
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Sun Microsystems, Inc.

Java™ 2 Platform, Micro Edition
Mobile Information Device Profile
Reference Implementation
Porting Guide

MIDP 1.0 Specification

MIDP Reference Implementation 1.0.3

MIDP RI 1.0.3
September 17, 2001

Copyright © 2001 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (“SUN”) hereby grants to you at no charge a nonexclusive, nontransferable,
worldwide, limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice the J2ME MIDP Reference Implementation technology to use this document for internal
evaluation purposes only. Other than this limited license, you acquire no right, title, or interest in or to the
document and you shall have no right to use the document for productive or commercial use.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
SOFTWARE, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A
RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, Java, the Java Coffee Cup logo, JDK, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX® is a
registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS PUBLICATION AT ANY TIME.

Contents

1. Introduction to MIDP 1

1.1 Mobile Information Device Profile (MIDP) 1

2. MIDP Porting Considerations 3

2.1 Porting versus Implementation 3

2.2 Degrees of Implementation 4

2.3 Porting versus Optimization 4

2.4 Native and Java Language Portions
of The RI 5

2.5 The GUI Portion of The RI 5

2.5.1 Helper Classes Removed 6

2.6 The non-GUI Portion of The RI 6

3. Porting the GUI 7

3.1 MIDP GUI overview 7

3.2 Porting The Low Level 9

3.2.1 Changes to the Porting Layer 10

3.3 Porting The High Level 10

4. Porting the Storage 13

4.1 Overview 13

4.2 RandomAccessStream and File 14
Contents iii

4.2.1 Relationship to RecordStoreFile and RecordStore 14

4.3 Porting the Low Level 14

4.4 Porting the High Level 14

4.5 Porting RMS 15

5. Porting the Application Management System 17

5.1 Porting Main 17

5.2 Porting the High Level 18

5.2.1 Command Categories 18

5.2.2 Replacing OTA 18

6. Porting the Networking Implementation 21

6.1 CLDC Specification of Generic Connections 21

6.2 CLDC Implementation of TCP/IP Sockets 22

6.3 MIDP Specification/Implementation of HTTP 1.1 Protocol 22

6.3.1 MIDP Implementation of HTTP Proxy 23

6.3.2 6.3.2 HTTP1.1 Persistent Connections. 23

6.4 Enabling Additional Protocols 24

6.5 Porting HTTPS 25

6.5.1 Porting the Low Level 25

6.5.2 Porting the High Level 25

7. Building a Different Executable 27

7.1 Make Variables 27

7.2 Removing Configuration Code 30

8. Thread-Safety 31

8.1 Requirements 31

8.2 Design Approach 32

8.3 Coding Conventions 33

8.3.1 Public Methods 34
iv MIDP Porting Guide • September 17, 2001

8.3.2 Constructors 35

8.3.3 Event Handling Methods 36

8.3.4 Application Callouts 36

8.3.5 Graphics 38

8.3.6 Command Menus 39

8.4 The serviceRepaints Method 39

9. Porting Example 41

9.1 Changes to DateField.java 42

9.2 Additional native methods 46

10. Compiler Requirements 49
Contents v

vi MIDP Porting Guide • September 17, 2001

Tables

TABLE 3-1 Classes in Low-level Graphics API 7

TABLE 3-2 Classes in High-level Graphics API 8

TABLE 7-1 Makefile flags 28

TABLE 7-2 Special GNUmakefile targets 30

TABLE 10-1 Basic types 49
Tables vii

viii MIDP Porting Guide • September 17, 2001

About This Document

This document provides information for implementing the Mobile Information
Device Profile (MIDP 1.0 Specification), on a particular mobile device. It also provides
information on porting version 1.0.3 of the Sun Microsystems, Inc. reference
implementation (RI) of the MIDP to a device.

Note – The RI supports the MIDP 1.0 Specification, which can be downloaded from:
http://java.sun.com/products/midp/#finalspec

Who Should Use This Document
This document is intended primarily for those individuals and companies who want
to implement the MIDP or to port the MIDP RI from to a new platform.

How This Document Is Organized
The topics in this document are organized as follows:

Chapter 1, “Introduction to MIDP,” describes the relationship of MIDP to Java™ 2
Micro Edition™ and its configurations. (See also the J2ME web page at
http://java.sun.com/j2me.)

Chapter 2, “MIDP Porting Considerations,” discusses the high-level issues involved
with porting MIDP and the possible degrees of porting.
Preface ix

http://java.sun.com/products/midp/#finalspec
http://java.sun.com/j2me

Chapter 3, “Porting the GUI,” introduces porting the GUI portion of the RI, and
discusses useful porting techniques.

Chapter 4, “Porting the Storage,” introduces porting the storage API, which
supports MIDP’s RMS and other parts of the RI.

Chapter 5, “Porting the Application Management System,” introduces the AMS
and gives a summary of porting it.

Chapter 6, “Porting the Networking Implementation,” introduces porting the TCP/
IP, HTTP and HTTPS portions of the MIDP RI, and explains how to expose the
CLDC networking code.

Chapter 7, “Building a Different Executable,” gives advice that will help you build
smaller versions of the midp executable.

Chapter 8, “Thread-Safety,” gives advice on making a MIDP port thread-safe.

Chapter 9, “Porting Example,” gives an example of re-implementing a native
method of the RI.

Chapter 10, “Compiler Requirements,” summarizes the C compiler requirements to
build an implementation of MIDP.

New Features in this Release
The 1.0.3 release of the MIDP RI features several key enhancements over prior
releases.

■ Support for OTA (over-the-air) provisioning.
■ Graphical Application Management Software (AMS) included.
■ Optional HTTPS support, including KSSL (subject to export controls.) (KSSL is a

small-footprint Secure Socket Layer (SSL) implementation for J2ME devices.)
■ Keyboard entry enhancements.

OTA Provisioning
OTA Provisioning was released as a recommended practice document to help
wireless network operators deploy applications in a consistent way. It is written as
an addendum to the MIDP 1.0 Specification. It involves extra properties in the
application descriptor file (.jad) that are used when a new application is installed
or removed. The addendum is available at:
x MIDP Porting Guide • September 17, 2001

http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf

AMS
This facility is MIDP’s on-device mechanism for installing and removing MIDlet
suites. In past releases, AMS was sometimes referred to as JAM (Java Application
Manager), but this is misleading because JAM properly refers to a feature of the
CLDC Specification.

For more information on the MIDP RI’s application management facility, refer to
Chapter 5, “Porting the Application Management System.”

HTTPS Support
Beginning with the MIDP 1.0.3 RI, HTTPS support is provided. This involves the
(optional) inclusion of KSSL for low-level handling of SSL stream connections,
including a minimal key store for persistent storage of certificates. (The exact details
of this are implementation-specific).

The CLDC Generic Connection Framework (GCF) support for resources addressed
as https:// does not require any new APIs beyond what is already supported in
the MIDP 1.0 Specification for HTTP connections.

JDK 1.3 (or later) is required for HTTPS support, because its security features are
needed for the offline tool used to extract runtime keys from certificates. The MIDP
runtime is based on the CLDC 1.0 KVM.

Related Documentation
The Java™ Language Specification (Java Series), Second Edition by James Gosling, Bill
Joy, Guy Steele and Gilad Bracha. Addison-Wesley, 2000, ISBN 0-201-31008-2,
http://java.sun.com/docs/books/jls/index.html

The Java™ Virtual Machine Specification (Java Series), Second Edition by Tim
Lindholm and Frank Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-3,
http://java.sun.com/docs/books/vmspec/index.html

KVM Porting Guide, Sun Microsystems, Inc., available as part of the CLDC download
package at
http://www.sun.com/software/communitysource/j2me/cldc/download.html
About This Document xi

http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf
https://does
http://java.sun.com/docs/books/jls/index.html
http://java.sun.com/docs/books/vmspec/index.html
http://www.sun.com/software/communitysource/j2me/cldc/download.html

Connected, Limited Device Configuration Specification, version 1.0, Java Community
Process, Sun Microsystems, Inc.
http://jcp.org/jsr/detail/30.jsp

Mobile Information Device Profile Specification, version 1.0a, Java Community Process,
Sun Microsystems, Inc.
http://jcp.org/jsr/detail/37.jsp

Java 2 Platform Micro Edition (J2ME™) Technology for Creating Mobile Devices, A White
Paper, Sun Microsystems, Inc.,
http://java.sun.com/products/cldc/wp/KVMwp.pdf

KVM Debug Wire Protocol (KDWP) Specification, Sun Microsystems, Inc., available as
part of the CLDC download package at
http://www.sun.com/software/communitysource/j2me/cldc/download.html

Next Generation Expert Groups
J2ME technologies are under a process of evolution within the Java Community
Process. JSRs (Java Specification Requests) are already filed for CDLC and MIDP.
You can view the JSRs and follow the stages of the next-generation specifications by
visiting the web sites:

CLDC Next Generation,
http://jcp.org/jsr/detail/139.jsp

MIDP Next Generation,
http://jcp.org/jsr/detail/118.jsp

All the pending JSRs for J2ME can be viewed at
http://jcp.org/jsr/ec/me.jsp
xii MIDP Porting Guide • September 17, 2001

http://jcp.org/jsr/detail/30.jsp
http://jcp.org/jsr/detail/37.jsp
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://www.sun.com/software/communitysource/j2me/cldc/download.html
http://jcp.org/jsr/detail/139.jsp
http://jcp.org/jsr/detail/118.jsp
http://jcp.org/jsr/ec/me.jsp

CHAPTER 1

Introduction to MIDP

1.1 Mobile Information Device Profile
(MIDP)
MIDP (also known as the Mobile Information Device Profile) is a profile of Java™ 2
Micro Edition™ intended primarily for small, resource-constrained devices such as
cellular phones, pagers, personal organizers, mobile Internet devices, and so forth. It
is intended to work with the CLDC configuration of Java 2 Micro Edition.

A Reference Implementation of MIDP is provided by Sun Microsystems, Inc. It is
implemented in two parts: a high-level part implemented in the Java programming
language, and the native (or low-level) part implemented in the C programming
language. The MIDP Reference Implementation runs as an emulator on the Windows
2000™ platform.

Note – In the remainder of this document, the Reference Implementation is referred
to as the RI.

The native part of MIDP can be ported onto various platforms for which an ANSI C
compiler is available. The high-level part is even more portable because it is
implemented in the Java programming language. Sun Microsystems, Inc. has ports
running on Solaris 2.8 and RedHat Linux 6.2, although these are not supported as
RIs.

The RI has also successfully been built on Windows 2000 with the free tools from the
CygWin project version 1.3.1, gcc and GNUmake. For more information about these
tools, see the CygWin web site at
http://sources.redhat.com/cygwin.
1

http://sources.redhat.com/cygwin.

Note – The CLDC configuration must also be ported to any target platform for
which a MIDP implementation is contemplated. For more information on CLDC
porting, refer to the KVM Porting Guide, Sun Microsystems, Inc. (see “Related
Documentation” on page xi)

Note – This 1.0.3 release of the MIDP RI requires building with the 1.0.3 release of
the CLDC.
2 MIDP Porting Guide • September 17, 2001

CHAPTER 2

MIDP Porting Considerations

Before undertaking a port of MIDP, it is worthwhile to consider some larger issues
involved in this undertaking, and also to consider that it might be best to proceed in
phases.

2.1 Porting versus Implementation
The code base provided with this release represents the RI of MIDP by Sun
Microsystems Inc. A TCK (Java™ technology compatibility kit) for MIDP is also
available from Sun Microsystems Inc.1

The characteristics of the RI are as follows:

■ It is targeted to run in the Windows 2000™ environment.
■ It requires approximately 1 MB of memory, much of which is accounted for by the

emulator.
■ It is the testbed against which the TCK was validated.

MIDP is defined in the MIDP 1.0 Specification (see “Related Documentation” on
page xi). Numerous implementations of MIDP can be created. Sun Microsystems
Inc.’s RI is only one. Device manufacturers will generally devise an implementation
that is appropriate for their particular hardware needs. To be certified as compliant
with the MIDP 1.0 Specification, an implementation must pass the MIDP TCK. For
information on obtaining the MIDP TCK, see
http://java.sun.com/products/midp/

What we loosely refer to as porting is really a re-implementation of MIDP on a
different target hardware environment (or platform). It is seldom practical or
advisable to port the entire RI to your target platform. (There could be exceptions to
this. Refer to “Degrees of Implementation” below.)

1. Also available from Sun Microsystems, Inc. are a TCK and a RI for CLDC.
3

http://java.sun.com/products/midp/

2.2 Degrees of Implementation
The following options are available to a manufacturer that wishes to port the MIDP.

1. RI port

Almost all of the code is from the RI.

2. A mostly-RI implementation

Most of the code from the RI is retained.

3. Mostly reimplemented

Half or more of the code is re-implemented around the target platform.

4. A wholly-new implementation

The great majority of the code is re-implemented around the target platform.

It is often appropriate for you to proceed in stages when attempting a port of the
MIDP. Feasibility can be studied, familiarity gained with the code, and prototypes
created through a degree 1 or 2 implementation, followed by a degree 3 or4
implementation that is finely tuned to the device.

2.3 Porting versus Optimization
There are two reasons to port the code, one to make it work in on different platform,
and the second to optimize for size or speed.

The porting to another platform can be accomplished by changing native code for
the GUI, storage, Jar reader, and TCP parts of the RI. Compared to an optimizing
port, porting to another platform is fairly straightforward.

The porting for optimization involves selecting which Java classes to convert to
native code for either size or speed reasons. Picking which Java methods to convert
is not immediately obvious. Often, you must reimplement candidate Java methods
and compare the size or performance results. Native methods have more invocation
overhead and cannot reuse Java code. We have found that porting small methods or
methods that reuse a high amount Java code often yields little or negative value.
4 MIDP Porting Guide • September 17, 2001

Porting at the public API level will generally give good results if a native equivalent
of the API is already on the device. For example, if SSLStreamConnection and its
helper classes is judged to be too big, you would replace most of the methods in the
class with native methods. Then, most of the supporting classes in the package can
be deleted.

2.4 Native and Java Language Portions
of The RI
The architecture of the RI divides the code between the Java programming language
classes and the native code, which is written in C. For details on the Java and native
files, refer to DirectoryStructure.html (in the docs subdirectory of this release).

2.5 The GUI Portion of The RI
A substantial portion of the RI, like the MIDP itself, is devoted to graphical user
interface functionality. The GUI portion of the code is itself divided between high-
level and low-level. High-level GUI functionality is provided by “widgets,” and
applications using this functionality are built by calls to a toolkit. Low-level GUI
functionality gives control over graphics primitives like lines, arcs, bitmaps and text.
Note that both high-level and low-level apis must invoke native frame-buffer
drawing routines.

High-level GUI functionality might need to be reimplemented because of the
character of a particular native device, especially if native GUI facilities are provided
on that device.

Low-level GUI functionality is often conducive to a degree 1 or 2 implementation.
(See “Degrees of Implementation” on page 4.) All or most of the Java code
implementing the low level can be brought across unchanged from the RI. The
native code will have to be changed to take advantage of the device’s graphics
capabilities.

For more details on porting the GUI portion of the RI, see Chapter 3, “Porting the
GUI.”
Chapter 2 MIDP Porting Considerations 5

2.5.1 Helper Classes Removed
The 1.0 release of the MIDP RI contained a helper class that served as a porting layer.
That helper class was useful when initial porting was done. But, since many method
calls had to go through that porting layer, it slowed down performance.

To improve performance, the helper class was removed in MIDP1.0.3. As a result,
native methods that used to be the implementation of helper class methods now
implement native methods in, for example, Display.java, Graphics.java,
Font.java, and Image.java.

Note – The signatures of these native methods cannot be modified since they are
now part of the API.

2.6 The non-GUI Portion of The RI
A very important portion of the MIDP is devoted to non-GUI functionality. Each of
the following parts of the RI code base must be evaluated for possible re-implement-
ation on your target platform:

■ MIDlet Management Software
(The RI’s implementation of the AMS—Application Management Software)
(For more details, refer to Chapter 5, “Porting the Application Management
System.”)

■ The Storage API
(which supports RMS, the Record Management System defined in the MIDP 1.0
Specification.)
(For more details, refer to Chapter 4, “Porting the Storage.”)

■ Networking support
(especially the implementation of HttpConnection)
(For more details, refer to Chapter 6, “Porting the Networking
Implementation.”)
6 MIDP Porting Guide • September 17, 2001

CHAPTER 3

Porting the GUI

This chapter contains information on the architecture of the graphics (GUI) part of
the RI, and gives helpful information on porting the GUI.

3.1 MIDP GUI overview
The MIDP graphics API is in the package javax.microedition.lcdui. This API
is conceptually divided between high-level and low-level. For example, the low-level
API contains the Canvas class, which is a base class for writing applications that
need to handle low-level events and to issue graphics calls for drawing to the
device’s display.

By contrast, the high-level API contains the Screen class, which is the common
superclass of all high-level user interface classes. The high-level API supports a
degree of automatic functionality. For example, when an application changes the
contents of a Screen object while it is shown to the user, the display is updated in a
timely fashion without waiting for any further action by the application.

From an application development perspective, the Canvas class is interchangeable
with high-level Screen classes, so an application may mix and match Canvas with
high-level Screens as needed.

At a class level, the division between high-level and low-level is as follows.

TABLE 3-1 Classes in Low-level Graphics API

Display.java AlertType.java Command.java

CommandListener.java Displayable.java Canvas.java

Graphics.java Font.java Image.java
7

The Display object is what the MIDlet uses to present itself to the user. The MIDlet
might:

■ use AlertType objects to signal the user with sounds
■ create Command objects for actions the user can invoke
■ respond to an invoked Command via a CommandListener
■ show a Displayable object to create output on the screen

In the low level, the only Displayable object is a Canvas. It is responsible for its
own rendition on the screen, for which it relies on Graphics, Font and Image
objects. It also must do its own handling of key presses (and optionally pointer
events).

The high-level portion of the API adds more Displayable objects, called Screens.
The Screen objects handle key and pointer events automatically, freeing the
application from this task. There are four types of Screen:

Form allows the user to interact with collections of Item objects. These Items are

Changes to interactive items are signalled through an ItemStateListener object
that is registered on the Form.

TABLE 3-2 Classes in High-level Graphics API

Screen.java Ticker.java Choice.java Alert.java

List.java TextBox.java Form.java Item.java

ChoiceGroup.java DateField.java Gauge.java TextField.java

ImageItem.java StringItem.java ItemStateListener.java

Alert Simple notifications

TextBox Scroll and edit a block of text

List Simple list of choices

Form Collection of closely-related items

ChoiceGroup Checkboxes or radio buttons

DateField Contains a date and/or time

Gauge Bar graph, both interactive and non-interactive

TextField An editable text string

ImageItem A non-interactive item containing an image

StringItem A non-interactive item containing a string
8 MIDP Porting Guide • September 17, 2001

3.2 Porting The Low Level
Porting the MIDP 1.0.3 RI should be done by modifying native files such as
nativeGUI.c, text.c, images.c, and graphics.c.

The MIDP 1.0 RI had a helper class that served as a porting layer between the
javax.microedition.lcdui API and the system-specific libraries. All graphics
operations and event handling used to be done through a helper class.

In the MIDP1.0 Porting Guide we noted that one of the ways to get performance
improvements was to get rid of this level of indirection. In the MIDP 1.0.3 RI, the
porting layer is removed, along with the indirection.

Here is an example of how a line was drawn in the MIDP 1.0 RI:

From javax.microedition.lcdui.Graphics:

 public void drawLine(int x1, int y1, int x2, int y2) {

 if ((clipX1 > clipX2) || (clipY1 > clipY2)) return;

 Display.deviceCaps.drawLine(this, destination,

 x1 + transX, y1 + transY,

 x2 + transX, y2 + transY);

 }

 }

Then, the helper interface com.sun.midp.lcdui.DeviceCaps had a method:

void drawLine(Graphics g, ImageDelegate dst,

 int x1, int y1, int x2, int y2);

This default helper class had a native implementation for the drawLine method.
From com.sun.midp.lcdui.DefaultDeviceCaps:

public native void drawLine(Graphics g, ImageDelegate dst,

 int x1, int y1, int x2, int y2);

In the MIDP 1.0.3 RI, the drawLine method is now implemented as:

From javax.microedition.lcdui.Graphics.java:

public native void drawLine(int x1, int y1, int x2, int y2);

Note that defaultLCDUI.c and defaultLCDUI.h were modified to fetch correct
parameters. Also, argument checks that used to be done in Java code in
javax.microedition.lcdui.Graphics, are now done in native code in
defaultLCDUI.c.
Chapter 3 Porting the GUI 9

3.2.1 Changes to the Porting Layer
In the RI, the default helper classes call native methods that are defined in
defaultLCDUI.c. These methods simply do the required manipulations to fetch
the arguments from the VM, and then call other functions which are documented in
defaultLCDUI.h. Porting is just a matter of implementing the functions that are
documented in this header file.

The RI (on the Windows 2000 platform) defines most of these functions in files called
nativeGUI.c, text.c, images.c, and graphics.c. (Note that in MIDP 1.0.1 they
used to be in one file, called nativeGUI.c).

By examining these files, you should be able to get a good idea of how to write your
own versions of these graphics methods.

The remaining native methods from defaultLCDUI.h are implemented in “shared”
code, in the files menus.c, events_midp.c, imageDecode.c and pngDecode.c.
Most of these can probably be used without changes, although you might have
better ways to do menus on your device.

3.3 Porting The High Level
The high-level code in the RI is written entirely in Java. If the low-level port has been
properly done, this code should work as-is. However, it will likely not have a “look
and feel” that is consistent with the rest of the GUIs on your device, so as part of a
degree 3 or 4 implementation, you will probably want to replace some or all of the
high-level Screens with native equivalents. (Refer to “Degrees of Implementation”
on page 4.)

The typical way of replacing a Screen is as follows:

1. Remove most of the code for the Screen in question. Leave only empty copies of
the public methods.

2. Add package-private native methods for showNotify and hideNotify.

native void showNotify();

native void hideNotify();

 Depending on your system, you may also want to handle the method

void paint(Graphics g);

3. Add private native methods for passing data back and forth between your native
GUI and the public API

4. Fill in the public methods so that they call your natives appropriately.
10 MIDP Porting Guide • September 17, 2001

5. Implement the native methods to communicate with your native GUI.
Chapter 3 Porting the GUI 11

12 MIDP Porting Guide • September 17, 2001

CHAPTER 4

Porting the Storage

This chapter contains information on the implementation of the storage API in the
RI, and provides advice on porting an implementation on your target device. This
API is new for the MIDP 1.0.3 RI. One very important use of the storage API is to
implement MIDP’s RMS (Record Management System), but it also supports any
other part of the RI that requires persistent storage, such as storage for installed
applications or for public cryptographic keys.

4.1 Overview
This release of the RI implements RMS with a new flat file internal storage API. (A
flat file system is one that puts all files in a single directory. There are no
subdirectories, so each file must have a unique name.) This storage mechanism is
implemented in Java classes RandomAccessStream and File, and in native code.
The Java classes that implement RMS make use of this new API, as detailed below in
“Relationship to RecordStoreFile and RecordStore.”

This storage API was chosen for the RMS in the RI because the same API is used in
other parts of the RI:

■ Over-the-air provisioning (OTA)
■ the certificate authority public keystore (KSSL)

The low level of the API is used by:

■ AMS native code
■ the configuration native code

Thus, the new storage API makes the porting effort more efficient. It avoids a
separate porting effort for every Java class, now and in the future, that needs
persistent storage.
13

4.2 RandomAccessStream and File
The path to the RI classes RandomAccessStream and File is
com.sun.midp.io.j2me.storage. The native interfaces can be found in
src/share/native/RandomAccessStream.c, storageFile.c, storage.h,
and storage.c. Together, the Java classes and native code provide the internal
interfaces for the new low-level storage mechanism.

4.2.1 Relationship to RecordStoreFile and RecordStore
A RecordStoreFile is a file abstraction layer between a RecordStore and an
underlying persistent storage mechanism. The underlying storage methods are
provided by the RandomAccessStream and File classes.

The RecordStore class can be implemented directly using the
RandomAccessStream and File classes. However, RecordStoreFile served as
the Java/native code boundary for RMS in the MIDP 1.0 RI release. It exists now for
backwards compatibility with older ports.

4.3 Porting the Low Level
The high level of the API has no system-specific code, so only the low level needs to
be ported. The requirement of the low level interface is in storage.h, and the
shared implementation is in storage.c and storageFile.c.

There are two ways to approach the low level port. The first approach is to add a
new set of ifdef statements in storage.c. Copy the code in the ifdef UNIX block
and customize it for your platform. The second approach is to reimplement
storage.c to directly use a flat file system interface.

4.4 Porting the High Level
If your device is severely constrained in non-volatile memory for storing classes, you
might have to port the high level of the internal storage API. To port the high level
API, rewrite the public methods classes of the com.sun.midp.io.j2me.storage
package.
14 MIDP Porting Guide • September 17, 2001

4.5 Porting RMS
Generally speaking, it is unnecessary to port any of the Java classes that implement
RMS (com.sun.midp.rms). However, if your device is severely resource-
constrained, you might need to replace the entire RMS with native code.
Chapter 4 Porting the Storage 15

16 MIDP Porting Guide • September 17, 2001

CHAPTER 5

Porting the Application
Management System

The function of the application management system (AMS) is to install, run, remove,
and list MIDlet suites, either from a command line or from a graphical interface. On
development platforms it also runs a single MIDlet from the classpath.

The AMS requires local persistent storage. It makes use of the same low-level storage
mechanism as used by the RMS. When you have accomplished the porting of
storage.c as detailed in Chapter 4, “Porting the Storage,” you have also have
ported the AMS.

5.1 Porting Main
The start up and initialization of the AMS runtime environment, and the interface to
the Java program command loop, is implemented in main.c (located in
src/share/native).

main.c implements the command loop for the Java program com.sun.midp.Main.
In main.c, the command line is parsed, the command state structure is created, and
the Java program com.sun.midp.Main is called.

main.c uses the native storage interface. (Refer to Chapter 4, “Porting the
Storage.”)

If your implementation needs a different way of specifying the command line
parameters, or if your implementation changes the command set or any command
option is changed, you must provide a different main.c.
17

5.2 Porting the High Level
The high level code is in contained in the packages com.sun.midp,
com.sun.midp.dev, and com.sun.midp.midletsuite. If a command option or
options are being removed, then no change to high level is needed. If a command is
being removed (and size does not matter) then no change to the high level is needed.
If there are severe space constraints on your target device, it might be necessary to
re-implement some of the high-level Java classes.

5.2.1 Command Categories
There two command categories:

■ development only
■ on-device (fit for purpose)

Removing all the development code requires a new main.c, a new Main.java,
and not including the com.sun.midp.dev package in the build. Removing the
graphical interface requires a new main.c, a new Main.java, and requires not
including Manager.java and the png file from the com.sun.midp.dev package in
the build. Replacing command state processing requires replacing the
com.sun.midp package.

5.2.2 Replacing OTA
After the MIDP 1.0.1 release the native code used to install and run MIDlet
applications (also known as JAM) was replaced with a graphical interface and a Java
implementation of the Application Management Software (AMS). This code fully
implements the recommendations for over-the-air provisioning (OTA) that were
published as an addendum to the original MIDP 1.0 Specification.

Over-the-air provisioning (OTA) supports updating MIDlet suites (in addition to
installing, listing, removing, loading and updating them) dynamically and over a
wireless connection. Replacing the OTA implementation requires a new
com.sun.midp.midletsuite package. Replacing the entire high level code with
native code requires writing the following Java classes:

■ A class that implements the com.sun.midp.midlet.MIDletSuite interface.
■ A class that initializes the internal security.

Replacing the entire high level code with native code also requires not including
these packages in the build:
18 MIDP Porting Guide • September 17, 2001

com.sun.midp

com.sun.midp.dev

com.sun.midp.midletsuite

In many cases, porting the MIDP RI onto an existing device platform involves
leveraging as much of the current platform native as possible. When a device
already supports a native browser, the browser contains much of the same code
included in the Java Installer: for example, fetching documents via HTTP
connections (with appropriate Accept headers), and checking for appropriate MIME
types of returned resources. At this time there isn’t a standard interface between a
browser application on the device and the Java runtime environment, so the
integration will be a custom effort on most platforms.

To get a quick understanding of the Graphical AMS, examine the hand-off from the
native code src/share/native/main.c and the initial Java code executed in
src/share/classes/com/sun/midp/Main.java.

The Command State is used between successive launches of the virtual machine to
inform the native code what to do after each iteration from the Installer and
application manager.

Once in the Java AMS subsystem, the following packages support the basic MIDlet
management functions.

com.sun.midp

com.sun.midp.security

com.sun.midp.midlet

com.sun.midp.midletsuite

com.sun.midp.dev

com.sun.midp.publickeystore

Main.c

Command
State

Main.java

Run the Manager

Exit the Program

Install a MIDletsuite

Run a MIDlet by name

Remove a MIDletsuite

List the MIDLetsuites

Run a MIDlet class
Chapter 5 Porting the Application Management System 19

20 MIDP Porting Guide • September 17, 2001

CHAPTER 6

Porting the Networking
Implementation

This chapter contains information about the RI’s networking capabilities, and gives
important porting information.

6.1 CLDC Specification of Generic
Connections
The CLDC 1.0 Specification establishes the basic architecture for all stream based IO
Connections.

javax.microedition.io.Connector

javax.microedition.io.DatagramConnection

javax.microedition.io.ConnectionNotFoundException

javax.microedition.io.StreamConnection

javax.microedition.io.Datagram

javax.microedition.io.InputConnection

javax.microedition.io.OutputConnection

javax.microedition.io.StreamConnectionNotifier

javax.microedition.io.ContentConnection

javax.microedition.io.Connection

The CLDC reference implementation includes a basic set of classes that handle the
fundamental capabilities of generic connections.

com.sun.cldc.io.GeneralBase

com.sun.cldc.io.ConnectionBaseInterface
21

com.sun.cldc.io.NetworkConnectionBase

com.sun.cldc.io.DateParser

com.sun.cldc.io.ConnectionBase

6.2 CLDC Implementation of TCP/IP
Sockets
The CLDC RI also includes the code for basic TCP/IP socket manipulation. While
this code is beyond the scope of the actual CLDC specification, it is a useful porting
layer to platforms that support some form of socket library capability.

com.sun.cldc.io.j2me.socket.Protocol

com.sun.cldc.io.j2me.socket.PrivateInputStream

com.sun.cldc.io.j2me.socket.PrivateInputStreamWithBuffer

com.sun.cldc.io.j2me.socket.PrivateOutputStream

com.sun.cldc.io.j2me.datagram.Protocol

com.sun.cldc.io.j2me.datagram.DatagramObject

com.sun.cldc.io.j2me.serversocket.Protocol

The native networking code to support all of the datagrams and socket classes
resides entirely in the CLDC code base. The MIDP no longer modifies these files.

6.3 MIDP Specification/Implementation of
HTTP 1.1 Protocol
The MIDP RI layers the HTTP 1.1 protocol semantics in pure Java classes on top of
the CLDC socket:// URL support.

This organization provides for maximum portability, but might not provide the most
optimum performance or size. If a native implementation of HTTP exists on the
target platform, it might be more efficient to completely replace the MIDP
implementation.

javax.microedition.io.HttpConnection
22 MIDP Porting Guide • September 17, 2001

socket://URL

com.sun.midp.io.j2me.http.Protocol

com.sun.midp.io.j2me.http.StreamConnectionElement

com.sun.midp.io.j2me.http.StreamConnectionPool

6.3.1 MIDP Implementation of HTTP Proxy
The HTTP implementation includes support for a proxy http server. The
configuration parameter, com.sun.midp.io.http.proxy, can be set with a host
and port number to delegate the actual HTTP requests to a different machine.
(Configuration parameters are set in the configuration file.)

This can also be set at the command line. For example,

bin/midp -Dcom.sun.midp.io.http.proxy=webcache.east.sun.com:8080

6.3.1.1 Http Tunneling through Web proxy servers.

The MIDP RI requires that HTTP proxy servers that are used with MIDP application
support the generic tunneling mechanism for TCP based protocols through Web
proxy servers. This tunneling mechanism was initially introduced for the SSL
protocol to allow secure Web traffic to pass through fire walls, but its usefulness is
not limited to SSL. Implementations of this tunneling feature are commonly referred
to as “SSL tunneling,” although it can be used for tunneling any TCP based protocol.

For further information on HTTP Tunneling, please refer to the following
documents:

http://www.globecom.net/ietf/draft/draft-luotonen-web-proxy-tunneling-01.html

http://www.ietf.org/rfc/rfc2817.txt

6.3.2 6.3.2 HTTP1.1 Persistent Connections.
Prior to the implementation of persistent connections, a separate TCP connection
was required to fetch each URL, increasing the load on HTTP servers and causing
congestion on the Internet. The use of inline images and other associated data often
required a client to make multiple requests of the same server within a short time
frame.

Persistent HTTP connections have a number of advantages:

■ By opening and closing fewer TCP connections, CPU time is saved in routers and
hosts (clients, servers, proxies, gateways, tunnels, or caches), and memory used
for TCP protocol control blocks can be saved in hosts.
Chapter 6 Porting the Networking Implementation 23

http://www.globecom.net/ietf/draft/draft-luotonen-web-proxy-tunneling-01.html
http://www.ietf.org/rfc/rfc2817.txt

■ Latency on subsequent requests is reduced, since there is no time spent in TCP’s
connection opening handshake.

■ HTTP can evolve more gracefully, since errors can be reported without the
penalty of closing the TCP connection. A client using a future version of HTTP
might optimistically try a new feature, but if communicating with an older server,
an error would be reported. The client could then retry with old HTTP semantics
using the same TCP connection.

6.3.2.1 Cleaning Up Idle Persistent Connections.

The CONNECTION_ACTIVE_WAIT_TIME value sets the time limit for inactive HTTP
connections in the connection pool. Once that time limit is exceeded, the connection
is automatically removed by the connection pool. This is useful for small devices
(like Palm OS devices) with limited resources (such as connections). Such devices
often need to clean up the pool, especially when active connections were not closed
properly.

[StreamConnectionPool.java]
83 private final long CONNECTION_ACTIVE_WAIT_TIME = 60000;

6.4 Enabling Additional Protocols
The MIDP input/output infrastructure uses an alternate implementation of the
Connector class to allow default behavior that can exclude the additional protocol
implementation classes. This means the MIDP implementation can expose only the
HTTP protocol covered in the MIDP 1.0 specification.

To expose these additional protocols, set the configuration parameter
com.sun.midp.io.enable_extra_protocols to true. This restores access to
CLDC’s socket://, serversocket://, datagram://, and comm:
implementations, as well as https:// protocol support.

com.sun.midp.io.InternalConnector

For more documentation on these protocols, rebuild the Javadoc for the internal
packages, using the appropriate GNUmakefile target, as detailed in Compile.html.
24 MIDP Porting Guide • September 17, 2001

https://protocol

6.5 Porting HTTPS
MIDP 1.0.3 RI includes an implementation of secure HTTP.

HTTPS subclasses HTTP, and thus inherits all of the protocol handling of the MIDP
HTTP implementation. HTTPS replaces the TCP/IP StreamConnection with a
SSL-TCP/IP StreamConnection. The HTTPS protocol handler overrides the
methods that connect to and disconnect from the origin server. All handling of
certificates and encryption of the network data is handled in the internal
implementation of the SSLStreamConnection.

For specific HTTPS features, see the Javadocs documentation for the
com.sun.midp.io.j2me.https package.

Note – HTTPS is prototype API, since it is not part of the MIDP specification, and is
not required to be on a MIDP 1.0 compliant device. To keep the RI within the MIDP
1.0 specification, no new public APIs have been defined for this feature.

Other implementations of HTTPS have been deployed. To bring about
standardization, the JSR118 expert group for “MIDP Next Generation” is considering
an officially supported MIDP API for HTTPS. Be alert for developments at:
http://jcp.org/jsr/detail/118.jsp

6.5.1 Porting the Low Level
The only platform-specific issues are with native memory allocation. See
src/share/native/crypto/kvmpilot.h.

6.5.2 Porting the High Level
To replace the entire implementation, replace the com.sun.midp.io.j2me.https
package.

To change the way public keys are stored, replace the
com.sun.midp.publickeystore package.

To change the tool to store public keys, modify MEKeyTool.java in the
com.sun.midp.mekeytool package (located in the tools subdirectory).
Chapter 6 Porting the Networking Implementation 25

http://jcp.org/jsr/detail/118.jsp

To change the SSL implementation the HTTPS uses, replace the com.sun.kssl and
com.sun.ksecurity packages.

The current implementation of HTTPS does not expose an API to control the
handshake listener. This would allow certain certificate errors to be over ridden by
higher level applications. Not exposing the handshake listener allows the current
MIDP 1.0 specification of HTTP to be used unchanged, but does not make it possible
for an end user to override specific policy decisions about expired certificates.
26 MIDP Porting Guide • September 17, 2001

CHAPTER 7

Building a Different Executable

This chapter contains advice to help you build different versions of the midp
executable command. In addition to the discussion in this chapter, HTML
documentation is included in this release for advice on setting up builds, including
system requirements, configuration settings, makefile targets, and so forth.

In the docs directory of this release, refer to Compile.html,
Configuration.html, and Running.html.

7.1 Make Variables
The MIDP 1.0.3 release includes many improvements in the makefiles used to create
the midp executable. The makefiles have been streamlined to make them more
modular, and a consistent approach has been used to make it easy to eliminate
various optional features. You simply set a command line switch (makefile target)
while building the midp.
27

The following table lists the optional components:

TABLE 7-1 Makefile flags

Flag Default Value Comments

DEBUG_COLLECTOR false A debugging version of the KVM garbage
collector can be used to assist in debugging
memory reclamation problems. This switch
controls the compilation flag
USE_DEBUG_COLLECTOR and also sets
EXCESSIVE_GARBAGE_COLLECTION to help
accelerate the finding of misplaced objects.

ENABLEPROFILING false Turning off profiling effects the compilation flag
ENABLEPROFILING. Setting
ENABLEPROFILING=false removes the native
code collection of profiling data and the
associated Java classes used in the test harness
collection of performance related statistics.
(perfmon.c)

DEBUG false This variable controls the amount of symbolic
information included in the executable. Setting
DEBUG=false eliminates the extra information
included by the -g compilation flag and extra
libraries used for -debug linkage.

ENABLE_DEBUGGER false The KVM debugger proxy can interact with the
MIDP executable when this flag is enabled.
Setting ENABLE_DEBBUGGER=false removes the
native code used to communicate with an
external debugger proxy.
(debugger.c debuggerSocketIO.c
debuggerOutputStream.c
debuggerInputStream.c)

ENABLE_SCREEN_
CAPTURE

true The screen capture utility is used in automated
testing of the MIDP user interface. Setting
ENABLE_SCREEN_CAPTURE=false removes the
native code that captures a simple CRC for the
current displayed graphics and an associated
Java class which interfaces to the Sun
Microsystems Inc. internal test harness.
(screengrab.c crc32.c screenGrabber.c)
28 MIDP Porting Guide • September 17, 2001

INCLUDE_I18N true Internationalization support in the MIDP
workspace includes support for character set
conversions, and locale specific messages. Setting
INCLUDE_I18N=false eliminates the extra
routines, and filters out non-essential classes
from the MIDP and CLDC directories.
(localeMethod.c conv.c locale.c
genConv.c)

INCLUDE_ALL_
CLASSES

true The INCLUDE_ALL_CLASSES flag controls
whether or not extra generic connection protocols
are included in the midp executable. When
INCLUDE_ALL_CLASSES=false is set only the
protocols required in the specification are
included. For example, only the http protocol is
included in the MIDP 1.0 specification.
Additional protocols that are often used are the
socket and comm protocols.

ROMIZING true When ROMIZING is set to false, the core classes
are not built into the midp executable, but are left
in a separate classes.zip file. This can be done
for debugging purposes, or to have a concise set
of classes that can be used for compiling new
applications.

SLOW_DRAWING false When SLOW_DRAWING is enabled, the native code
responsible for rendering graphics requests
includes artificial delays. The default slow-down
is 100,000 microseconds per graphics operation.

SOUND_SUPPORTED false When SOUND_SUPPORTED is enabled, audible
feedback is added to button presses and other
key inputs on the phone skin.

THROTTLE false When THROTTLE is enabled an extra function is
called inside the native event loop to insert fixed
delays in the number of byte code executions per
millisecond.

INCLUDE_HTTPS false When INCLUDE_HTTPS is true, the HTTPS
protocol implementation classes and native code
are included.

INCLUDEDEBUGCODE false When INCLUDEDEBUGCODE is true, it includes a
large amount of debugging and logging code in
the CLDC virtual machine.

TABLE 7-1 Makefile flags

Flag Default Value Comments
Chapter 7 Building a Different Executable 29

The following special targets are supported:

7.2 Removing Configuration Code
In the RI, a configuration mechanism is used to select an alternate behavior at
runtime. In commercial ports of the RI, many of these design choices will have been
made and fixed into the hardware itself. (For example, a color screen versus a black-
and-white-only screen.)

A simple way to locate these branches in the code is to look for the use of the
Configuration.getProperty calls. In each of these locations it might be possible
to remove the code that is not required in your specific port. Here’s a current list of
classes that include optional behavior based on calls to access configuration
parameters:

com.sun.cldc.io.j2me.socket.Protocol

com.sun.midp.midlet.Scheduler

com.sun.midp.io.j2me.http.Protocol

com.sun.midp.io.j2me.https.Protocol

com.sun.midp.io.InternalConnector

com.sun.midp.lcdui.InputMethodHandler

com.sun.midp.lcdui.Resource

com.sun.midp.midletsuite.Installer

javax.microedition.lcdui.Display

TABLE 7-2 Special GNUmakefile targets

Target Description

small Builds the smallest possible midp executable.

debug Enables all of the debugging flags.

profile Approximates the previous release default
settings, with profiling support enabled.
30 MIDP Porting Guide • September 17, 2001

CHAPTER 8

Thread-Safety

This chapter describes the coding conventions that ensure thread-safety for LCDUI,
the classes in the javax.microedition.lcdui package. Thread-safety means that
access to shared data is safe (data never becomes corrupted, even in the presence of
concurrent access) and that the system is live (threads do not deadlock).

8.1 Requirements
All ports of the MIDP RI must obey the following thread-safety requirements:

Requirement #1

All calls into LCDUI, from any thread, from any class outside LCDUI, must leave
LCDUI in a valid and self-consistent state.

Requirement #2

The “event delivery” calls made by LCDUI into the application must be serialized,
as required by the MIDP 1.0 Specification. This set of calls is defined in class
documentation for javax.microedition.lcdui.Canvas.

Requirement #3

Applications must be allowed to define and implement their own locking policy for
their data structures and be assured that they will run correctly (that is, deadlock-
free and safe) when they interact with LCDUI.
31

8.2 Design Approach
The MIDP RI treats all LCDUI data (static variables of all classes and instance
variables of all objects) as if it were a single object. It is shared data because this data
is accessible to multiple threads. A single, global lock object LCDUILock is defined
to protect concurrent access to all shared data. The general approach is to apply
locking around the perimeter of LCDUI. All methods that are called from the outside
are responsible for ensuring that locking is done properly before making calls into
other parts of LCDUI. Method calls into LCDUI enter through the following general
routes:

■ Application calls into the public API;
■ Events being delivered from the KVM; and
■ MIDlet state changes from the scheduler.

In general, methods internal to LCDUI need not be concerned with locking, and they
may assume that their callers have handled locking correctly. In certain cases,
internal methods are called without holding the lock, because of complications with
the locking protocols. These cases are marked in the source code with a SYNC NOTE
comment.

This design implies that LCDUI internal code should not call the same methods that
are called from outside, otherwise lock nesting will result. While lock nesting is not
a fatal problem, if left uncontrolled it can lead to performance problems. Care has
been taken to refactor the code so as to avoid lock nesting. This refactoring has led to
an idiom where a method intended to be called from outside (such as a public API
method) simply takes the lock and then calls an internal method. Internal LCDUI
code calls the internal method directly. By convention, these internal methods are
named after their public counterparts, with “Impl” appended.

An exception to the global lock rule is for the Graphics object, where the API is
structured so that painting to the screen is implicitly serialized. Graphics objects
for offscreen Image objects do not make any access to LCDUI data, and so they use
their own locking convention. See “Graphics” on page 38 for a description of this
convention.

In order to preserve event serialization semantics (Requirement #2), another lock
calloutLock is used when making calls subject to this requirement. In many cases
it is unclear whether a particular method call will stay within LCDUI code or will
find its way into application code. This is because much of the LCDUI
implementation uses the same APIs that are exposed to applications. Thus, the
system will hold calloutLock while calling any method that might end up in
application code. For cases where the thread stays within LCDUI, taking
calloutLock is unnecessary. It might be possible to optimize the system by
avoiding taking the calloutLock in such cases, but it’s likely that the cost of
testing for this case will largely offset the savings from avoiding the lock.
32 MIDP Porting Guide • September 17, 2001

Deadlock is prevented by establishing a total ordering of all locks in the system. The
ordering of locks is as follows, from highest to lowest priority:

1. The calloutLock object

2. All application-defined locks

3. The LCDUILock object

The general rule is that code holding a lock must not acquire any lock that has a
higher priority. However, code holding a lock may acquire any lock with lower
priority. From LCDUI’s point of view, all application locks have the same priority.
LCDUI code must assume that any call into the application will take application
locks, and any call coming from the application holds application locks.

This ordering is a consequence of the thread-safety requirements. Application code
that is called by LCDUI must be allowed to take any lock, and application code
calling into LCDUI must be allowed to hold any lock (Requirement #3). Since
holding LCDUILock is required for access to LCDUI data in methods called from the
application (Requirement #1), LCDUILock must have a lower priority than all
application locks. Since calloutLock must be held in order to serialize calls into
the application (Requirement #2), calloutLock must have a higher priority than all
application locks.

8.3 Coding Conventions
The general thread-safety conventions for LCDUI are as follows:

■ Any method that is called from outside LCDUI, such as public API methods,
must take LCDUILock while making any access to LCDUI shared data (class or
instance variables)

■ Internal LCDUI methods may assume that LCDUILock is held when they are
called, and they may thus read or write shared data without acquiring any locks

■ Code that is called as if it were an application, even internal code, must take
LCDUILock prior to manipulating any LCDUI data

■ Constructors are generally left unlocked, unless they manipulate shared data, in
which case they must hold LCDUILock

■ Code that holds calloutLock may take LCDUILock

■ Code that holds LCDUILock must release it before taking calloutLock

■ Code that calls into the application must hold calloutLock around this call

■ Code called from the application must not take calloutLock

■ Code that holds LCDUILock must not call into the application
Chapter 8 Thread-Safety 33

■ Exceptions to these rules are documented with a SYNC NOTE comment

8.3.1 Public Methods
Within each call in the public API, there is an appropriate synchronized block. For
example, in Gauge.java:

 public void setMaxValue(int maxValue) {
 if (maxValue <= 0) {
 throw new IllegalArgumentException();
 }

 synchronized (Display.LCDUILock) {
 // ...
 }
 }

Methods that require the Display.LCDUILock cannot merely use the
synchronized method modifier because this would indicate that synchronization
is to be performed on the object itself, not on the LCDUILock object. The rule is that
LCDUILock must be held whenever there is access to any shared data, that is, data
that is potentially accessible to multiple threads. This includes class and instance
variables belonging to this class or to any other LCDUI class. Local variables and
method parameters are private to each thread and are not shared data. Access to
them does not require locking.

Note that the synchronization block begins after argument checking. This is safe,
because the argument checking does not involve any access to shared data. This is a
tiny optimization. It would also have been correct to have the synchronization block
around the entire body of the method.

Certain simple methods may not need synchronization at all. These cases are
documented with a explanatory SYNC NOTE comment. For example, in
Gauge.java:

 public int getValue() {
 // SYNC NOTE: return of atomic value,
 // no synchronization necessary
 return value;
 }

In this case, the value being returned is an int, which the Java Language Specification
requires to be manipulated atomically. (That is, a simultaneous reads and writes to
this value will never result in a mixture of old and new bits. If the value were a
long, this property wouldn’t hold.) The value returned will either be the old value
or the new value; which it will be is unpredictable. Adding locking doesn’t change
the situation, and so locking is omitted from these cases for purposes of efficiency.
There are a handful of “getter” methods such as this that can avoid synchronization.
34 MIDP Porting Guide • September 17, 2001

Strictly speaking, this code should be synchronized because of memory ordering
issues. In practice, memory ordering issues arise only on multiprocessor systems,
and it is very unlikely that this code will be executed on such systems. The MIDP RI,
therefore, made a design decision to avoid locking overhead in cases such as these
by relying on the VM to provide sequentially consistent memory semantics.

Locking must occur around assignment of atomic values. Consider the following
hypothetical example:

 public void setIndex(int newIndex) {
 synchronized (lock) {
 index = newIndex; // index is an instance variable
 }
 }

One might be tempted to omit this locking, because the assignment is atomic, and
locking would not seem to add anything. However, holding the lock is necessary to
ensure that if another thread reads this variable several times while holding the lock,
these reads will return consistent values.

8.3.2 Constructors
Constructors typically do not need any synchronization if all they do is initialize the
newly created object. However, individual cases will need to be inspected carefully
in order to determine whether they might affect other data structures. For example,
in Form.java:

public Form(...) {
 super(title); // (a)

 synchronized (Display.LCDUILock) { // (b)
 // long, complex initialization
 }
}

At (a), the call to super ends up creating a new Layout object. Without tracing the
entire call tree, it is difficult to determine whether the call to the superclass
constructor has any access to shared data. It is therefore reasonable to want to put
locking around this call. Unfortunately, a constructor’s call to super must appear as
its very first statement and cannot appear within a synchronized block. Therefore,
the superclass constructor must be inspected carefully to ensure that there is no
unsynchronized access to shared data.

The synchronization block beginning at (b) surrounds a complex initialization
routine. Once again, without inspecting the entire call tree, it is difficult to tell
whether this routine makes any access to shared data. Thus, code like this has been
placed within a synchronization block so that access to shared data is safe. Even if
Chapter 8 Thread-Safety 35

the code in its current state makes no access to shared data, a future modification to
the code might add such an access. Leaving this code unlocked is therefore quite
fragile.

Even if the body of this constructor and the body of the superclass constructor are
synchronized, there is still a potential safety problem. Suppose the superclass
constructor were to store a reference to the object being constructed into a shared
data structure. There is a window of time between the release of the lock held by the
superclass constructor and the reacquisition of the lock by the body of this
constructor. During this window, other threads will have access to a reference to this
object. If another thread were to call a method on this object, that method would be
operating on the object in a partially constructed state, which might lead to
misbehavior or errors. Therefore, constructors must be extremely careful not to store
references to the newly constructed object into shared data, even if the store is done
within a synchronization block.

8.3.3 Event Handling Methods
Event handling methods and MIDlet state change methods are considered to
originate outside LCDUI and thus must also hold LCDUILock during access to
shared data. The EventHandler thread makes calls on the DisplayAccessor
object in order to deliver events to LCDUI. From the DisplayAccessor object, the
call tree fans out to individual Displayable objects. Every method of
Displayable that is called from within the DisplayAccessor must be inspected
in order to determine whether it should be locked. In practice, this means that
LCDUI classes that are subclasses of Displayable must add synchronization
within their showNotify, hideNotify, keyPressed, paint, and other event
delivery methods. Note that subclasses of the Item class have these methods but
that they are not locked. This is because the Form object receives the event call, takes
the lock, and then calls the corresponding method on the appropriate Item object.

8.3.4 Application Callouts
In some cases, the processing of an event will end up calling out to the application.
(These are “callbacks” from the point of view of the application, but this section
takes the point of view of the system and calls them “callouts.”) The LCDUILock
must not be held during any callout, because doing so may give rise to deadlock.
However, if the current Displayable is not a Canvas object, then it will be a high-
level UI component that is part of LCDUI. Each component will be responsible for
reacquiring the LCDUILock for itself as described above.
36 MIDP Porting Guide • September 17, 2001

In order to serialize callouts (Requirement #2), the code must hold calloutLock
across any call that might end up in the application. These calls include the
following:

■ showNotify
■ hideNotify
■ keyPressed
■ keyRepeated
■ keyReleased
■ pointerPressed
■ pointerDragged
■ pointerReleased
■ paint
■ A CommandListener object’s commandAction method
■ An ItemStateListener object’s itemStateChanged method 1

■ A Runnable object’s run method resulting from an earlier call to callSerially

Because calloutLock has a higher priority than LCDUILock, the code must release
LCDUILock prior to taking calloutLock and calling into the application. An example
of this occurs in Form.java where the application’s ItemStateListener is called:

 void keyPressed(int keyCode) {
 Item curItem;
 ItemStateListener isl = null;

 synchronized (Display.LCDUILock) {
 curItem = items[curItemIndex];
 if (Display.getGameAction(keyCode) == Canvas.FIRE
 && curItem.select()) {
 isl = itemStateListener;
 }
 }

 if (isl != null) {
 synchronized (Display.calloutLock) {
 isl.itemStateChanged(curItem);
 }
 }
 }

(Some error checking has been omitted for brevity.)

This code uses the open call technique of loading information into local variables
while the lock is held, and ensuring that unlocked code uses only these local
variables. This is necessary in case the value of the itemStateListener instance
variable or the items array is changed between the set and the actual call.

1. The MIDP 1.0 Specification probably ought to have included this callout in the defined set of serialized calls,
but it was apparently left off the list by mistake.
Chapter 8 Thread-Safety 37

A consequence of this structure is that the call to the application must occur at the
same level in the calling structure as the locking of LCDUILock, because LCDUILock
must be released before calloutLock is taken and the call made into the
application. This in turn implies that the information about the decision of whether
to make the itemStateChanged call must be returned from the Item that made the
decision. The call cannot be made directly from the code in the Item that handles
the event.

8.3.5 Graphics
Since the calls to a Canvas object’s paint method are serialized, the Graphics
object passed to it need not be synchronized at all. This relies on the underlying
graphics library to be thread-safe. It also assumes that native methods implicitly
provide exclusion, as is the case in KVM.

However, a Graphics object whose destination is an Image will need to be
synchronized, since multiple threads may attempt to use the Graphics object to
paint simultaneously. The locking occurs on the Graphics object itself, not on
LCDUILock, because the effect of any graphics call affects only the state of that
Graphics object. This locking is applied in ImageGraphics, a private
implementation subclass of Graphics, leaving the main Graphics class without
locking:

class Graphics {
 public void clipRect(int x, int y, int width, int height) {
 ...
 }
 public native void drawLine(int x1, int y1, int x2, int y2);
}

class OffscreenGraphics extends Graphics {
 public void clipRect(int x, int y, int w, int h) {
 synchronized (this) {
 super.clipRect(x, y, w, h);
 }
 }

...
}

Locking is necessary for certain methods, such as clipRect, because it manipulates
the Graphics object’s state using Java code. However, the drawLine method is
simply a direct call to a native method, which the MIDP RI assumes runs single-
threaded, and so no locking is necessary. The subclass can add no value by taking a
lock around the native call, so it simply inherits the native implementation.
38 MIDP Porting Guide • September 17, 2001

Note that it is not necessary to lock the destination image of any graphics call nor
the source image of the drawImage call. The assumption is that the only operations
that have access to actual image data are native, and so no exclusion is necessary.
Graphics operations from different threads might be interleaved, but locking within
the Graphics class will not prevent that from occurring; that is the application’s
responsibility.

8.3.6 Command Menus
The command menus are implemented in native code. Changes to the command set
on the current screen are pushed to the native implementation immediately. This
code ensures that the highlight is moved properly if commands are added or
removed, and that something reasonable happens, such as cancellation, if all the
commands on the menu are removed.

Every Command object is assigned a unique serial number at the time it is created.
When the user invokes a command from a menu, the Command object’s serial
number is passed through the event queue. Upon receipt of this event, the event
handling code searches for this serial number in the current Displayable object’s
command set, and issues the command if it is found.

This technique is necessary for several reasons. Prior to the multi-thread work, the
system pushed into the event queue the index of the command within the current
Displayable object’s commands array. When this event is processed by the event
handler, the commands array might have been modified, or a different
Displayable object might be current. This might cause event handler to invoke the
wrong Command, or it might cause an internal error. The serial number technique
avoids both of these problems. If a Command object with a matching serial number is
not found in the current Displayable object’s command set, the event is simply
ignored.

8.4 The serviceRepaints Method
The MIDP 1.0 Specification requires that, in general, callouts be serialized. That is, a
callout may not begin until the previous callout has returned. (This rule is covered
by “Requirement #2” on page 31.) However, the specification for serviceRepaints
states that it must not return until the paint method is called and has returned. This
is true even if serviceRepaints is called from within an application callout. This
is the only case where two callouts are allowed to be in progress simultaneously.
Chapter 8 Thread-Safety 39

This arrangement gives rise to the possibility of deadlock. Suppose that the event
thread has taken calloutLock and is calling an application’s event method, which
attempts to acquire one of the application’s locks. Suppose further that an
application thread already holds this application lock and now calls
serviceRepaints in order to force a pending repaint to be processed. The
serviceRepaints code attempts to acquire calloutLock in order to call paint,
and the system is now deadlocked.

The MIDP 1.0 Specification prevents deadlock in this case by imposing a special rule,
which is that applications are prohibited from holding any of their own locks during
a call to serviceRepaints. This rule is reflected in the lock ordering policy
described in “Design Approach” on page 32. Since serviceRepaints may call
paint, which requires holding calloutLock, the rule about holding no locks still
applies. This is the only case where the lock ordering rules are exposed to the
application. The application is allowed to hold its locks during a call to any other
LCDUI method, in accordance with “Requirement #3” on page 31. The
serviceRepaints method is the sole exception to this rule.

A multi-threaded application will generally need to hold locks on its own data
structures in order to protect them from concurrent access. The problem is that the
application is prohibited from holding these locks when it calls serviceRepaints.
This makes serviceRepaints hard to use correctly. In practice, application code
must use the open call technique in order to use serviceRepaints safely.
40 MIDP Porting Guide • September 17, 2001

CHAPTER 9

Porting Example

The example contained in this chapter illustrates a re-implementation of a native
method in the RI, illustrated with real-world code. The example can be best
appreciated by comparing before (from the RI) and after (as re-implemented) code
with reference to the steps listed in “Porting versus Implementation” on page 3.

The functionality that was re-implemented in this case was editing of a time value.
The time value is represented as part of an Item called a DateField. DateField's
API is defined as part of the MIDP specification, but the actual editing of the value
(and even the means by which the user edits the value) is outside the scope of this
specification. Hence there is considerable freedom about how to implement the
behaviors.

The file DateField.java must be modified as described in “Porting versus
Implementation” on page 3. In addition, new native methods must be added to the
system in order to support the changes made to DateField.java

For this example, we assume that there is a built-in editor for time values.
Furthermore, we assume that it has the following very simple C programming
interface:

/* set the time. timeVal is in seconds since midnight */
extern void TimeEditor_setTime(int timeVal);

/* get the time value (in seconds since midnight) */
extern int TimeEditor_getTime();

/*
 * make the time editor visible. This gives it control
 * over the screen, and causes it to get all user input
 * events (except that the keys used for abstract commands
 * are still passed through to the application).
 */
extern void TimeEditor_setVisible(int shown);
41

/* repaint the indicated portion of the screen. */
extern void TimeEditor_repaint(int x, int y,

 int width, int height);

9.1 Changes to DateField.java
In the RI, date and time editing are accomplished by a single helper class called
EditScreen. Our first task is therefore to break this apart. The functionality for
editing a date is retained in a new helper class, DateEditor (not shown). Then we
write a second helper class, TimeEditor, which looks like this:

class TimeEditor extends Displayable implements CommandListener {
 DateField field;
 Screen returnScreen;

 Command Back = new Command("Back", Command.BACK, 0);
 Command OK = new Command("Save", Command.OK, 1);

 public TimeEditor(Screen returnScreen, DateField df) {
 field = df;

 addCommand(OK);
 addCommand(Back);
 setCommandListener(this);

this.returnScreen = returnScreen;
 }

 public void setDateTime(Date currentValue) {
 calendar.setTime(currentValue);
 int timeVal = calendar.get(Calendar.HOUR_OF_DAY)*60
 + calendar.get(Calendar.MINUTE);

 setTime(timeVal);
 }

 /**
 * Handle a command action
 *
 * @param cmd The Command to handle
 * @param s The Displayable with the Command
 */
 public void commandAction(Command cmd, Displayable s) {

Form form = null;
42 MIDP Porting Guide • September 17, 2001

Item item = null;

synchronized (Display.LCDUILock) {
 if (cmd == OK) {

field.saveDate(calendar.getTime());
item = field;
form = (Form)item.getOwner();

 }
 currentDisplay.setCurrent(returnScreen);

} // synchronized

// SYNC NOTE: Move the call to the application's
// ItemStateChangedListener outside the lock
if (form != null) {
 form.itemStateChanged(item);
}

 }

 void paint(Graphics g) {
 paint0(g.getClipX() + g.getTranslateX(),
 g.getClipY() + g.getTranslateY(),
 g.getClipWidth(),
 g.getClipHeight());
 }

 private native void paint0(int x, int y, int w, int h);
 native void setTime(int timeVal);
 native int getTime();
 native void showNotify();
 native void hideNotify();

 private Calendar calendar =
Calendar.getInstance(TimeZone.getDefault());

Notice the use of native methods for setting and getting the time value, showing and
hiding the screen, and refreshing a portion of the display. Also notice that, because
the abstract command mechanism is available to us, we can do OK and Back buttons
the same way we did in the RI. If the native component were to handle Back and OK
itself, then we would need to devise some way for these user commands to be
relayed back to the system.

We must also change some of the event handling code so that the correct editor is
invoked. For example, compare the RI version of the select method:

Chapter 9 Porting Example 43

boolean select() {
 if (editor == null) {
 editor = new EditScreen(this);
 }

 if (mode == DATE_TIME) {
 editor.setDateTime(calendar.getTime(),
 (highlight < 2) ? DATE : TIME);
 } else {
 editor.setDateTime(calendar.getTime(), mode);
 }

 editor.layoutChanged();

 getOwner().currentDisplay.setCurrent(editor);

 return false;
 }

with the new one below:

 /**
 * Perform a selection on this DateField
 *
 * @return boolean Always returns false
 */
 boolean select() {
 Screen returnScreen = getOwner();

if (!initialized) {
 if (mode == DATE) {

currentDate.set(Calendar.HOUR, 0);
currentDate.set(Calendar.MINUTE, 0);
currentDate.set(Calendar.SECOND, 0);
currentDate.set(Calendar.MILLISECOND, 0);

 } else if (mode == TIME) {
currentDate.setTime(EPOCH);

 }
}

 int editMode = this.mode;

 if (editMode == DATE_TIME) {
 editMode = (highlight < 2) ? DATE : TIME;
 }

44 MIDP Porting Guide • September 17, 2001

if (editMode == DATE) {
 if ((editor == null) || !(editor instanceof EditScreen)) {

 editor = new EditScreen(returnScreen, this);
 }
 ((EditScreen)editor).setDateTime(currentDate.getTime(),
DATE);
 ((EditScreen)editor).layoutChanged();

} else if (editMode == TIME) {

 if ((editor == null) || !(editor instanceof TimeEditor)) {
 editor = new TimeEditor(returnScreen, this);
 }

 ((TimeEditor)editor).setDateTime(currentDate.getTime());
 }
 returnScreen.currentDisplay.setCurrent(editor);

 return false;
 }
Chapter 9 Porting Example 45

9.2 Additional native methods
In the previous section, we declared native methods as part of the definition of
TimeEditor. We must provide C language functions that satisfy these declarations.
Fortunately, in the case of TimeEditor, these are very straightforward. They
primarily consist of some stack manipulation, plus calls to the built-in time editor.

void
Java_javax_microedition_lcdui_TimeEditor_paint0()
{
 int clipHeight = popStack();
 int clipWidth = popStack();
 int clipY = popStack();
 int clipX = popStack();

 oneLess; /* pop the reference to the TimeEditor instance */

 TimeEditor_repaint(clipX, clipY, clipWidth, clipHeight);
}

void
Java_javax_microedition_lcdui_TimeEditor_setTime()
{
 int timeVal = popStack();

 oneLess; /* pop the reference to the TimeEditor instance */

 TimeEditor_setTime(timeVal);
}

void
Java_javax_microedition_lcdui_TimeEditor_getTime()
{
 /* replace the reference to the TimeEditor instance */
 oneLess;
 pushStack(TimeEditor_getTime());
}

void
Java_javax_microedition_lcdui_TimeEditor_showNotify()
{
 oneLess; /* pop the reference to the TimeEditor instance */

 TimeEditor_setVisible(TRUE);
}

46 MIDP Porting Guide • September 17, 2001

void
Java_javax_microedition_lcdui_TimeEditor_hideNotify()
{
 oneLess; /* pop the reference to the TimeEditor instance */

 TimeEditor_setVisible(FALSE);
}

Chapter 9 Porting Example 47

48 MIDP Porting Guide • September 17, 2001

CHAPTER 10

Compiler Requirements

In order to be able to compile the native part of the MIDP, you must have a C
compiler capable of compiling ANSI-compliant C files. Your compiler must define
the basic C types as shown below in Table 10-1.

All MIDP implementations must support the Java type long. It is not required that
your compiler support 64-bit integers; however this is preferred when porting the
KVM.

Your compiler must have some means of indicating additional directories to be
searched for “includes” of the form:

#include <filename>

TABLE 10-1 Basic types

Type Description

char An 8-bit quantity. It can be signed or unsigned

signed char A signed 8-bit quantity.

unsigned
char

An unsigned 8-bit quantity

short A signed 16-bit quantity.

unsigned
short

An unsigned 16-bit quantity

int A signed quantity of 32 bits.

unsigned int A unsigned quantity of 32 bits.

long A signed 32-bit quantity

unsigned
long

An unsigned 32-bit quantity.

void * A 32-bit pointer
49

The MIDP RI has only been tested on machines with 32-bit pointers and 32-bit ints,
and machines that do not require “far” pointers of any sort. It is unknown whether
it will run successfully on platforms with pointers of other sizes.

The code base has been successfully compiled with the following compilers:

■ Sun Microsystems Inc. C Compiler 5.0 and 5.2 on Solaris,

■ GNU C 2.95.2 compiler on Solaris and Windows NT 4.0 (see
http://www.gnu.org/software/gcc/gcc-2.95/gcc-2.95.2.html),

■ CygWin project version 1.3.1 with gcc and gnumake (see
http://sources.redhat.com/cygwin),

■ Microsoft Visual C++ 6.0 Professional on Windows NT 4.0.

The only non-ANSI feature in the source code is its use of 64-bit integer arithmetic.
50 MIDP Porting Guide • September 17, 2001

http://www.gnu.org/software/gcc/gcc-2.95/gcc-2.95.2.html
http://sources.redhat.com/cygwin

	About This Document
	Who Should Use This Document
	How This Document Is Organized
	New Features in this Release
	Related Documentation

	Introduction to MIDP
	1.1 Mobile Information Device Profile (MIDP)

	MIDP Porting Considerations
	2.1 Porting versus Implementation
	2.2 Degrees of Implementation
	2.3 Porting versus Optimization
	2.4 Native and Java Language Portions of The RI
	2.5 The GUI Portion of The RI
	2.5.1 Helper Classes Removed

	2.6 The non-GUI Portion of The RI

	Porting the GUI
	3.1 MIDP GUI overview
	3.2 Porting The Low Level
	3.2.1 Changes to the Porting Layer

	3.3 Porting The High Level

	Porting the Storage
	4.1 Overview
	4.2 RandomAccessStream and File
	4.2.1 Relationship to RecordStoreFile and RecordStore

	4.3 Porting the Low Level
	4.4 Porting the High Level
	4.5 Porting RMS

	Porting the Application Management System
	5.1 Porting Main
	5.2 Porting the High Level
	5.2.1 Command Categories
	5.2.2 Replacing OTA

	Porting the Networking Implementation
	6.1 CLDC Specification of Generic Connections
	6.2 CLDC Implementation of TCP/IP Sockets
	6.3 MIDP Specification/Implementation of HTTP 1.1 Protocol
	6.3.1 MIDP Implementation of HTTP Proxy
	6.3.1.1 Http Tunneling through Web proxy servers.

	6.3.2 6.3.2 HTTP1.1 Persistent Connections.
	6.3.2.1 Cleaning Up Idle Persistent Connections.

	6.4 Enabling Additional Protocols
	6.5 Porting HTTPS
	6.5.1 Porting the Low Level
	6.5.2 Porting the High Level

	Building a Different Executable
	7.1 Make Variables
	7.2 Removing Configuration Code

	Thread-Safety
	8.1 Requirements
	8.2 Design Approach
	8.3 Coding Conventions
	8.3.1 Public Methods
	8.3.2 Constructors
	8.3.3 Event Handling Methods
	8.3.4 Application Callouts
	8.3.5 Graphics
	8.3.6 Command Menus

	8.4 The serviceRepaints Method

	Porting Example
	9.1 Changes to DateField.java
	9.2 Additional native methods

	Compiler Requirements

