsymmetric matrices inM (with AT 6= A) form a subspace.

(a) True: The symmetric matrices do form a subspace (b)True: The matrices with
AT = −A do form a subspace (c)False: The sum of two unsymmetric matrices
could be symmetric.

Questions 11–19 are about column spacesC(A) and the equationAv = b.

11 Describe the column spaces (lines or planes) of these particular matrices :

A =

[
1 2
0 0
0 0

]
B =

[
1 0
0 2
0 0

]
C =

[
1 0
2 0
0 0

]
.

The column space ofA is thex-axis= all vectors(x, 0, 0). The column space ofB
is thexy plane= all vectors(x, y, 0). The column space ofC is the line of vectors
(x, 2x, 0).
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12 For which right sides (find a condition onb1, b2, b3) are these systems solvable ?

(a)

[
1 4 2
2 8 4

−1 −4 −2

] [
v1
v2
v3

]
=

[
b1
b2
b3

]
(b)

[
1 4
2 9

−1 −4

][
v1
v2

]
=

[
b1
b2
b3

]

(a) Elimination leads to0 = b2 − 2b1 and 0 = b1 + b3 in equations 2 and 3:
Solution only ifb2 = 2b1 andb3 = −b1 (b) Elimination leads to0 = b1 + 2b3 in
equation 3: Solution only ifb3 = −b1.

13 Adding row 1 ofA to row 2 producesB. Adding column 1 to column 2 producesC.
Which matrices have the same column space ? Which have the same row space?

A =

[
1 3
2 6

]
and B =

[
1 3
3 9

]
and C =

[
1 4
2 8

]
.

A combination of the columns ofC is also a combination of the columns ofA. Then

C =

[
1 3
2 6

]
andA =

[
1 2
2 4

]
have the same column space.B =

[
1 2
3 6

]
has a

different column space.

14 For which vectors(b1, b2, b3) do these systems have a solution ?

[
1 1 1
0 1 1
0 0 1

][
x1

x2

x3

]
=

[
b1
b2
b3

]
and

[
1 1 1
0 1 1
0 0 0

][
x1

x2

x3

]
=

[
b1
b2
b3

]

and

[
1 1 1
0 0 1
0 0 1

][
x1

x2

x3

]
=

[
b1
b2
b3

]
.

(a) Solution for everyb (b) Solvable only ifb3 = 0 (c) Solvable only ifb3 = b2.

15 (Recommended) If we add an extra columnb to a matrixA, then the column space gets
larger unless . Give an example where the column space gets larger
and an example where it doesn’t. Why isAv = b solvable exactly when the
column spacedoesn’tget larger ? Then it is the same forA and

[
A b

]
.

The extra columnb enlarges the column space unlessb is already inthe column space.

[A b ] =

[
1 0 1
0 0 1

]
(larger column space)
(no solution toAv = b)

[
1 0 1
0 1 1

]
(b is in column space)
(Av = b has a solution)

16 The columns ofAB are combinations of the columns ofA. This means : The
column space ofAB is contained in(possibly equal to)the column space ofA.
Give an example where the column spaces ofA andAB are not equal.

The column space ofAB is contained in(possibly equal to) the column space ofA.
The exampleB = 0 andA 6= 0 is a case whenAB = 0 has a smaller column space
thanA.

17 SupposeAv = b andAw = b∗ are both solvable. ThenAz = b + b∗ is solvable.
What isz ? This translates into : Ifb andb∗ are in the column spaceC(A), then
b+ b∗ is also inC(A).

The solution toAz = b+ b∗ is z = x+ y. If b andb∗ are inC(A) so isb+ b∗.
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18 If A is any 5 by 5 invertible matrix, then its column space is . Why ?

The column space of any invertible 5 by 5 matrix isR5. The equationAx = b is
always solvable (byv = A−1b) so everyb is in the column space of that invertible
matrix.

19 True or false (with a counterexample if false) :

(a) The vectorsb that are not in the column spaceC(A) form a subspace.

(b) If C(A) contains only the zero vector, thenA is the zero matrix.

(c) The column space of2A equals the column space ofA.

(d) The column space ofA− I equals the column space ofA (test this).

(a) False: Vectors that arenot in a column space don’t form a subspace.
(b) True: Only the zero matrix hasC(A) = {0}. (c) True: C(A) = C(2A).

(d) False: C(A− I) 6= C(A) whenA = I orA =

[
1 0
0 0

]
(or other examples).

20 Construct a 3 by 3 matrix whose column space contains(1, 1, 0) and(1, 0, 1) but not
(1, 1, 1). Construct a3 by 3 matrix whose column space is only a line.

A =

[
1 1 0
1 0 0
0 1 0

]
and

[
1 1 2
1 0 1
0 1 1

]
do not have(1, 1, 1) in C(A). A =

[
1 2 0
2 4 0
3 6 0

]

hasC(A) = line.

21 If the 9 by 12 systemAv = b is solvable for everyb, thenC(A) must be .

WhenAv = b is solvable for allb, everyb is in the column space ofA. So that space
is R9.

Challenge Problems

22 SupposeS andT are two subspaces of a vector spaceV. ThesumS+T contains all
sumss+ t of a vectors in S and a vectort in T. ThenS+T is a vector space.

If S andT are lines inRm, what is the difference betweenS + T andS ∪ T?
That union contains all vectors fromS and all vectors fromT. Explain this statement :
The span ofS ∪T is S+T.

(a) If u andv are both inS + T , thenu = s1 + t1 andv = s2 + t2. Sou + v =
(s1 + s2) + (t1 + t2) is also inS + T . And so iscu = cs1 + ct1: a subspace.

(b) If S andT are different lines, thenS ∪T is just the two lines (not a subspace) but
S + T is the whole plane that they span.

23 If S is the column space ofA andT is C(B), thenS + T is the column space of
what matrixM ? The columns ofA andB andM are all inRm. (I don’t think
A+B is always a correctM .)

If S = C(A) andT = C(B) thenS + T is the column space ofM = [A B ].
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24 Show that the matricesA and
[
A AB

]
(this has extra columns) have the same

column space. But find a square matrix withC(A2) smaller thanC(A).

The columns ofAB are combinations of the columns ofA. So all columns of[A AB ]

are already inC(A). ButA =

[
0 1
0 0

]
has a larger column space thanA2 =

[
0 0
0 0

]
.

For square matrices, the column space isRn whenA is invertible.

25 An n by n matrix hasC(A) = Rn exactly whenA is an matrix.

(Key question) The column space of ann by n matrixA is all of Rn exactly whenA
is invertible. In this invertible case, every vectorb is in C(A) because we can solve
Av = b. And if A were not invertible, elimination would lead to a row of zeros—then
Av = b could not be solved for some (most !) vectorsb.

Problem Set 5.2, Page 269

Questions 1–4 and 5–8 are about the matrices in Problems 1 and5.

1 Reduce these matrices to their ordinary echelon formsU :

A =

[
1 2 2 4 6
1 2 3 6 9
0 0 1 2 3

]
B =

[
2 4 2
0 4 4
0 8 8

]
.

Which are the free variables and which are the pivot variables ?

(a) U=

[
1 2 2 4 6
0 0 1 2 3
0 0 0 0 0

]
Free variablesv2, v4, v5
Pivot variablesv1, v3

(b) U=

[
2 4 2
0 4 4
0 0 0

]
Freev3
Pivotv1, v2

2 For the matrices in Problem 1, find a special solution for eachfree variable. (Set the
free variable to 1. Set the other free variables to zero.)

(a) Free variablesv2, v4, v5 and solutions(−2, 1, 0, 0, 0), (0, 0,−2, 1, 0), (0, 0,−3, 0, 1)
(b) Free variablev3: solution(1,−1, 1). Special solution for each free variable.

3 By combining the special solutions in Problem 2, describe every solution toAv = 0
andBv = 0. The nullspace contains onlyv = 0 when there are no .

The complete solution toAv = 0 is (−2v2, v2,−2v4−3v5, v4, v5) with v2, v4, v5 free.
The complete solution toBv = 0 is (2v3,−v3, v3). The nullspace contains onlyv = 0
when there are no free variables.

4 By further row operations on eachU in Problem 1, find the reduced echelon formR.
True or false: The nullspace ofR equals the nullspace ofU .

R =

[
1 2 0 0 0
0 0 1 2 3
0 0 0 0 0

]
, R =

[
1 0 −1
0 1 1
0 0 0

]
, R has the same nullspace asU andA.
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5 By row operations reduce this newA andB to triangular echelon formU . Write down
a 2 by 2 lower triangularL such thatB = LU .

A =

[
−1 3 5
−2 6 10

]
B =

[
−1 3 5
−2 6 7

]
.

A =

[
−1 3 5
−2 6 10

]
=

[
1 0
2 1

] [
−1 3 5
0 0 0

]
; B =

[
−1 3 5
−2 6 7

]
=

[
1 0
2 1

]

[
−1 3 5
0 0 −3

]
= LU .

6 For the sameA andB, find the special solutions toAv=0 andBv=0. For anm by
n matrix, the number of pivot variables plus the number of freevariables is .

(a) Special solutions(3, 1, 0) and(5, 0, 1) (b) (3, 1, 0). Total of pivot and free isn.

7 In Problem 5, describe the nullspaces ofA andB in two ways. Give the equations for
the plane or the line, and give all vectorsv that satisfy those equations as combinations
of the special solutions.

(a) The nullspace ofA in Problem 5 is the plane−v + 3y + 5z = 0; it contains all
the vectors(3y+5z, y, z) = y(3, 1, 0)+ z(5, 0, 1) = combination of special solutions.
(b) Theline through(3, 1, 0) has equations−v+3y+5z = 0 and−2v+6y+7z = 0.
The special solution for the free variablev2 is (3, 1, 0).

8 Reduce the echelon formsU in Problem 5 toR. For eachR draw a box around the
identity matrix that is in the pivot rows and pivot columns.

R =

[
1 −3 −5
0 0 0

]
with I = [ 1 ]; R =

[
1 −3 0
0 0 1

]
with I =

[
1 0
0 1

]
.

Questions 9–17 are about free variables and pivot variables.

9 True or false (with reason if true or example to show it is false) :

(a) A square matrix has no free variables.

(b) An invertible matrix has no free variables.

(c) Anm by n matrix has no more thann pivot variables.

(d) Anm by n matrix has no more thanm pivot variables.

(a) False: Any singular square matrix would have free variables (b)True: An in-
vertible square matrix hasno free variables. (c)True(onlyn columns to hold pivots)
(d) True(onlym rows to hold pivots)

10 Construct 3 by 3 matricesA to satisfy these requirements (if possible) :

(a) A has no zero entries butU = I.

(b) A has no zero entries butR = I.

(c) A has no zero entries butR = U .

(d) A = U = 2R.

(a) Impossible row 1 (b)A = invertible (c) A = all ones (d)A = 2I, R = I.
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11 Put as many1’s as possible in a 4 by 7 echelon matrixU whose pivot columns are

(a) 2, 4, 5

(b) 1, 3, 6, 7

(c) 4 and 6.



0 1 1 1 1 1 1
0 0 0 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 0 0 0






1 1 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1






0 0 0 1 1 1 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0




12 Put as many1’s as possible in a 4 by 8reducedechelon matrixR so that the free
columns are

(a) 2, 4, 5, 6

(b) 1, 3, 6, 7, 8.



1 1 0 1 1 1 0 0
0 0 1 1 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


,



0 1 1 0 0 1 1 1
0 0 0 1 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0


. Notice the identity

matrix in the pivot columns of thesereducedrow echelon formsR.

13 Suppose column 4 of a 3 by 5 matrix is all zero. Thenv4 is certainly a variable.
The special solution for this variable is the vectors = .

If column 4 of a 3 by 5 matrix is all zero thenv4 is a freevariable. Its special solution
is v = (0, 0, 0, 1, 0), because 1 will multiply that zero column to giveAv = 0.

14 Suppose the first and last columns of a 3 by 5 matrix are the same(not zero). Then
is a free variable. Find the special solution for this variable.

If column 1= column 5 thenv5 is a free variable. Its special solution is(−1, 0, 0, 0, 1).

15 Suppose anm byn matrix hasr pivots. The number of special solutions is . The
nullspace contains onlyv = 0 whenr = . The column space is all ofRm when
r = .

If a matrix hasn columns andr pivots, there aren−r special solutions. The nullspace
contains onlyv = 0 whenr = n. The column space is all ofRm whenr = m. All
important!

16 The nullspace of a 5 by 5 matrix contains onlyv = 0 when the matrix has
pivots. The column space isR5 when there are pivots. Explain why.

The nullspace contains onlyv = 0 whenA has 5 pivots. Also the column space isR5,
because we can solveAv = b and everyb is in the column space.

17 The equationx − 3y − z = 0 determines a plane inR3. What is the matrixA in this
equation ? Which are the free variables ? The special solutions are(3, 1, 0) and .

A = [ 1 − 3 − 1 ] gives the planev − 3y − z = 0; y andz are free variables. The
special solutions are(3, 1, 0) and(1, 0, 1).
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18 (Recommended) The planex − 3y − z = 12 is parallel to the planex − 3y − z = 0
in Problem 17. One particular point on this plane is(12, 0, 0). All points on the plane
have the form (fill in the first components)

[
x
y
z

]
=

[
0
0

]
+ y

[
1
0

]
+ z

[
0
1

]
.

Fill in 12 then4 then1 to get the complete solution tov − 3y − z = 12:

[
v
y
z

]
=

[
12
0
0

]
+ y

[
4
1
0

]
+ z

[
1
0
1

]
= vparticular+ vnullspace.

19 Prove thatU andA = LU have the same nullspace whenL is invertible :

If Uv = 0 then LUv = 0. If LUv = 0, how do you knowUv = 0 ?

If LUv = 0, multiply by L−1 to find Uv = 0. ThenU andLU have the same
nullspace.

20 Suppose column1 + column3 + column5 = 0 in a 4 by 5 matrix with four pivots.
Which column is sure to have no pivot (and which variable is free) ? What is the special
solution ? What is the nullspace ?

Column 5 is sure to have no pivot since it is a combination of earlier columns. With
4 pivots in the other columns, the special solution iss = (1, 0, 1, 0, 1). The nullspace
contains all multiples of this vectors (a line inR5).

Questions 21–28 ask for matrices (if possible) with specificproperties.

21 Construct a matrix whose nullspace consists of all combinations of(2, 2, 1, 0)and(3, 1, 0, 1).

For special solutions(2, 2, 1, 0) and (3, 1, 0, 1) with free variablesv3, v4: R =[
1 0 −2 −3
0 1 −2 −1

]
andA can be any invertible 2 by 2 matrix times thisR.

22 Construct a matrix whose nullspace consists of all multiples of (4, 3, 2, 1).

The nullspace ofA =

[
1 0 0 −4
0 1 0 −3
0 0 1 −2

]
is the line through(4, 3, 2, 1).

23 Construct a matrix whose column space contains(1, 1, 5)and(0, 3, 1) and whose nullspace
contains(1, 1, 2).

A =

[
1 0 −1/2
1 3 −2
5 1 −3

]
has(1, 1, 5) and(0, 3, 1) in C(A) and(1, 1, 2) in N (A). Which

otherA’s?
24 Construct a matrix whose column space contains(1, 1, 0)and(0, 1, 1) and whose nullspace

contains(1, 0, 1) and(0, 0, 1).

This construction is impossible: 2 pivot columns and 2 free variables, only 3 columns.
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25 Construct a matrix whose column space contains(1, 1, 1) and whose nullspace is the
line of multiples of(1, 1, 1, 1).

A =

[
1 −1 0 0
1 0 −1 0
1 0 0 −1

]
has(1, 1, 1) in C(A) and only the line(c, c, c, c) in N(A).

26 Construct a 2 by 2 matrix whose nullspace equals its column space. This is possible.

A=

[
0 1
0 0

]
hasN(A)=C(A) and also (a)(b)(c) are all false. Noticerref(AT)=

[
1 0
0 0

]
.

27 Why does no 3 by 3 matrix have a nullspace that equals its column space ?

If nullspace= column space (withr pivots) thenn − r = r. If n = 3 then3 = 2r is
impossible.

28 (Important) IfAB = 0 then the column space ofB is contained in the of A.
Give an example ofA andB.

If A times every column ofB is zero, the column space ofB is contained in thenullspace

of A. An example isA =

[
1 1
1 1

]
andB =

[
1 1

−1 −1

]
. HereC(B) equalsN(A).

(ForB = 0,C(B) is smaller.)
29 The reduced formR of a 3 by 3 matrix with randomly chosen entries is almost sure to

be . What reduced formR is virtually certain if the randomA is 4 by 3 ?

ForA = random 3 by 3 matrix,R is almost sure to beI. For 4 by 3,R is most likely
to beI with fourth row of zeros. What about a random 3 by 4 matrix?

30 Show by example that these three statements are generallyfalse:

(a) A andAT have the same nullspace.

(b) A andAT have the same free variables.

(c) If R is the reduced form ofA thenRT is the reduced form ofAT.

A =

[
0 1
0 0

]
shows that (a)(b)(c) are all false. Noticerref(AT) =

[
1 0
0 0

]
.

31 If the nullspace ofA consists of all multiples ofv = (2, 1, 0, 1), how many pivots
appear inU ? What isR ?

If N(A) = line throughv = (2, 1, 0, 1), A hasthree pivots(4 columns and 1 special

solution). Its reduced echelon form can beR =

[
1 0 0 −2
0 1 0 −1
0 0 1 0

]
(add any zero rows).

32 If the special solutions toRv = 0 are in the columns of theseN , go backward to find
the nonzero rows of the reduced matricesR :

N =

[
2 3
1 0
0 1

]
and N =

[
0
0
1

]
and N =

[ ]
(empty3 by 1).

Any zero rows come after these rows:R = [ 1 −2 −3 ], R =

[
1 0 0
0 1 0

]
, R = I.
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33 (a) What are the five 2 by 2 reduced echelon matricesR whose entries are all 0’s and
1’s ?

(b) What are the eight 1 by 3 matrices containing only 0’s and 1’s ? Are all eight of
them reduced echelon matricesR ?

(a)

[
1 0
0 1

]
,

[
1 0
0 0

]
,

[
1 1
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 0

]
(b) All 8 matrices areR’s !

34 Explain whyA and−A always have the same reduced echelon formR.

One reason thatR is the same forA and−A: They have the same nullspace. They also
have the same column space, but that is not required for two matrices to share the same
R. (R tells us the nullspace and row space.)

Challenge Problems

35 If A is 4 by 4 and invertible, describe all vectors in the nullspace of the4 by 8 matrix
B = [A A].

The nullspace ofB = [A A ] contains all vectorsv =

[
y

−y

]
for y in R4.

36 How is the nullspaceN (C) related to the spacesN(A) andN (B), if C =

[
A
B

]
?

If Cv = 0 thenAv = 0 andBv = 0. SoN(C) = N(A) ∩N(B) = intersection.

37 Kirchhoff’s Law says thatcurrent in= current outat every node. This network has
six currentsy1, . . . , y6 (the arrows show the positive direction, eachyi could be
positive or negative). Find the four equationsAy = 0 for Kirchhoff’s Law at the
four nodes. Reduce toUy = 0. Find three special solutions in the nullspace ofA.

Currents: y1 − y3 + y4 = −y1 + y2 ++y5 = −y2 + y4 + y6 = −y4 − y5 − y6 = 0.
These equations add to0 = 0. Free variablesy3, y5, y6: watch for flows around loops.
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Problem Set 5.3, Page 280

1 (Recommended) Execute the six steps of Worked Example3.4 A to describe the column
space and nullspace ofA and the complete solution toAv = b :

A =

[
2 4 6 4
2 5 7 6
2 3 5 2

]
b =

[
b1
b2
b3

]
=

[
4
3
5

]

[
2 4 6 4 b1

2 5 7 6 b2

2 3 5 2 b3

]
→
[
2 4 6 4 b1

0 1 1 2 b2 − b1

0 −1 −1 −2 b3 − b1

]
→
[
2 4 6 4 b1

0 1 1 2 b2 − b1

0 0 0 0 b3 + b2 − 2b1

]

Av = b has a solution whenb3 + b2 − 2b1 = 0; the column space contains all combi-
nations of(2, 2, 2) and(4, 5, 3). This is the planeb3+ b2− 2b1 = 0 (!). The nullspace
contains all combinations ofs1 = (−1,−1, 1, 0) ands2 = (2,−2, 0, 1); vcomplete =
vp + c1s1 + c2s2;

[R d ] =

[
1 0 1 −2 4
0 1 1 2 −1
0 0 0 0 0

]
gives the particular solutionvp = (4,−1, 0, 0).

2 Carry out the same six steps for this matrixA with rank one. You will findtwo condi-
tions onb1, b2, b3 for Av = b to be solvable. Together these two conditions putb into
the space.

A =

[
1
3
2

]
[ 2 1 3 ]

=

[
2 1 3
6 3 9
4 2 6

]
b =

[
b1
b2
b3

]
=

[
10
30
20

]

[
2 1 3 b1

6 3 9 b2

4 2 6 b3

]
→
[
2 1 3 b1

0 0 0 b2 − 3b1

0 0 0 b3 − 2b1

]
Then[R d ] =

[
1 1/2 3/2 5
0 0 0 0
0 0 0 0

]

Av = b has a solution whenb2 − 3b1 = 0 andb3 − 2b1 = 0; C(A) = line through
(2, 6, 4) which is the intersection of the planesb2 − 3b1 = 0 and b3 − 2b1 = 0;
the nullspace contains all combinations ofs1 = (−1/2, 1, 0) ands2 = (−3/2, 0, 1);
particular solutionvp = d = (5, 0, 0) and complete solutionvp + c1s1 + c2s2.

Questions 3–15 are about the solution ofAv = b. Follow the steps in the text tovp
and vn. Start from the augmented matrix

[
A b

]
.

3 Write the complete solution asvp plus any multiple ofs in the nullspace :

x+ 3y + 3z = 1

2x+ 6y + 9z = 5

−x− 3y + 3z = 5.

v
complete

=

[−2
0
1

]
+ v2

[−3
1
0

]
. The matrix is singular but the equations are

still solvable;b is in the column space. Our particular solution has free variabley = 0.
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4 Find the complete solution (also called thegeneral solution) to

[
1 3 1 2
2 6 4 8
0 0 2 4

]


x
y
z
t


 =

[
1
3
1

]
.

v
complete

= vp + vn = (1
2
, 0, 1

2
, 0) + v2(−3, 1, 0, 0) + v4(0, 0,−2, 1).

5 Under what condition onb1, b2, b3 is this system solvable ? Includeb as a fourth column
in elimination. Find all solutions when that condition holds :

x+ 2y − 2z = b1

2x+ 5y − 4z = b2

4x+ 9y − 8z = b3.

[
1 2 −2 b1
2 5 −4 b2
4 9 −8 b3

]
→
[
1 2 −2 b1
0 1 0 b2 − 2b1
0 0 0 b3 − 2b1 − b2

]
solvable ifb3 − 2b1 − b2 = 0.

Back-substitution gives the particular solution toAv = b and the special solution to

Av = 0: v =

[
5b1 − 2b2
b2 − 2b1

0

]
+ v3

[
2
0
1

]
.

6 What conditions onb1, b2, b3, b4 make each system solvable ? Findv in that case :



1 2
2 4
2 5
3 9



[

v1

v2

]
=




b1
b2
b3
b4







1 2 3
2 4 6
2 5 7
3 9 12



[

v1

v2

v3

]
=




b1
b2
b3
b4


 .

(a) Solvable ifb2 = 2b1 and3b1 − 3b3 + b4 = 0. Thenv =

[
5b1 − 2b3
b3 − 2b1

]
= vp

(b) Solvable ifb2 = 2b1 and3b1 − 3b3 + b4 = 0. v =

[
5b1 − 2b3
b3 − 2b1

0

]
+ v3

[−1
−1
1

]
.

7 Show by elimination that(b1, b2, b3) is in the column space ifb3 − 2b2 + 4b1 = 0.

A =

[
1 3 1
3 8 2
2 4 0

]
.

What combinationy1(row 1) + y2(row 2) + y3(row 3) gives the zero row ?
[
1 3 1 b1
3 8 2 b2
2 4 0 b3

]
→
[
1 3 1 b2
0 −1 −1 b2 − 3b1
0 −2 −2 b3 − 2b1

]
One more step gives[ 0 0 0 0 ] =
row 3− 2 (row 2)+ 4(row 1)
provided b3−2b2+4b1=0.

8 Which vectors(b1, b2, b3) are in the column space ofA? Which combinations of the
rows ofA give zero ?
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(a) A =

[
1 2 1
2 6 3
0 2 5

]
(b) A =

[
1 1 1
1 2 4
2 4 8

]
.

(a) Everyb is inC(A): independent rows, only the zero combination gives0.
(b) We needb3 = 2b2, because(row 3)− 2(row2) = 0.

9 In Worked Example5.3 A, combine the pivot columns ofA with the numbers
−9 and3 in the particular solutionvp. What is that linear combination and why ?

L [U c ] =

[
1 0 0
2 1 0
3 −1 1

][
1 2 3 5 b1
0 0 2 2 b2 − 2b1
0 0 0 0 b3 + b2 − 5b1

]
=

[
1 2 3 5 b1
2 4 8 12 b2
3 6 7 13 b3

]

= [A b ]; particularvp = (−9, 0, 3, 0) means−9(1, 2, 3) + 3(3, 8, 7) = (0, 6,−6).
This isAvp = b.

10 Construct a 2 by 3 systemAv = b with particular solutionvp = (2, 4, 0) and
null (homogeneous) solutionvn = any multiple of(1, 1, 1).
[
1 0 −1
0 1 −1

]
x =

[
2
4

]
hasxp = (2, 4, 0) andxnull = (c, c, c).

11 Why can’t a 1 by 3 system havevp = (2, 4, 0) andvn = any multiple of(1, 1, 1)?

A 1 by 3 system has at leasttwo free variables. Butxnull in Problem 10 only hasone.
12 (a) If Av = b has two solutionsv1 andv2, find two solutions toAv = 0.

(b) Then find another solution toAv = b.

(a) x1 − x2 and0 solveAx = 0 (b) A(2x1 − 2x2) = 0, A(2x1 − x2) = b

13 Explain why these are all false :

(a) The complete solution is any linear combination ofvp andvn.

(b) A systemAv = b has at most one particular solution.

(c) The solutionvp with all free variables zero is the shortest solution (minimum
length‖v‖). Find a2 by 2 counterexample.

(d) If A is invertible there is no solutionvn in the nullspace.

(a) The particular solutionxp is always multiplied by 1 (b) Any solution can bexp

(c)

[
3 3
3 3

] [
x
y

]
=

[
6
6

]
. Then

[
1
1

]
is shorter (length

√
2) than

[
2
0

]
(length 2)

(d) The only “homogeneous” solution in the nullspace isxn = 0 whenA is invertible.
14 Suppose column 5 has no pivot. Thenv5 is a variable. The zero vector (is)

(is not) the only solution toAv = 0. If Av = b has a solution, then it has
solutions.

If column 5 has no pivot,v5 is a freevariable. The zero vectoris not the only solution
to Ax = 0. If this systemAx = b has a solution, it hasinfinitely manysolutions.

15 Suppose row 3 has no pivot. Then that row is . The equationRv = d is only
solvable provided . The equationAv = b (is) (is not) (might not be) solvable.

If row 3 of U has no pivot, that is azero row. Ux = c is only solvable provided
c3 = 0. Ax = b might not be solvable, becauseU may have other zero rows needing
moreci = 0.
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Questions 16–21 are about matrices of “full rank”r = m or r = n.

16 The largest possible rank of a 3 by 5 matrix is . Then there is a pivot in
every of U and R. The solution toAv = b (always exists) (is unique).
The column space ofA is . An example isA = .

The largest rank is 3. Then there is a pivot in everyrow. The solutionalways exists.
The column space isR3. An example isA = [ I F ] for any3 by 2 matrixF .

17 The largest possible rank of a 6 by 4 matrix is . Then there is a pivot in every
of U and R. The solution toAv = b (always exists) (is unique).

The nullspace ofA is . An example isA = .

The largest rank of a 6 by 4 matrix is 4. Then there is a pivot in every column. The
solution isunique. The nullspace contains only the zerovector. An example isA =
R = [ I F ] for any 4 by 2 matrixF .

18 Find by elimination the rank ofA and also the rank ofAT :

A =

[
1 4 0
2 11 5

−1 2 10

]
and A =

[
1 0 1
1 1 2
1 1 q

]
(rank depends onq).

Rank= 2; rank= 3 unlessq = 2 (then rank= 2). Transpose has the same rank!

19 Find the rank ofA and also ofATA and also ofAAT :

A =

[
1 1 5
1 0 1

]
and A =

[
2 0
1 1
1 2

]
.

Both matricesA have rank 2. AlwaysATA andAAT havethe same rankasA.

20 ReduceA to its echelon formU . Then find a triangularL so thatA = LU .

A =

[
3 4 1 0
6 5 2 1

]
and A =

[
1 0 1 0
2 2 0 3
0 6 5 4

]
.

A = LU =

[
1 0
2 1

] [
3 4 1 0
0 −3 0 1

]
;A = LU

[
1 0 0
2 1 0
0 3 1

][
1 0 1 0
0 2 −2 3
0 0 11 −5

]
.

21 Find the complete solution in the formvp + vn to these full rank systems :

(a) x+ y + z = 4 (b)
x+ y + z = 4

x− y + z = 4.

(a)

[
x
y
z

]
=

[
4
0
0

]
+ y

[−1
1
0

]
+ z

[−1
0
1

]
(b)

[
x
y
z

]
=

[
4
0
0

]
+ z

[−1
0
1

]
. The second

equation in part (b) removed one special solution.
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22 If Av = b has infinitely many solutions, why is it impossible forAv = B (new right
side) to have only one solution ? CouldAv = B have no solution ?

If Ax1 = b and alsoAx2 = b then we can addx1 − x2 to any solution ofAx = B:
the solutionx is not unique. But there will beno solution to Ax = B if B is not in
the column space.

23 Choose the numberq so that (if possible) the ranks are (a) 1, (b) 2, (c) 3 :

A =

[
6 4 2

−3 −2 −1
9 6 q

]
and B =

[
3 1 3
q 2 q

]
.

ForA, q = 3 gives rank 1, every otherq gives rank 2. ForB, q = 6 gives rank 1, every
otherq gives rank 2. These matrices cannot have rank 3.

24 Give examples of matricesA for which the number of solutions toAv = b is

(a) 0 or 1, depending onb

(b) ∞, regardless ofb

(c) 0 or∞, depending onb

(d) 1, regardless ofb.

(a)

[
1
1

]
[x ] =

[
b1
b2

]
has 0 or 1 solutions, depending onb (b)

[1 1]
[
x1

x2

]
= [ b ]

has infinitely many solutions for everyb (c) There are 0 or∞ solutions whenA has
rankr < m andr < n: the simplest example is a zero matrix. (d)onesolution for
all b whenA is square and invertible (likeA = I).

25 Write down all known relations betweenr andm andn if Av = b has

(a) no solution for someb

(b) infinitely many solutions for everyb

(c) exactly one solution for someb, no solution for otherb

(d) exactly one solution for everyb.

(a) r < m, alwaysr ≤ n (b) r = m, r < n (c) r < m, r = n (d) r = m = n.

Questions 26–33 are about Gauss-Jordan elimination (upwards as well as downwards)
and the reduced echelon matrixR.

26 Continue elimination fromU to R. Divide rows by pivots so the new pivots are all 1.
Then produce zerosabovethose pivots to reachR :

U =

[
2 4 4
0 3 6
0 0 0

]
and U =

[
2 4 4
0 3 6
0 0 5

]
.

[
2 4 4
0 3 6
0 0 0

]
→ R =

[
1 0 −2
0 1 2
0 0 0

]
and

[
2 4 4
0 3 6
0 0 5

]
→ R = I.
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27 SupposeU is square withn pivots (an invertible matrix).Explain whyR = I.

If U hasn pivots, thenR hasn pivotsequal to1. Zeros above and below those pivots
makeR = I.

28 Apply Gauss-Jordan elimination toUv = 0 andUv = c. ReachRv = 0 andRv = d :

[
U 0

]
=

[
1 2 3 0
0 0 4 0

]
and

[
U c

]
=

[
1 2 3 5
0 0 4 8

]
.

SolveRv = 0 to find vn (its free variable isv2 = 1). SolveRv = d to find vp
(its free variable isv2 = 0).
[
1 2 3 0
0 0 4 0

]
→
[
1 2 0 0
0 0 1 0

]
; vn =

[−2
1
0

]
;

[
1 2 3 5
0 0 4 8

]
→
[
1 2 0 −1
0 0 1 2

]
.

Freev2 = 0 givesvp = (−1, 0, 2) because the pivot columns containI.

29 Apply Gauss-Jordan elimination to reduce toRv = 0 andRv = d :

[
U 0

]
=

[
3 0 6 0
0 0 2 0
0 0 0 0

]
and

[
U c

]
=

[
3 0 6 9
0 0 2 4
0 0 0 5

]
.

SolveUv = 0 or Rv = 0 to find vn (free variable= 1). What are the solutions to
Rv = d?

[R d ] =

[
1 0 0 0
0 0 1 0
0 0 0 0

]
leads to xn =

[
0
1
0

]
; [R d ] =

[
1 0 0 −1
0 0 1 2
0 0 0 5

]
:

no solution because of the 3rd equation

30 Reduce toUv = c (Gaussian elimination) and thenRv = d (Gauss-Jordan) :

Av =

[
1 0 2 3
1 3 2 0
2 0 4 9

]


v1

v2

v3

v4


 =

[
2
5
10

]
= b.

Find a particular solutionvp and all homogeneous (null) solutionsvn.

[
1 0 2 3 2
1 3 2 0 5
2 0 4 9 10

]
→
[
1 0 2 3 2
0 3 0−3 3
0 0 0 3 6

]
→
[
1 0 2 0 −4
0 1 0 0 3
0 0 0 1 2

]
;



−4
3
0
2


; xn = x3



−2
0
1
0


.

31 Find matricesA andB with the given property or explain why you can’t :

(a) The only solution ofAv =

[
1
2
3

]
is v =

[
0
1

]
.

(b) The only solution ofBv =

[
0
1

]
is v =

[
1
2
3

]
.
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ForA =

[
1 1
0 2
0 3

]
, the only solution toAx =

[
1
2
3

]
isx =

[
0
1

]
. B cannot exist since 2

equations in 3 unknowns cannot have a unique solution.

32 Reduce
[
A b

]
to
[
R d

]
and find the complete solution toAv = b :

A =




1 3 1
1 2 3
2 4 6
1 1 5


 and b =




1
3
6
5


 and then b =




1
0
0
0


 .

A =



1 3 1
1 2 3
2 4 6
1 1 5


 factors intoLU =



1
1 1
2 2 1
1 2 0 1






1 3 1
0 −1 2
0 0 0
0 0 0


 and the rank is

r = 2. The special solution toAx = 0 andUx = 0 is s = (−7, 2, 1). Since
b = (1, 3, 6, 5) is also the last column ofA, a particular solution toAx = b is
(0, 0, 1) and the complete solution isx = (0, 0, 1)+ cs. (Or use the particular solution
xp = (7,−2, 0) with free variablex3 = 0.)

For b = (1, 0, 0, 0) elimination leads toUx = (1,−1, 0, 1) and the fourth equa-
tion is0 = 1. No solution for thisb.

33 The complete solution toAv =

[
1
3

]
is v =

[
1
0

]
+ c

[
0
1

]
. FindA.

If the complete solution toAx =

[
1
3

]
isx =

[
1
0

]
+

[
0
c

]
thenA =

[
1 0
3 0

]
.

Challenge Problems

34 Suppose you know that the3 by 4 matrixA has the vectors = (2, 3, 1, 0) as the only
special solution toAv = 0.

(a) What is therank of A and the complete solution toAv = 0?

(b) What is the exact row reduced echelon formR of A ? Good question.

(c) How do you know thatAv = b can be solved for allb ?

(a) If s = (2, 3, 1, 0) is the only special solution toAx = 0, the complete solution is
x = cs (line of solution!). The rank ofA must be4− 1 = 3.

(b) The fourth variablex4 is not freein s, andR must be

[
1 0 −2 0
0 1 −3 0
0 0 0 1

]
.

(c) Ax = b can be solve for allb, becauseA andR havefull row rank r = 3.

35 If you have this information about the solutions toAv = b for a specificb, what does
that tell you about theshapeof A (m andn) ? And possibly aboutr andb.

1. There is exactly one solution.
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2. All solutions toAv = b have the formv =
[
2
1

]
+ c
[
1
1

]
.

3. There are no solutions.

4. All solutions toAv = b have the formv =
[
1
1
0

]
+ c

[
1
0
1

]

5. There are infinitely many solutions.

1. r = n (no special solutions) andb is in the column space

2. n− r = 1 (one special solution)

3. b is not in the column space (sor < m)

4. Same conclusion as part2

5. r < n (there are special solutions) andb is in the column space

36 SupposeAv = b and Cv = b have the same (complete) solutions for everyb.
Is it true thatA = C ?

If Ax = b andCx = b have the same solutions,A andC have the same shape and
the same nullspace (takeb = 0). If b = column1 of A, x = (1, 0, . . . , 0) solves
Ax=b so it solvesCx=b. ThenA andC share column1. Other columns too:A=C!

Problem Set 5.4, page 295

Questions 1–10 are about linear independence and linear dependence.

1 Show thatu1,u2,u3 are independent butu1,u2,u3,u4 are dependent :

u1 =

[
1
0
0

]
u2 =

[
1
1
0

]
u3 =

[
1
1
1

]
u4 =

[
2
3
4

]
.

Solvec1u1 + c2u2 + c3u3 + c4u4 = 0 orAc = 0. Theu’s go in the columns ofA.
[
1 1 1
0 1 1
0 0 1

][
c1
c2
c3

]
= 0 gives c3 = c2 = c1 = 0. So those 3 column vectors are

independent. But

[
1 1 1 2
0 1 1 3
0 0 1 4

]
[ c ] =

[
0
0
0

]
is solved byc = (1, 1,−4, 1). Then

u1 + u2 − 4u3 + u4 = 0 (dependent).

2 (Recommended) Find the largest possible number of independent vectors among

u1 =




1
−1
0
0


u2 =




1
0

−1
0


u3 =




1
0
0

−1


u4 =




0
1

−1
0


u5 =




0
1
0

−1


u6 =




0
0
1

−1




u1,u2,u3 are independent (the−1’s are in different positions). All six vectors are on
the plane(1, 1, 1, 1) · u = 0 so no four of these six vectors can be independent.
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3 Prove that ifa = 0 or d = 0 or f = 0 (3 cases), the columns ofU are dependent :

U =

[
a b c
0 d e
0 0 f

]
.

If a = 0 then column1 = 0; if d = 0 thenb(column1) − a(column2) = 0; if f = 0
then all columns end in zero (they are all in thexy plane, they must be dependent).

4 If a, d, f in Question 3 are all nonzero, show that the only solution toUv = 0 is v = 0.
Then the upper triangularU has independent columns.

Uv =

[
a b c
0 d e
0 0 f

] [
x
y
z

]
=

[
0
0
0

]
givesz = 0 theny = 0 thenx = 0. A square

triangular matrix has independent columns (invertible matrix) when its diagonal has no
zeros.

5 Decide the dependence or independence of

(a) the vectors(1, 3, 2) and(2, 1, 3) and(3, 2, 1)

(b) the vectors(1,−3, 2) and(2, 1,−3) and(−3, 2, 1).

(a)

[
1 2 3
3 1 2
2 3 1

]
→
[
1 2 3
0 −5 −7
0 −1 −5

]
→
[
1 2 3
0 −5 −7
0 0 −18/5

]
: invertible⇒ independent

columns.

(b)

[
1 2 −3

−3 1 2
2 −3 1

]
→
[
1 2 −3
0 7 −7
0 −7 7

]
→
[
1 2 −3
0 7 −7
0 0 0

]
;A

[
1
1
1

]
=

[
0
0
0

]
, columns

add to0.

6 Choose three independent columns ofU andA. Then make two other choices.

U =




2 3 4 1
0 6 7 0
0 0 0 9
0 0 0 0


 and A =




2 3 4 1
0 6 7 0
0 0 0 9
4 6 8 2


 .

Columns 1, 2, 4 are independent. Also 1, 3, 4 and 2, 3, 4 and others (but not 1, 2, 3).
Same column numbers (not same columns!) forA.

7 If w1,w2,w3 are independent vectors, show that the differencesv1 = w2 −w3 and
v2 = w1 −w3 andv3 = w1 −w2 aredependent. Find a combination of thev’s that
gives zero. Which singular matrix gives[ v1 v2 v3 ] = [ w1 w2 w3 ] A?

The sumv1−v2+v3 = 0 because(w2−w3)− (w1−w3)+(w1−w2) = 0. So the

difference aredependentand the difference matrix is singular:A =

[
0 1 −1
1 0 −1
1 −1 0

]
.
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8 If w1,w2,w3 are independent vectors, show that the sumsv1 = w2 +w3 andv2 =
w1 + w3 andv3 = w1 + w2 are independent. (Write c1v1 + c2v2 + c3v3 = 0 in
terms of thew’s. Find and solve equations for thec’s, to show they are zero.)

If c1(w2+w3)+c2(w1+w3)+c3(w1+w2) = 0 then(c2+c3)w1+(c1+c3)w2+
(c1 + c2)w3 = 0. Since thew’s are independent,c2 + c3 = c1 + c3 = c1 + c2 = 0.
The only solution isc1 = c2 = c3 = 0. Only this combination ofv1,v2,v3 gives0.

9 Supposeu1,u2,u3,u4 are vectors inR3.

(a) These four vectors are dependent because .
(b) The two vectorsu1 andu2 will be dependent if .
(c) The vectorsu1 and(0, 0, 0) are dependent because .

(a) The four vectors inR3 are the columns of a 3 by 4 matrixA. There is a nonzero
solution toAx = 0 because there is at least one free variable (b) Two vectors are
dependent if[u1 u2 ] has rank 0 or 1. (OK to say “they are on the same line” or “one
is a multiple of the other” butnot “u2 is a multiple ofu1” —sinceu1 might be0.)
(c) A nontrivial combination ofu1 and0 gives0: 0u1 + 3(0, 0, 0) = 0.

10 Find two independent vectors on the planex+ 2y− 3z − t = 0 in R4. Then find three
independent vectors. Why not four? This plane is the nullspace of what matrix?

The plane is the nullspace ofA = [ 1 2− 3− 1 ]. Three free variables give three
solutions(x, y, z, t) = (2,−1 − 0 − 0) and(3, 0, 1, 0) and(1, 0, 0, 1). Combinations
of those special solutions give more solutions (all solutions).

Questions 11–14 are about the spacespanned by a set of vectors. Take all linear com-
binations of the vectors, to find the space they span.

11 Describe the subspace ofR3 (is it a line or plane orR3?) spanned by

(a) the two vectors(1, 1,−1) and(−1,−1, 1)

(b) the three vectors(0, 1, 1) and(1, 1, 0) and(0, 0, 0)
(c) all vectors inR3 with whole number components
(d) all vectors with positive components.

(a) Line inR3 (b) Plane inR3 (c) All of R3 (d) All of R3.
12 The vectorb is in the subspace spanned by the columns ofA when has a solu-

tion. The vectorc is in the row space ofA when has a solution.

True or false: If the zero vector is in the row space, the rows are dependent.

b is in the column space whenAx = b has a solution;c is in the row space when
ATy = c has a solution.False. The zero vector is always in the row space.

13 Find the dimensions of these 4 spaces. Which two of the spacesare the same?
(a) column space ofA (b) column space ofU (c) row space ofA (d) row space
of U :

A =

[
1 1 0
1 3 1
3 1 −1

]
and U =

[
1 1 0
0 2 1
0 0 0

]
.

The column space and row space ofA andU all have the same dimension =2. The row
spaces ofA andU are the same, because the rows ofU are combinations of the rows
of A (and vice versa!).
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14 v + w andv − w are combinations ofv andw. Write v andw as combinations of
v +w andv −w. The two pairs of vectors the same space. When are they a
basis for the same space?

v = 1
2 (v +w) + 1

2 (v −w) andw = 1
2 (v +w)− 1

2 (v −w). The two pairsspanthe
same space. They are a basis whenv andw areindependent.

Questions 15–25 are about the requirements for a basis.

15 If v1, . . . ,vn are linearly independent, the space they span has dimension . These
vectors are a for that space. If the vectors are the columns of anm byn matrix,
thenm is thann. If m = n, that matrix is .

Then independent vectors span a space of dimensionn. They are abasisfor that space.
If they are the columns ofA thenm is not lessthann (m ≥ n).

16 Supposev1,v2, . . . ,v6 are six vectors inR4.

(a) Those vectors (do) (do not) (might not) spanR4.

(b) Those vectors (are) (are not) (might be) linearly independent.

(c) Any four of those vectors (are) (are not) (might be) a basis forR4.

(a) The 6 vectorsmight notspanR4 (b) The 6 vectorsare notindependent
(c) Any fourmight bea basis.

17 Find three different bases for the column space ofU =

[
1 0 1 0 1
0 1 0 1 0

]
. Then

find two different bases for the row space ofU .

The column space ofU =

[
1 0 1 0 1
0 1 0 1 0

]
is R2 so take any bases forR2; (row 1

and row2) or (row1 and row1+ row 2) and (row1 and− row 2) are bases for the row
spaces ofU .

18 Find a basis for each of these subspaces ofR4 :

(a) All vectors whose components are equal.

(b) All vectors whose components add to zero.

(c) All vectors that are perpendicular to(1, 1, 0, 0) and(1, 0, 1, 1).

(d) The column space and the nullspace ofI (4 by 4).

These bases are not unique! (a)(1, 1, 1, 1) for the space of all constant vectors
(c, c, c, c) (b) (1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1) for the space of vectors with
sum of components =0 (c) (1,−1,−1, 0), (1,−1, 0,−1) for the space perpendic-
ular to(1, 1, 0, 0) and(1, 0, 1, 1) (d) The columns ofI are a basis for its column
space, the empty set is a basis (by convention) forN (I) = {zero vector}.

19 The columns ofA aren vectors fromRm. If they are linearly independent, what
is the rank ofA? If they spanRm, what is the rank? If they are a basis forRm,
what then?Looking ahead: The rankr counts the number of columns.

n-independent columns⇒ rankn. Columns spanRm ⇒ rankm. Columns are basis
for Rm ⇒ rank= m = n. The rank counts the number ofindependentcolumns.
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20 Find a basis for the planex−2y+3z = 0 in R3. Find a basis for the intersection of that
plane with thexy plane. Then find a basis for all vectors perpendicular to the plane.

One basis is(2, 1, 0), (−3, 0, 1). A basis for the intersection with thexy plane is
(2, 1, 0). The normal vector(1,−2, 3) is a basis for the line perpendicular to the plane.

21 Suppose the columns of a 5 by 5 matrixA are a basis forR5.

(a) The equationAv = 0 has only the solutionv = 0 because .

(b) If b is in R5 thenAv = b is solvable because the basis vectors R5.

Conclusion :A is invertible. Its rank is5. Its rows are also a basis forR5.

(a) The only solution toAv = 0 is v = 0 becausethe columns are independent
(b) Av = b is solvable becausethe columns spanR5. Key point: A basis gives
exactly one solution for everyb.

22 SupposeS is a5-dimensional subspace ofR6. True or false (example if false) :

(a) Every basis forS can be extended to a basis forR6 by adding one more vector.

(b) Every basis forR6 can be reduced to a basis forS by removing one vector.

(a) True (b) False because the basis vectors forR6 might not be inS.

23 U comes fromA by subtracting row 1 from row 3 :

A =

[
1 3 2
0 1 1
1 3 2

]
and U =

[
1 3 2
0 1 1
0 0 0

]
.

Find bases for the two column spaces. Find bases for the two row spaces. Find bases
for the two nullspaces. Which spaces stay fixed in elimination?

Columns1 and2 are bases for the (different ) column spaces ofA andU ; rows1 and
2 are bases for the (equal) row spaces ofA andU ; (1,−1, 1) is a basis for the (equal)
nullspaces.

24 True or false (give a good reason) :

(a) If the columns of a matrix are dependent, so are the rows.

(b) The column space of a 2 by 2 matrix is the same as its row space.

(c) The column space of a 2 by 2 matrix has the same dimension asits row space.

(d) The columns of a matrix are a basis for the column space.

(a) FalseA = [ 1 1 ] has dependent columns, independent row (b)Falsecolumn

space6= row space forA =

[
0 1
0 0

]
(c) True: Both dimensions= 2 if A is invert-

ible, dimensions= 0 if A = 0, otherwise dimensions= 1 (d) False, columns may
be dependent, in that case not a basis forC(A).
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25 For which numbersc andd do these matrices have rank2?

A =

[
1 2 5 0 5
0 0 c 2 2
0 0 0 d 2

]
and B =

[
c d
d c

]
.

A has rank2 if c = 0 andd = 2; B =

[
c d
d c

]
has rank2 except whenc = d or

c = −d.

Questions 26–28 are about spaces where the “vectors” are matrices.

26 Find a basis (and the dimension) for these subspaces of3 by 3 matrices :

(a) All diagonal matrices.

(b) All skew-symmetric matrices(AT = −A).

(a)

[
1 0 0
0 0 0
0 0 0

]
,

[
0 0 0
0 1 0
0 0 0

]
,

[
0 0 0
0 0 0
0 0 1

]

(b)

[
0 1 0

−1 0 0
0 0 0

]
,

[
0 0 1
0 0 0
−1 0 0

]
,

[
0 0 0
0 0 1
0 −1 0

]
.

These are simple bases (among many others) for (a) diagonal matrices (b) skew-
symmetric matrices. The dimensions are3, 6, 3.

27 Construct six linearly independent3 by 3 echelon matricesU1, . . . , U6. What space of
3 by 3 matrices do they span?

I,

[
1 0 0
0 1 0
0 0 2

]
,

[
1 0 0
0 2 0
0 0 1

]
,

[
1 1 0
0 1 0
0 0 1

]
,

[
1 0 1
0 1 0
0 0 1

]
,

[
1 0 0
0 1 1
0 0 1

]
; echelon matri-

ces donot form a subspace; theyspan the upper triangular matrices (not everyU is
echelon).

The echelon matrices span all upper traingular matrices. (How could you produce the
matrix witha22 = 1 as its only nanzero entry ?)

28 Find a basis for the space of all2 by 3 matrices whose columns add to zero.
Find a basis for the subspace whose rows also add to zero.
[

1 0 0
−1 0 0

]
,

[
0 1 0
0 −1 0

]
,

[
0 0 1
0 0 −1

]
;

[
1 −1 0

−1 1 0

]
and

[
1 0 −1

−1 0 1

]
.

Questions 29–32 are about spaces where the “vectors” are functions.

29 (a) Find all functions that satisfydydx = 0.

(b) Choose a particular function that satisfiesdy
dx = 3.
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(c) Find all functions that satisfydydx = 3.

(a) y(x) = constantC (b) y(x) = 3x this is one basis for the2 by 3 matrices with
(2, 1, 1) in their nullspace (4-dim subspace). (c)y(x) = 3x + C = yp + yn solves
dy/dx = 3.

30 The cosine spaceF3 contains all combinationsy(x) = A cosx+B cos 2x+C cos 3x.
Find a basis for the subspaceS with y(0) = 0. What is the dimension ofS ?

y(0) = 0 requiresA+B + C = 0. One basis iscosx− cos 2x andcosx− cos 3x.

31 Find a basis for the space of functions that satisfy

(a) dy
dx − 2y = 0 (b) dy

dx − y
x = 0.

(a) y(x) = e2x is a basis for, all solutions toy′ = 2y (b) y = x is a basis for all
solutions tody/dx = y/x (First-order linear equation⇒ 1 basis function in solution
space).

32 Supposey1, y2, y3 are three different functions ofx. The space they span could
have dimension1, 2, or 3. Give an example ofy1, y2, y3 to show each possibility.

y1(x), y2(x), y3(x) can bex, 2x, 3x (dim1) or x, 2x, x2 (dim2) or x, x2, x3 (dim3).

33 Find a basis for the spaceS of vectors(a, b, c, d) with a + c + d = 0 and also for the
spaceT with a+ b = 0 andc = 2d. What is the dimension of the intersectionS∩ T?

Basis forS: (1, 0,−1, 0), (0, 1, 0, 0), (1, 0, 0,−1); basis forT: (1,−1, 0, 0)and(0, 0, 2, 1);
S∩T = multiples of(3,−3, 2, 1) = nullspace for3 equation inR4 has dimension 1.

34 Which of the following are bases forR3?

(a) (1, 2, 0) and(0, 1,−1)

(b) (1, 1,−1), (2, 3, 4), (4, 1,−1), (0, 1,−1)

(c) (1, 2, 2), (−1, 2, 1), (0, 8, 0)

(d) (1, 2, 2), (−1, 2, 1), (0, 8, 6)

(a) No,2 vectors don’t spanR3 (b) No,4 vectors inR3 are dependent (c) Yes, a
basis (d) No, these three vectors are dependent

35 SupposeA is 5 by 4 with rank4. Show thatAv = b has no solution when the5 by 5
matrix [A b ] is invertible. Show thatAv = b is solvable when[A b ] is singular.

If the 5 by 5 matrix [A b ] is invertible,b is not a combination of the columns ofA.
If [A b ] is singular, and the4 columns ofA are independent,b is a combination of
those columns. In this caseAv = b has a solution.

36 (a) Find a basis for all solutions tod4y/dx4 = y(x).

(b) Find a particular solution tod4y/dx4 = y(x) + 1. Find the complete solution.

(a) The functionsy = sinx, y = cosx, y = ex, y = e−x are a basis for solutions to
d4y/dx4 = y(x).

(b) A particular solution tod4y/dx4 = y(x)+1 isy(x) = −1. The complete solution
is y(x) = −1 + c, sinx + c2 cosx + c3e

x + c4e
−x (or use another basis for the

nullspace of the4th derivative).
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Challenge Problems

37 Write the 3 by 3 identity matrix as a combination of the other five permutation
matrices ! Then show that those five matrices are linearly independent. (Assume a
combination givesc1P1 + · · ·+ c5P5 = zero matrix, and prove that eachci = 0.)

I =

[
1

1
1

]
−
[

1
1

1

]
+

[
1

1
1

]
+

[
1

1
1

]
−
[

1
1
1

]
.

The sixP ’s
are dependent.

Those five are independent: The4th hasP11 = 1 and cannot be a combination of the
others. Then the2nd cannot be (fromP32 = 1) and also5th (P32 = 1). Continuing,
a nonzero combination of all five could not be zero. Further challenge: How many
independent4 by 4 permutation matrices?

38 Intersections and sums havedim(V) + dim(W) = dim(V ∩W) + dim(V +W).
Start with a basisu1, . . . ,ur for the intersectionV ∩W. Extend withv1, . . . ,vs to a
basis forV, and separately withw1, . . . ,wt to a basis forW. Prove that theu’s, v’s and
w’s together areindependent. The dimensions have(r+s)+(r+t) = (r)+(r+s+t)
as desired.

The problem is to show that theu’s, v’s, w’s together are independent. We know the
u’s andv’s together are a basis forV , and theu’s andw’s together are a basis forW .
Suppose a combination ofu’s, v’s, w’s gives0. To be proved: All coefficients= zero.

Key idea: In that combination giving0, the partx from theu’s andv’s is in V . So
the part from thew’s is −x. This part is now inV and also inW . But if −x is in
V ∩ W it is a combination ofu’s only. Now the combination uses onlyu’s andv’s
(independent inV !) so all coefficients ofu’s andv’s must be zero. Thenx = 0 and
the coefficients of thew’s are also zero.

39 InsideRn, suppose dimension (V) + dimension (W) > n. Why is some nonzero vector
in bothV andW? Start with basesv1, . . . ,vp andw1, . . . ,wq, p+ q > n.

If the left side ofdim(V) + dim(W) = dim(V ∩W) + dim(V+W) is greater than
n, thendim(V ∩W) must be greater than zero. SoV ∩W contains nonzero vectors.

40 SupposeA is 10 by 10 andA2 = 0 (zero matrix) :A times each column ofA is 0.
This means that the column space ofA is contained in the . If A has rankr,
those subspaces have dimensionr ≤ 10− r. So the rank ofA is r ≤ 5, if A2 = 0.

If A2 = zero matrix, this says that each column ofA is in the nullspace ofA. If the
column space has dimensionr, the nullspace has dimension10− r, and we must have
r ≤ 10− r andr ≤ 5.

Problem Set 5.5, page 308

1 (a) Row and column space dimensions= 5, nullspace dimension= 4, dim(N(AT))
= 2 sum= 16 = m+ n (b) Column space isR3; left nullspace contains only0.

2 A: Row space basis= row 1 = (1, 2, 4); nullspace(−2, 1, 0) and(−4, 0, 1); column
space basis= column1 = (1, 2); left nullspace(−2, 1). B: Row space basis=
both rows= (1, 2, 4) and(2, 5, 8); column space basis= two columns= (1, 2) and
(2, 5); nullspace(−4, 0, 1); left nullspace basis is empty because the space contains
only y = 0.
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3 Row space basis= rows ofU = (0, 1, 2, 3, 4) and(0, 0, 0, 1, 2); column space basis=
pivot columns (ofA notU ) = (1, 1, 0) and (3, 4, 1); nullspace basis(1, 0, 0, 0, 0),
(0, 2,−1, 0, 0), (0, 2, 0,−2, 1); left nullspace(1,−1, 1) = last row ofE−1!

4 (a)

[
1 0
1 0
0 1

]
(b) Impossible:r+(n−r) must be 3 (c)[ 1 1 ] (d)

[
−9 −3
3 1

]

(e) ImpossibleRow space= column space requiresm = n. Thenm − r = n −
r; nullspaces have the same dimension. Section 4.1 will proveN (A) andN (AT)
orthogonal to the row and column spaces respectively—here those are the same space.

5 A =

[
1 1 1
2 1 0

]
has those rows spanning its row spaceB = [1 −2 1] has the same

rows spanning its nullspace andBAT = 0.

6 A: dim 2,2,2,1: Rows (0, 3, 3, 3) and (0, 1, 0, 1); columns(3, 0, 1) and (3, 0, 0);
nullspace(1, 0, 0, 0) and(0,−1, 0, 1); N (AT) (0, 1, 0). B: dim 1,1,0,2 Row space
(1), column space(1, 4, 5), nullspace: empty basis,N (AT) (−4, 1, 0) and(−5, 0, 1).

7 Invertible3 by 3 matrixA: row space basis= column space basis= (1, 0, 0), (0, 1, 0),
(0, 0, 1); nullspace basis and left nullspace basis areempty. Matrix B = [A A ]: row
space basis(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0) and (0, 0, 1, 0, 0, 1); column space basis
(1, 0, 0), (0, 1, 0), (0, 0, 1); nullspace basis(−1, 0, 0, 1, 0, 0) and(0,−1, 0, 0, 1, 0) and
(0, 0,−1, 0, 0, 1); left nullspace basis is empty.

8 [I 0] and[I I; 0 0] and[0 ] = 3 by 2 haverow space dimensions= 3, 3, 0 =
column space dimensions;nullspace dimensions2, 3, 2; left nullspace dimensions0, 2, 3.

9 (a) Same row space and nullspace. So rank (dimension of row space) is the same
(b) Same column space and left nullspace. Same rank (dimension of column space).

10 Forrand (3), almost surely rank= 3, nullspace and left nullspace contain only(0, 0, 0).
For rand (3, 5) the rank is almost surely3 and the dimension of the nullspace is2.

11 (a) No solution means thatr < m. Always r ≤ n. Can’t comparem andn here.
(b) Sincem− r > 0, the left nullspace must contain a nonzero vector.

12 A neat choice is

[
1 1
0 2
1 0

] [
1 0 1
1 2 0

]
=

[
2 2 1
2 4 0
1 0 1

]
; r + (n − r) = n = 3 does

not match2 + 2 = 4. Onlyv = 0 is in bothN(A) andC(AT).

13 (a) False: Usually row space6= column space (same dimension!) (b)True: A and−A
have the same four subspaces (c)False(chooseA andB same size and invertible: then
they have the same four subspaces)

14 Row space basis can be the nonzero rows ofU : (1, 2, 3, 4), (0, 1, 2, 3), (0, 0, 1, 2);
nullspace basis(0, 1,−2, 1) as forU ; column space basis(1, 0, 0), (0, 1, 0), (0, 0, 1)
(happen to haveC(A) = C(U) = R3); left nullspace has empty basis.

15 After a row exchange, the row space and nullspace stay the same; (2, 1, 3, 4) is in the
new left nullspace after the row exchange.

16 If Av = 0 andv is a row ofA thenv · v = 0.

17 Row space= yz plane; column space= xy plane; nullspace= x axis; left nullspace
= z axis. ForI + A: Row space= column space= R3, both nullspaces contain only
the zero vector.
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18 Row3−2 row 2+ row 1 = zero row so the vectorsc(1,−2, 1) are in the left nullspace.
The same vectors happen to be in the nullspace (an accident for this matrix).

19 (a) Elimination onAx = 0 leads to0 = b3 − b2 − b1 so (−1,−1, 1) is in the left
nullspace. (b)4 by 3: Elimination leads tob3 − 2b1 = 0 andb4 + b2 − 4b1 = 0, so
(−2, 0, 1, 0) and(−4, 1, 0, 1) are in the left nullspace.Why? Those vectors multiply the
matrix to givezero rows. Section 4.1 will show another approach:Ax = b is solvable
(b is in C(A)) whenb is orthogonal to the left nullspace.

20 (a) Special solutions(−1, 2, 0, 0) and(− 1
4 , 0,−3, 1) are perpendicular to the rows of

R (and thenER). (b) ATy = 0 has1 independent solution= last row ofE−1.
(E−1A = R has a zero row, which is just the transpose ofATy = 0).

21 (a) u andw (b) v andz (c) rank< 2 if u andw are dependent or ifv andz
are dependent (d) The rank ofuvT +wzT is 2.

22 A = [u w ]
[
vT zT

]
=

[
1 2
2 2
4 1

] [
1 0
1 1

]
=

[
3 2
4 2
5 1

]
has column space spanned
byu andw, row space
spanned byv andz.

23 As in Problem 22: Row space basis(3, 0, 3), (1, 1, 2); column space basis(1, 4, 2),
(2, 5, 7); the rank of (3 by 2) times (2 by 3) cannot be larger than the rank of either
factor, so rank≤ 2 and the 3 by 3 product is not invertible.

24 ATy = d putsd in therow spaceof A; unique solution if theleft nullspace(nullspace
of AT) contains onlyy = 0.

25 (a) True(A andAT have the same rank) (b)FalseA = [ 1 0 ] andAT have very
different left nullspaces (c)False (A can be invertible and unsymmetric even if
C(A) = C(AT)) (d) True(The subspaces forA and−A are always the same. If
AT = A orAT = −A they are also the same forAT)

26 The rows ofC = AB are combinations of the rows ofB. So rankC ≤ rankB. Also
rankC ≤ rankA, because the columns ofC are combinations of the columns ofA.

27 Choosed = bc/a to make
[
a b
c d

]
a rank-1 matrix. Then the row space has basis(a, b)

and the nullspace has basis(−b, a). Those two vectors are perpendicular !
28 B andC (checkers and chess) both have rank 2 ifp 6= 0. Row 1 and 2 are a basis for the

row space ofC, BTy = 0 has 6 special solutions with−1 and 1 separated by a zero;
N(CT) has(−1, 0, 0, 0, 0, 0, 0, 1) and(0,−1, 0, 0, 0, 0, 1, 0) and columns3, 4, 5, 6 of
I; N(C) is a challenge.

29 a11 = 1, a12 = 0, a13 = 1, a22 = 0, a32 = 1, a31 = 0, a23 = 1, a33 = 0, a21 = 1.
30 There are vectors along the floor and along a wall that arenot perpendicular. In fact

the vectors where the wall meets the floor are in both subspaces (and not perpendicular
to themselves).

31 Everyy in N(AT) hasATy = 0. Each row ofAT (= each column ofA) has azerodot
product withy—those dot products are the zeros on the right hand side ofATy = 0.

32 The planeP is exactly the nullspace of the matrixA = [1 1 1 1]. ThenP⊥ is the row
space ofA, and the vectorv = (1, 1, 1, 1) is a basic forP+.

33 The vector(1, 4, 5) in the row space ofA would have to be orthogonal to(4, 5, 1) in
the nullspace—and it’s not. So no matrixA.

34 The subspaces forA = uvT are pairs of orthogonal lines (v andv⊥, u andu⊥).
If B has those same four subspaces thenB = cA with c 6= 0.
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35 (a) AX = 0 if each column ofX is a multiple of(1, 1, 1); dim(nullspace) = 3.
(b) If AX = B then all columns ofB add to zero; dimension of theB’s = 6.
(c) 3 + 6 = dim(M3×3) = 9 entries in a3 by 3 matrix.

36 The key is equal row spaces. First row ofA = combination of the rows ofB: only
possible combination (noticeI) is 1 (row 1 ofB). Same for each row soF = G.

37 If a vectorv is in the subspaceS, thenv is perpendicular to every vector inS⊥. There-
fore v belongs to(S⊥)⊥. Those lines show thatS is contained in (S⊥)⊥. But if
S has dimensiond, S⊥ will have dimensionn − d and(S⊥)⊥ will have dimension
n− (n− d) = d.

If the d-dimensional spaceS is contained in thed-dimensional space(S⊥)⊥, the two
spaces must be the same ! (Why is that true ?)

38 This problem shows thatA andATA have the same nullspace (a very important fact,
proved again on page 391). The proof here starts fromATAv = 0, which putsAv
in the nullspace ofAT. But Av is also in the column space ofA (Av is always a
combination of the columns, by matrix multiplication). SoAv is inN(AT) andC(A),
perpendicular to itself and thereforeAv = 0.

Conclusion :ATAv = 0 leads toAv = 0. And certainlyAv = 0 leads toATAv = 0
(just multiply byA). SoN(ATA) = N (A).

Problem Set 5.6, page 319

1 A =

[−1 1 0
−1 0 1
0 −1 1

]
; nullspace contains

[
c
c
c

]
;

[
1
0
0

]
is not orthogonal to that nullspace.

2 ATy = 0 for y = (1,−1, 1); current along edge 1, edge 3, back on edge 2 (full loop).

3 Elimination leads to

−v1 + v2 = b1
−v2 + v3 = b2 − b1
−v2 + v3 = b3

and then
−v1 + v2 = b1
−v2 + v3 = b2 − b1

0 = b3 − b2 + b1

The two nonzero rows ofR are1 −1 0 and0 1 −1 (signs were reversed to make the
pivot= +1). Row3 of R is zero. The tree has edges from node1 to 2 and node2 to 3.

4 The equations in 5.6.3 can be solved whenb3−b2+b1 = 0 (this is actually Kirchhoff’s
Voltage Law). These are exactly all the vectorsb that are orthogonal toy = (1,−1, 1).
(If Y Tb 6= 0, then KVL fails andAv = b has no solution.)

5 Kirchhoff’s Current LawATy = f is solvable forf = (1,−1, 0) and not solvable for
f = (1, 0, 0); f must be orthogonal to(1, 1, 1) in the nullspace:f1 + f2 + f3 = 0.

6 ATAv =

[
2 −1 −1

−1 2 −1
−1 −1 2

]
v =

[
3

−3
0

]
= f producesv =

[
1

−1
0

]
+

[
c
c
c

]
; potentials

v = 1,−1, 0 and currents−Av = 2, 1, −1; f sends 3 units from node 2 into node 1.
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7 The triangle graph hasATA = graph Laplacian :

[ −1 −1 0
1 0 −1
0 1 1

] [ −1 1 0
−1 0 1
0 −1 1

]
=

[
2 −1 −1

−1 2 −1
−1 −1 2

]
.

All vectors(c, c, c) are in nullspace ofA = nullspace ofATA.

8 A =




−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1


 leads tov =



1
1
1
1


 andy =




−1
1

−1
0
0


 and




0
0
1

−1
1


 solving

ATy = 0.

9 Elimination onAv = b always leads toyTb = 0 in the zero rows ofU andR:
−b1 + b2 − b3 = 0 and b3 − b4 + b5 = 0 (thosey’s are from Problem 8 in the
left nullspace). This is Kirchhoff’sVoltageLaw around the twoloops.

10 The echelon form ofA isU =




−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 0
0 0 0 0




The nonzero rows ofU keep
edges 1, 2, 4. Other spanning trees
from edges, 1, 2, 5; 1, 3, 4; 1, 3, 5;
1, 4, 5; 2, 3, 4; 2, 3, 5; 2, 4, 5.

11 (a) The diagonal2, 3, 3, 2 counts edges that go in or out of nodes1, 2, 3, 4 on the
graph. WhenAT multipliesA, those diagonal entries are dot products (rowi of
AT) · (columni of A) = ||column i||2 = number of−1’s or 1’s in columni =
degree of nodei.

(b) Columni (from nodei) overlays columnj (from nodej) only when an edge
connects nodesi andj. Then the row ofA for that edge has−1 and1 in those
columns—those numbers multiply to give−1.

12 The nullspace ofATA contains(1, 1, 1, 1) just likeN (A). The rank is4 − 1 = 3. A
vectorf is in the column space ofATA (= row space by symmetry) exactly whenf is
orthogonal to the nullspace—which means thatf1 + f2 + f3 + f4 = 0. If you add up
the4 equationsATAv = f , you see this again.

13 Then by n adjacency matrixfor the4 node graph is

W =




0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0


 W 2 =




2 1 1 2
1 3 2 1
1 2 3 1
2 1 1 2




You can check that thei, j entry ofW 2 is the number of2-step pathsfrom i to j. When
i = j those paths go out and back. Only one2-step path connects nodes1 and2, going
through node3.

14 The number of loops in this connected graph isn − m + 1 = 7 − 7 + 1 = 1.
What answer if the graph has two separate components (no edges between)?



160 Chapter 5. Vector Spaces and Subspaces

15 Start from (4 nodes)− (6 edges)+ (3 loops)= 1. If a new node connects to1 old
node,5 − 7 + 3 = 1. If the new node connects to2 old nodes, a new loop is formed:
5− 8 + 4 = 1.

16 (a) 8 independent columns (b)f must be orthogonal to the nullspace sof ’s add
to zero (c) Each edge goes into 2 nodes, 12 edges make diagonalentries sum to 24.

17 A complete graphhas5 + 4 + 3 + 2 + 1 = 15 edges. Withn nodes that count is
1 + · · ·+ (n− 1) = n(n− 1)/2. Tree has5 edges.

18 N (A) contains all multiplies of(1, 1, . . . , 1) andno other vectors. The equationsAv =
0 tell you thatvi = vj when nodesi and j are connected by an edge. Thenevery
vi = vj whenever the graph is connected—just go from nodei to nodej using edges
in the graph.

19 (a) Withn nodes and all edges,ATA will haven − 1 along its diagonal (the degree
of every edge). It will gave−1 in every off-diagonal entry (a complete graph has
an edge between every pair of nodesi andj).

(b) If the edge connecting nodes1 and3 is removed, this reduces by1 the degrees
(ATA)11 and (ATA)33 on the diagonal : those degrees are nown − 2. And
(ATA)13 = (ATA)31 = 0 because that edge is gone.

20 With batteriesb1 to b5 in the5 edges of the square graph, the equationAT(Av−b) = 0
gives the voltagesv1, v2, v3, v4 at the4 nodes. Hereb = (1, 1, 1, 1, 1).

ATAv = ATb is




2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2






v1
v2
v3
v4


 =



−1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1







1
1
1
1
1


 =



−2
−1
1
2




Notice that adding the4 equations gives0 = 0 : good. The solutionv gives voltages

v = vp + vn =




−2
−5/4
−3/4
0


+ c




1
1
1
1




where the particular
solution
was chosen to
havev4 = 0.

Chapter 5 Notes, page 321

1 x+ y 6= y + x andx+ (y + z) 6= (x+ y) + z and(c1 + c2)x 6= c1x+ c2x.

2 Whenc(x1, x2) = (cx1, 0), the only broken rule is 1 timesx equalsx. Rules (1)-(4)
for additionx+ y still hold since addition is not changed.

3 (a) cx may not be in our set: not closed under multiplication. Also no 0 and no−x
(b) c(x+ y) is the usual(xy)c, while cx+ cy is the usual(xc)(yc). Those are equal.
With c = 3, x = 2, y = 1 this is3(2+ 1) = 8. The zero vector is the number 1.

4 The zero vector in matrix spaceM is

[
0 0
0 0

]
; 1
2A =

[
1 −1
1 −1

]
and−A =

[
−2 2
−2 2

]
.

The smallest subspace ofM containing the matrixA consists of all matricescA.
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5 Whenf(x) = x2 andg(x) = 5x, the combination3f − 4g in function space is
h(x) = 3f(x) − 4g(x) = 3x2 − 20x.

6 Rule 8 is broken: Ifcf(x) is defined to be the usualf(cx) then(c1+c2)f = f ((c1+
c2)x) is not generally the same asc1f + c2f = f(c1x) + f(c2x).


