AMD 1

AMDG64 Technology

AMDG64 Architecture
Programmer’s Manual

Volume 4:
128-Bit and 256-Bit
Media Instructions

Publication No. Revision
66666

AMDZU
AMDG64 Technology 26568—Rev. 3.17—May 2013

© 2002 — 2013 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced Micro
Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and
reserves the right to make changes to specifications and product descriptions at
any time without notice. The information contained herein may be of a preliminary
or advance nature and is subject to change without notice. No license, whether
express, implied, arising by estoppel or otherwise, to any intellectual property rights
is granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fithess for a particular purpose, or infringement
of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other appli-
cations intended to support or sustain life, or in any other application in which the
failure of AMD’s product could create a situation where personal injury, death, or
severe property or environmental damage may occur. AMD reserves the right to
discontinue or make changes to its products at any time without notice.

Trademarks

AMD, the AMD arrow logo, AMD Athlon, and AMD Opteron, and combinations thereof, AMD Virtualization and 3DNow!
are trademarks, and AMD-KG6 is a registered trademark of Advanced Micro Devices, Inc.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation. HyperTransport is a licensed trade-
mark of the HyperTransport Technology Consortium.

Other product names used in this publication are for identification purposes only and may be trademarks of their
respective companies.

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
Contents
L 001 11 1L iii
1 P Xix
T 1) (P xxi
Revision History.ooiuiiiiiiiiiiiiiiiiiiiiineenrenrsnssnssnssnssnssnsnssns xxiii
g) 1 P XXV
About This BooK. XXV
AUIENCE oot XXV
OrganizZation oottt et e et e e e e e e XXV
Conventions and Definitions i XXV1
Related Documents. e XXX Vil
1 Introductionottt eiieeeeeeeeeseescnscnscnscnnnnns 1
1.1 Syntax and NOtationttt e 2
1.2 Extended Instruction Encoding 3
1.2.1 Immediate Byte Usage Unique to the SSE instructions 4
1.2.2 Instruction Format Examples 4
1.3 Enabling SSE Instruction Executiont 6
1.4 String Compare INStruCtiONSottt e e e et e 7
1.4.1 Source Data Format e 9
1.4.2 Comparison TYPeottt 10
1.4.3 Comparison Summary Bit Vector. i, 12
1.4.4 Intermediate Result Post-processing.ttt 14
1.4.5 Output Option Selection.ottt e e e e e 14
1.4.6 Affecton Flagso i 15
2 Instruction Referenceciuiiiiiiiiiiiiiiiiiiiiieieieneeneeneenacnnnns 17
ADDPD
VA D DD P D . . . 19
ADDPS
VA D DD P S . 21
ADDSD
VA D DD S D . . o 23
ADDSS
VA D DD S S . 25
ADDSUBPD
VADDSUBPD . .. e 27
ADDSUBPS
VADD SUBPS . . 29
AESDEC
VAESDEC . . . 31
AESDECLAST
VAESDECL A ST .. 33
AESENC

iii

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
VAESENC . .ot 35
AESENCLAST
VAESENCLAST oottt e e e e e 37
AESIMC
VAESIMC . . oot e e e e e 39
AESKEYGENASSIST
VAESKEYGENASSISTottt e e e e e 41
ANDNPD
VANDNPD . ..ottt e e e e e 43
ANDNPS
VANDNPS . . oottt e e e 45
ANDPD
VANDPD . . oot 47
ANDPS
VANDPS . . oot e e e e e 49
BLENDPD
VBLENDPDt e e e e e 51
BLENDPS
VBLENDPS. . . . ettt e e e 53
BLENDVPD
VBLENDVPD . . .ottt et e 55
BLENDVPS
VBLENDVPS . . . oottt e e e e e e 57
CMPPD
VOMPPD. . oot e e 59
CMPPS
VOMPPS . . oo e e e e e 63
CMPSD
VOMPSD. . o v oot e e e e e 67
CMPSS
VOMPSS . . vt e e 70
COMISD
VCOMISD . . .o et 73
COMISS
VCOMISS . . oo e e e 75
CVTDQ2PD
VCOVTDQ2PD . . oot e 77
CVTDQ2PS
VOVTDQ2PS . . oot e e e e e e e 79
CVTPD2DQ
VOVTPD2DQ . . oot e e e e e e e 81
CVTPD2PS
VOVTPD2PS. . . oot 83
CVTPS2DQ
VOVTPS2DQ . . oot e e e e e 85
CVTPS2PD
VOVTPS2PD . . . oo et e e e e e e 87

iv

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
CVTSD2SI
VOVTSD2SL . ..ot e e e e e e 89
CVTSD2SS
VOVTSD2SS . . . et 91
CVTSI2SD
VOVTSIZSD . . oot e e e 93
CVTSI2SS
VOVTSIZSS .ottt e e 95
CVTSS2SD
VOVTSS2SD . . oot 97
CVTSS2SI
VOVTSS2SI & ottt e e e e 99
CVTTPD2DQ
VCOVTTPD2DQ . . oo e e e e e e e 101
CVTTPS2DQ
VOVTTPS2DQ . . oo e e e e e e e e 103
CVTTSD2SI
VOVTTSD2SI. . .ot e 105
CVTTSS2SI
VOVTTSS2SL . .ot 107
DIVPD
VDIVPD ..ot e 110
DIVPS
VDIVPS . e e e 112
DIVSD
VDIVSD ..ot 114
DIVSS
VDIVSS . . oottt 116
DPPD
VDPPD ..ot 118
DPPS
VDPPS . . oot 121
EXTRACTPS
VEXTRACTPS . . .o oot e e e e e 124
EXTRQ .« oottt e e e 126
HADDPD
VHADDPD . ..ot e e e 128
HADDPS
VHADDPS . ..ot 130
HSUBPD
VHSUBPD. . . .ottt e e 132
HSUBPS
VHSUBPS . . oottt e e e e e 134
INSERTPS
VINSERTPS ... oottt e e e e 136
INSERTQ. . . oottt 138
LDDQU

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
VEDDQU .. oot e 140
LDMXCSR
VLDMXCSR . . . oo et e e e 142
MASKMOVDQU
VMASKMOVDQU. . .« . oo e e e e e e 144
MAXPD
VMAXPD . . oo e 146
MAXPS
VMAXPS. . o et eeeeeee 148
MAXSD
VMAXSD . . oo 150
MAXSS
VMAXSS. o ettt 152
MINPD
VMINPD . o oo e e e e 154
MINPS
VMINPS . oo 156
MINSD
VMINSD .« . oot e e 158
MINSS
VMINSS . oot e e e 160
MOVAPD
VMOVAPD . . oo e 162
MOVAPS
VMOVAPS . .ot e 164
MOVD
VMOVD . oo e e e e e 166
MOVDDUP
VMOVDDUP . . . oot e e e 168
MOVDQA
VMOVDQA . oot e e e e 170
MOVDQU
VMOVDQU . ..ot e e 172
MOVHLPS
VMOVHLPS . .« oot e e e e e e 174
MOVHPD
VMOVHPD . . . oot e e e 176
MOVHPS
VMOVHPS . . o oot e e e 178
MOVLHPS
VMOVLHPS . .« oo e e e 180
MOVLPD
VMOVLPD . . .ot e 182
MOVLPS
VMOVLPS . . oo e e e e e 184
MOVMSKPD
VMOVMSKPD . . .o oo e e e e 186

vi

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
MOVMSKPS
VMOVMSKPS . . o oo e e e e e 188
MOVNTDQ
VMOVNTDOQ . . .o oo e e e e e 190
MOVNTDQA
VMOVNTDQA . . o v e et e e e 192
MOVNTPD
VMOVNTPD. . . oo e e e e e e 194
MOVNTPS
VMOVNTPS . . . oo e e e e e e 196
MOVNTSD . .« oo e e e e e e 198
MOVNTSS .o oo e e e e e 200
MOVQ
VMOVQ . o oo e e 202
MOVSD
VMOVSD . . oot e e e e e 204
MOVSHDUP
VMOVSHDUP . . oo oo e e e e e e 206
MOVSLDUP
VMOVSLDUP . . oo e e e e 208
MOVSS
VMOVSS. .« o oo e e e 210
MOVUPD
VMOVUPDo oo e e e e 212
MOVUPS
VMOVUPS .« o oo e e e e e e 214
MPSADBW
VMPSADBW . . oot e 216
MULPD
VMULPD .« .o e e e e e e e 218
MULPS
VMULPS .« oot e e e 220
MULSD
VMULSD .« .ot e e e e 222
MULSS
VMULSS .« e et e 224
ORPD
VORPD . . .o oo e e e e 226
ORPS
VORPS . . oo e 228
PABSB
VPABSB . . oot 230
PABSD
VPABSD . . oot e 232
PABSW
VPABSW . . oot 234
PACKSSDW

vii

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
VPACKSSDW . . . oo oot e e e e 236
PACKSSWB
VPACKSSWB . . . oot e 238
PACKUSDW
VPACKUSDW . .o oo et e e e 240
PACKUSWB
VPACKUSWB. . . o et e 242
PADDB
177N) 0) : 244
PADDD
VPADDD . . . o oot e e 246
PADDQ
VPADDQ . . . e ettt e e 248
PADDSB
VPADDSB. . . o o oot e e 250
PADDSW
VPADDSW . . oo e e e 252
PADDUSB
VPADDUSB . . . oot e e e 254
PADDUSW
VPADDUSW . . . oo e et e e e 256
PADDW
VPADDW . . o oot e e e e 258
PALIGNR
VPALIGNR . . . oottt e e e e 260
PAND
VPAND .« .o oo e e e e 262
PANDN
VPANDN . oot 264
PAVGB
VPAVGB . . . oot e 266
PAVGW
VPAVGW. . . oo e e e e e 268
PBLENDVB
VPBLENDVB . . . oo oot 270
PBLENDW
VPBLENDW . . . oottt e e e e e e 272
PCLMULQDQ
VPCLMULQDQ . .+« e e oo e e e e e e e 274
PCMPEQB
VPCMPEQBo oo e e e e 276
PCMPEQD
VPCMPEQDo e e e e e e e 278
PCMPEQQ
VPCMPEQQ . .« e ee e e e e e e 280
PCMPEQW
VPCMPEQW. . . . o oo oo e e e e e e 282

viii

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
PCMPESTRI
VPCMPESTRL.o oot e e 284
PCMPESTRM
VPCMPESTRM . .. oo e e e e e e 287
PCMPGTB
VPCMPGTB . . . oot e e e e e e e e 290
PCMPGTD
VPCMPGTD . .. oo e e e e e e e e e 292
PCMPGTQ
VPCMPGTQ . . . oot e e e e e e e e 294
PCMPGTW
VPCMPGTW. . . oo e e e e e e e 296
PCMPISTRI
VPCOMPISTRI . . .o oo et e e e e e e e e 298
PCMPISTRM
VPCMPISTRMo eee e e e e e e e e e e 300
PEXTRB
VPEXTRB . . . o oo et 302
PEXTRD
VPEXTRD . . . oot e e e e e e 304
PEXTRQ
VPEXTROQ. . . o e e e oo e e e e 306
PEXTRW
VPEXTRW .. oot e e e e e e e e 308
PHADDD
VPHADDD . . oottt 310
PHADDSW
VPHADDSW. . . oo et 312
PHADDW
VPHADDW. . .o oot 314
PHMINPOSUW
VPHMINPOSUW . . .ottt 316
PHSUBD
VPHSUBD. . . o oot e e e e e e e e 318
PHSUBSW
VPHSUBSW . .. oot 320
PHSUBW
VPHSUBW . . oot e e e e e e 322
PINSRB
VPINSRB . . .o oot e e e 324
PINSRD
VPINSRD .. .ot 326
PINSRQ
VPINSRQ . oot e e e e 328
PINSRW
VPINSRW & . oot e e e 330
PMADDUBSW

ix

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
VPMADDUBSW ...t 332
PMADDWD
VPMADDWD . . . oo e e e e 334
PMAXSB
VPMAXSB . . oot et 336
PMAXSD
VPMAXSD . oot e 338
PMAXSW
VPMAXSW . . oottt e e e 340
PMAXUB
VPMAXUB . . oot et e e e 342
PMAXUD
VPMAXUD . .o e e e e e 344
PMAXUW
VPMAXUW & oo e e e 346
PMINSB
VPMINSB . . oottt e e e e e 348
PMINSD
VPMINSD . . oot e e e e 350
PMINSW
VPMINSW . .ottt e 352
PMINUB
VPMINUB. . . oottt e e e e 354
PMINUD
VPMINUD. . oottt e e e e e 356
PMINUW
VPMINUW . .ot e 358
PMOVMSKB
VPMOVMSKB . . o oot e e e e e 360
PMOVSXBD
VPMOVSXBD . .ot e e e 362
PMOVSXBQ
VPMOVSXBQ . . vt e e e e e e 364
PMOVSXBW
VPMOVSXBW . . oot e e e e e e e 366
PMOVSXDQ
VPMOVSXDQ . . oot e e e e 368
PMOVSXWD
VPMOVSXWD . . oottt e e e 370
PMOVSXWQ
VPMOVSXWOQ . . o oo e e e e e e e e 372
PMOVZXBD
VPMOVZXBD . .ot e e 374
PMOVZXBQ
VPMOVZXBQ . .ot e e e e e e 376
PMOVZXBW
VPMOVZXBW . . oo e e e e e e e e 378

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
PMOVZXDQ
VPMOVZXDQ . . oo e e e e e e e e e 380
PMOVZXWD
VPMOVZXWD. . .. oot e e e e e e 382
PMOVZXWQ
VPMOVZXWQ.. . o oo e e e e e 384
PMULDQ
VPMULDQ . . oot e e e e 386
PMULHRSW
VPMULHRSW . . oottt e e e e e e e 388
PMULHUW
VPMULHUW . . ot e 390
PMULHW
VPMULHW. . ..ot e e e e e 392
PMULLD
VPMULLD . ..ot e e e 394
PMULLW
VPMULLW . . oo e e e e e e e 396
PMULUDQ
VPMULUDQ. . . .ottt e e e e e e e 398
POR
1%:6): 400
PSADBW
VPSADBW . ..ottt 402
PSHUFB
VPSHUFBottt e e 404
PSHUFD
VPSHUFD . . .ottt 406
PSHUFHW
VPSHUFHWo e 408
PSHUFLW
VPSHUFLW . ..ottt e e e e e e e e 410
PSIGNB
VPSIGNB .. .ottt e e e 413
PSIGND
VPSIGND ..o e 415
PSIGNW
Y (6 417
PSLLD
VPSLLD ..ottt et e e e 419
PSLLDQ
VPSLLDQ . . .ot 421
PSLLQ
VPSLLQ .« .ottt et e e 423
PSLLW
VPSLLW & . . vttt e e e e e e e 425
PSRAD

Xi

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
VPSRAD . . . oo e e e e e e 427
PSRAW
VPSRAW . . . oo et e 429
PSRLD
VPSRLD . . oot e e e 431
PSRLDQ
VPSRLDQ . . .o ettt e e e e e 433
PSRLQ
VPSRLQ . ..ot e e e 435
PSRLW
VPSRLW . . oot e e e e e e e 437
PSUBB
VPSUBB . . . ettt e e e e 439
PSUBD
VPSUBD . . . e et e 441
PSUBQ
VPSUBQ . . e vt e e e e e e 443
PSUBSB
VPSUBSB . . . ettt e e e e 445
PSUBSW
VPSUBSW .ottt e e e e e 447
PSUBUSB
VPSUBUSB. . . . e oo e e e e e e e 449
PSUBUSW
VPSUBUSW . . . oot 451
PSUBW
VPSUBW.. . . oot 453
PTEST
VPTEST. . . oot e e e e e e 455
PUNPCKHBW
VPUNPCKHBWot e e e e e 457
PUNPCKHDQ
VPUNPCKHDOQo et e e e e e e e 459
PUNPCKHQDQ
VPUNPCKHQDQ . . .« e v et e e e e e e e e e 461
PUNPCKHWD
VPUNPCKHWDo oo e e e e e e e 463
PUNPCKLBW
VPUNPCKLBW . ..o et 465
PUNPCKLDQ
VPUNPCKLDQ . ..ot et e e e e e e 467
PUNPCKLQDQ
VPUNPCKLQDQ . .« o oo et e e e e e e e e e 469
PUNPCKLWD
VPUNPCKLWD . ..ot e e e e e e e 471
PXOR
1%0:C0): S 473

Xxii

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
RCPPS
VRCPPS . oot e e e 475
RCPSS
VRCPSS . o oot e 477
ROUNDPD
VROUNDPDo oot e e e e 479
ROUNDPS
VROUNDPS . . . oot e e e e 482
ROUNDSD
1%:7018) N 51) o F 485
ROUNDSS
VROUNDSS . . . o ooe e e e 488
RSQRTPS
VRSQRTPS . . oottt e e 491
RSQRTSS
VRSQRTSS . . vttt e e e e 493
SHUFPD
VSHUFPD . . o oo e e e e e e 495
SHUFPS
VSHUFPS . . o oo e e e e e 497
SQRTPD
VSQRTPD . . o oo et e e e e 500
SQRTPS
VSQRTPS . . oot e e e 502
SQRTSD
VSQRTSD . . e ettt e e e e e 504
SQRTSS
VSQRTSS . . oottt e 506
STMXCSR
VSTMXCSR . . o oot e e e e 508
SUBPD
VSUBPD . . . oot e e e e e 510
SUBPS
VSUBPS . . .o e e e 512
SUBSD
VSUBSD . . . ettt e e e e e e 514
SUBSS
VSUBSS . . oottt e 516
UCOMISD
VUCOMISD . .. oot e 518
UCOMISS
VUCOMISS. . . o oot 520
UNPCKHPD
VUNPCKHPD . . . o o ettt e e e 522
UNPCKHPS
VUNPCKHPS . .« oot 524
UNPCKLPD

Xiii

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

VUNPCKLPD . ..o e 526
UNPCKLPS

VUNPCKLPS . . e e 528
VBROADCASTF128 .. e e e e e 530
VBROADCASTSD . . .o 532
VBROAD CA ST S S . 534
VOV PH 2P S . 536
VOV TP S2PH. .« . 539
VEXTRACTEL28 . .o e e e e 542
VFMADDPD

VFMADDI132PD

VFMADD213PD

VEMADDZ231PD . . . 544
VFMADDPS

VFMADDI132PS

VFMADD213PS

VEMADD 23 I PS . . 547
VFMADDSD

VFMADD132SD

VFMADD213SD

VEMADD231SD . . .ot 550
VFMADDSS

VFMADDI132SS

VFMADD213SS

VEMADD 23S . o 553
VFMADDSUBPD

VFMADDSUB132PD

VFMADDSUB213PD

VEMADDSUB231PD . . .o 556
VFMADDSUBPS

VFMADDSUB132PS

VFMADDSUB213PS

VEMADDSUB 23 PS . 559
VFMSUBADDPD

VFMSUBADDI132PD

VFMSUBADD213PD

VEMSUBADD231IPD . . .o 562
VFMSUBADDPS

VFMSUBADD132PS

VFMSUBADD213PS

VEMSUBADD 23 1PS .o e 565
VFMSUBPD

VFMSUB132PD

VFMSUB213PD

VEMSUB23IPD . o e 568
VFMSUBPS

VFMSUB132PS

Xiv

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

VFMSUB213PS

VEMSUB 231 P S 571
VFMSUBSD

VFMSUB132SD

VFMSUB213SD

VEMSUB23 10D .o 574
VFMSUBSS

VFMSUB132SS

VFMSUB213SS

VEM SUB 23 1SS o 577
VFNMADDPD

VFNMADDI132PD

VFNMADD213PD

VENMADD231IPD .. o e 580
VFNMADDPS

VFNMADD132PS

VFNMADD213PS

VENMADD 23 I PS. . 583
VFNMADDSD

VFNMADD132SD

VFNMADD213SD

VENMADDZ231SD .. e 586
VFNMADDSS

VFNMADD132SS

VFNMADD213SS

VENMADD 23 1SS, . 589
VFNMSUBPD

VFNMSUB132PD

VFNMSUB213PD

VENMSUB23IPD . .. o 592
VFNMSUBPS

VFNMSUBI132PS

VFNMSUB213PS

VENMSUB 23 I PS . . 595
VFNMSUBSD

VFNMSUB132SD

VFNMSUB213SD

VENMSUB231SD . .o e e e e 598
VFNMSUBSS

VFNMSUBI132SS

VFNMSUB213SS

VENMSUB23 1SS . 601
VERCZPD . .. 604
VERCZPS . 606
VERCZ S DD . . e 608
VR CZ S S 610
VINSERT 28 o e e e 612

Xv

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
VMASKMOVPD ... oo e e e 614
VMASKMOVPS oo e e e e e e e 616
VPCMOV . oo e 618
VPCOMB . . oot e e e 620
VPCOMD . ..ot e 622
VPCOMO - . oo e e e 624
VPCOMUBot e e e e e 626
VPCOMUD oo e e e e e e 628
VPCOMUQ . .« oo e e e 630
VPCOMUW .. oo e e e e e, 632
VPCOMW . . oot e e 634
VPERM2F128 . . o oo oo oo e e e 636
VPERMIL2PD. . o\ e e oo e e e e e 638
VPERMIL2PS . . .o oo e e e e e e e e e 642
VPERMILPD. . . oo et e e e 646
VPERMILPS . . . o oo e e e 649
VPHADDBD oo oot e e e 653
VPHADDBQ o oo et e e e e e 655
VPHADDBW .. . oot e e e e e 657
VPHADDDOQ. . . . o e e et e e 659
VPHADDUBD . . oot et e e e e e 661
VPHADDUBQ . . o v oottt e e e e 663
VPHADDUBWo ot e e e e e 665
VPHADDUDQ . . oot et e e e e e e 667
VPHADDUWDo oo e e e e e e 669
VPHADDUWOQ . . oo oot e e e e e 671
VPHADDWD . . . oo oo e e e e e 673
VPHADDWOQ . . .o oo e e e e e e e 675
VPHSUBBW . . . oo oo oo e e e e 677
VPHSUBDQ . . . oot e e e e e 679
VPHSUBWD. . . oo et e e e e e 681
VPMACSDD . . . oo e e e 683
VPMACSDOQH . . oo e e e e 685
VPMACSDOL. . o e oot e e e 687
VPMACSSDD. . . oo oo e e e e 689
VPMACSSDQH . . v oot e e e e 691
VPMACSSDOQL . v oot e e e e e e 693
VPMACSSWD . . oot e e e e e e 695
VPMACSSWW . . o oo e e 697
VPMACSWD . . oo e e e e e 699
VPMACSWW . . oo e 701
VPMADCSSWD . . . oot e e e e e e 703
VPMADCSWD . . oo et e e e e e e 705
VPPERM . . oot e e e e e e 707
VPROTB . . e oot e e e e 709
VPROTD . . o et e 711
VPROTQ . . e v et e e e 713

XVi

AMDZU

26568—Rev. 3.177—May 2013

3 Exception Summary

Appendix A
Al
A2
A3
A4

AS

A6

A7

A8

A9

VPROTW ..o
VPSHAB . .. oo
VPSHAD ... oot
VPSHAQ . . oo
VPSHAW. . . oo
VPSHLB . ..ot
VPSHLD ..ot
VPSHLQ . . oo
VPSHLW . . oot
VTESTPD .. oo
VTESTPS ..ot
VZEROALL ...t
VZEROUPPER . ..o,
XGETBV ...ttt

XORPD

VXORPD. i

XORPS

AES Instructions

AESOVErview.ovvii i
Coding Conventions
AES Data Structures

Algebraic Preliminaries

A.4.1 Multiplication in the Field GF
A.4.2 Multiplication of 4x4 Matrices Over GF
AES Operations., ..
A.5.1 Sequence of Operations
Initializing the Sbox and InvSBox Matrices
A.6.1 Computation of SBox and InvSBox
A.6.2 Initialization of InvSBox|]
Encryption and Decryption
A.7.1 The Encrypt() and Decrypt() Procedures
A.7.2 Round Sequences and Key Expansion
The Cipher Function
A.8.1 Textto Matrix Conversion
A.8.2 Cipher Transformations
A.8.3 Matrix to Text Conversion

The InvCipher Function

A.9.1 Textto Matrix Conversion
A.9.2 InvCypher Transformations
A.9.3 Matrix to Text Conversion

AMDG64 Technology

XVii

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
A.10 An Alternative Decryption Procedure. i 844
A.11 Computation of GFInv with Euclidean Greatest Common Divisor 846
1T T G 849

XViii

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
Figures

Figure 1-1. Typical Descriptive Synopsis - Extended SSE Instructions 3
Figure 1-2. Byte-wide Character String — Memory and Register Image. 9
Figure 2-1. Typical Instruction Descriptionttt 17
Figure A-1. GFMatrix Representation of 16-byte Block 826
Figure A-2. GFMatrix to Operand Byte Mappingsoutmtiiitntnnn e 826

Xix

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

XX

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Tables

Table 1-1. Three-Operand Selectiont e 5
Table 1-2. Four-Operand Selection ittt 6
Table 1-3. Source Data Format e e 10
Table 1-4. Comparison TYPEottt e e e e e e e 11
Table 1-5. Post-processing OPtionsSv vttt ittt et e ettt et e 14
Table 1-6. Indexed Output Option Selectionttt ettt 14
Table 1-7. Masked Output Option Selectionttt it 14
Table 1-8. State of Affected Flags After Execution. 0., 15
Table 3-1. Instructions By Exception Class. e 751
Table A-1. SBoxX Definition e 834
Table A-2. InvSBoX Definition. e 836
Table A-3. Cipher Key, Round Sequence, and Round Key Length 837

XXi

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

xXii

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Revision History

Date Revision Description

Removed all references to the CPUID specification which has been
superseded by Volume 3, Appendix E, "Obtaining Processor
Information Via the CPUID Instruction."

May 2013 3.17
y Corrected exceptions table for the explicitly-aligned load/store
instructions. General protection exception does not depend on state
of MXCSR.MM bit.
Corrected REX.W bit encoding for the MOVD instruction. (See
page 166.)
September 316 Corrected L bit encoding for the VMOVQ (D6h opcode) instruction.
2012 ' (See page 202.)

Corrected statement about zero extension for third encoding (11h
opcode) of MOVSS instruction. (See page 210.)

Corrected instruction encoding for VPCOMUB, VPCOMUD,
March 2012 3.15 VPCOMUQ, VPCOMUW, and VPHSUBDAQ instructions. Other minor
corrections.

Reworked Section 1.4, "String Compare Instructions" on page 7.

Revised descriptions of the string compare instructions in instruction
reference.

3.14 Moved AES overview to Appendix A.

Clarified trap and exception behavior for elements not selected for
writing. See MASKMOVDQU VMASKMOVDQU on page 144.

Additional minor corrections and clarifications.

December
2011

Moved discussion of extended instruction encoding; VEX and XOP
prefixes to Volume 3.

Added FMA instructions. Described on the corresponding FMA4
September 3.13 reference page.

2011 Moved BMI and TBM instructions to Volume 3.
Added XSAVEOPT instruction.
Corrected descriptions of VSQRTSD and VSQRTSS.

May 2011 3.12 Added F16C, BMI, and TBM instructions.

xXiii

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Date Revision Description

Complete revision and reformat accommodating 128-bit and 256-bit media
instructions. Includes revised definitions of legacy SSE, SSE2, SSE3,
SSE4.1, SSE4.2, and SSSES instructions, as well as new definitions of
December extended AES, AVX, CLMUL, FMA4, and XOP instructions. Introduction
3.1 . . .) :
2010 includes supplemental information concerning encoding of extended
instructions, enhanced processor state management provided by the
XSAVE/XRSTOR instructions, cryptographic capabilities of the AES

instructions, and functionality of extended string comparison instructions.

September Added minor clarifications and corrected typographical and formatting

2007 310 errors.
Added the following instructions: EXTRQ, INSERTQ, MOVNTSD, and
MOVNTSS.
Added misaligned exception mask (MXCSR.MM) information.
Added imm8 values with corresponding mnemonics to (V)CMPPD,
July 2007 3.09 | W)CcMPPS, (V)CMPSD, and (V)CMPSS.
Reworded CPUID information in condition tables.
Added minor clarifications and corrected typographical and formatting
errors.
September . .
2006 3.08 Made minor corrections.
December . o .
2005 3.07 Made minor editorial and formatting changes.

Added documentation on SSE3 instructions. Corrected numerous

January 2005 3.06 minor factual errors and typos.

September

2003 3.05 Made numerous small factual corrections.

April 2003 3.04 Made minor corrections.

xXiv

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Preface

About This Book

This book is part of a multivolume work entitled the AMD64 Architecture Programmer s Manual.
The complete set includes the following volumes.

Title Order No.
Volume 1: Application Programming 24592
Volume 2: System Programming 24593
Volume 3: General-Purpose and System Instructions 24594
Volume 4: 128-Bit and 256-Bit Media Instructions 26568
Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

Audience

This volume is intended for programmers who develop application or system software.

Organization

Volumes 3, 4, and 5 describe the AMDG64 instruction set in detail, providing mnemonic syntax,
instruction encoding, functions, affected flags, and possible exceptions.

The AMD64 instruction set is divided into five subsets:

* General-purpose instructions

e System instructions

» Streaming SIMD Extensions (includes 128-bit and 256-bit media instructions)
e 64-bit media instructions (MMXT™™)

» x87 floating-point instructions
Several instructions belong to, and are described identically in, multiple instruction subsets.

This volume describes the Streaming SIMD Extensions (SSE) instruction set which includes 128-bit
and 256-bit media instructions. SSE includes both legacy and extended forms. The index at the end
cross-references topics within this volume. For other topics relating to the AMD64 architecture, and
for information on instructions in other subsets, see the tables of contents and indexes of the other
volumes.

XXV

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Conventions and Definitions

The section which follows, Notational Conventions, describes notational conventions used in this
volume. The next section, Definitions, lists a number of terms used in this volume along with their
technical definitions. Some of these definitions assume knowledge of the legacy x86 architecture. See
“Related Documents” on page xxxvii for further information about the legacy x86 architecture.
Finally, the Registers section lists the registers which are a part of the system programming model.

Notational Conventions

Section 1.1, “Syntax and Notation” on page 2 describes notation relating specifically to instruction
encoding.

#GP(0)
An instruction exception—in this example, a general-protection exception with error code of 0.

1011b
A binary value, in this example, a 4-bit value.

FOEA 0B40h

A hexadecimal value, in this example a 32-bit value. Underscore characters may be used to
improve readability.

128
Numbers without an alpha suffix are decimal unless the context indicates otherwise.

7:4
A bit range, from bit 7 to 4, inclusive. The high-order bit is shown first. Commas may be inserted
to indicate gaps.

#GP(0)
A general-protection exception (#GP) with error code of 0.

CPUID FnXXXX XXXX RRR|[FieldName]

Support for optional features or the value of an implementation-specific parameter of a processor
can be discovered by executing the CPUID instruction on that processor. To obtain this value,
software must execute the CPUID instruction with the function code XXXX XXXXh in EAX and
then examine the field FieldName returned in register RRR. If the “ RRR” notation is followed by
“ xYYY”, register ECX must be set to the value YYYh before executing CPUID. When FieldName
is not given, the entire contents of register RRR contains the desired value. When determining
optional feature support, if the bit identified by FieldName is set to a one, the feature is supported
on that processor.

CRO-CR4
A register range, from register CRO through CR4, inclusive, with the low-order register first.

XXVi

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
CR4[OXSAVE]

The OXSAVE bit of the CR4 register.
CRO[PE] =1

The PE bit of the CRO register has a value of 1.

EFER[LME] = 0
The LME field of the EFER register is cleared (contains a value of 0).

DS:rSI

The content of a memory location whose segment address is in the DS register and whose offset
relative to that segment is in the rSI register.

RFLAGS[13:12]

A field within a register identified by its bit range. In this example, corresponding to the IOPL
field.

Definitions

128-bit media instruction

Instructions that operate on the various 128-bit vector data types. Supported within both the legacy
SSE and extended SSE instruction sets.

256-bit media instruction

Instructions that operate on the various 256-bit vector data types. Supported within the extended
SSE instruction set.

64-bit media instructions

Instructions that operate on the 64-bit vector data types. These are primarily a combination of
MMX and 3DNow!™ instruction sets and their extensions, with some additional instructions from
the SSE1 and SSE2 instruction sets.

16-bit mode
Legacy mode or compatibility mode in which a 16-bit address size is active. See legacy mode and
compatibility mode.

32-bit mode
Legacy mode or compatibility mode in which a 32-bit address size is active. See legacy mode and
compatibility mode.

64-bit mode

A submode of long mode. In 64-bit mode, the default address size is 64 bits and new features, such
as register extensions, are supported for system and application software.

XXVii

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

absolute

A displacement that references the base of a code segment rather than an instruction pointer.
See relative.

AES

Advance Encryption Standard (AES) algorithm acceleration instructions; part of Streaming SIMD
Extensions (SSE).

ASID
Address space identifier.

AVX

Extension of the SSE instruction set supporting 256-bit vector (packed) operands. See Streaming
SIMD Extensions.

biased exponent

The sum of a floating-point value’s exponent and a constant bias for a particular floating-point data
type. The bias makes the range of the biased exponent always positive, which allows reciprocation
without overflow.

byte
Eight bits.

clear, cleared
To write the value 0 to a bit or a range of bits. See set.

compatibility mode
A submode of long mode. In compatibility mode, the default address size is 32 bits, and legacy 16-
bit and 32-bit applications run without modification.

commit

To irreversibly write, in program order, an instruction’s result to software-visible storage, such as a
register (including flags), the data cache, an internal write buffer, or memory.

CPL
Current privilege level.

direct

Referencing a memory address included in the instruction syntax as an immediate operand. The
address may be an absolute or relative address. See indirect.

displacement

A signed value that is added to the base of a segment (absolute addressing) or an instruction pointer
(relative addressing). Same as offset.

xXxviii

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

doubleword
Two words, or four bytes, or 32 bits.

double quadword
Eight words, or 16 bytes, or 128 bits. Also called octword.

effective address size

The address size for the current instruction after accounting for the default address size and any
address-size override prefix.

effective operand size

The operand size for the current instruction after accounting for the default operand size and any
operand-size override prefix.

element

See vector.

exception

An abnormal condition that occurs as the result of instruction execution. Processor response to an
exception depends on the type of exception. For all exceptions except SSE floating-point
exceptions and x87 floating-point exceptions, control is transferred to a handler (or service
routine) for that exception as defined by the exception’s vector. For floating-point exceptions
defined by the IEEE 754 standard, there are both masked and unmasked responses. When
unmasked, the exception handler is called, and when masked, a default response is provided
instead of calling the handler.

extended SSE instructions
Enhanced set of SIMD instructions supporting 256-bit vector data types and allowing the
specification of up to four operands. A subset of the Streaming SIMD Extensions (SSE). Includes
the AVX, FMA, FMA4, and XOP instructions. Compare /legacy SSE.
flush
An often ambiguous term meaning (1) writeback, if modified, and invalidate, as in “flush the cache
line,” or (2) invalidate, as in “flush the pipeline,” or (3) change a value, as in “flush to zero.”
FMA4
Fused Multiply Add, four operand. Part of the extended SSE instruction set.

FMA
Fused Multiply Add. Part of the extended SSE instruction set.

GDT
Global descriptor table.

XXix

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

GIF
Global interrupt flag.

IDT
Interrupt descriptor table.

IGN

Ignored. Value written is ignored by hardware. Value returned on a read is indeterminate. See
reserved.

indirect

Referencing a memory location whose address is in a register or other memory location. The
address may be an absolute or relative address. See direct.

IRB
The virtual-8086 mode interrupt-redirection bitmap.

IST
The long-mode interrupt-stack table.

IVT
The real-address mode interrupt-vector table.

LDT
Local descriptor table.

legacy x86
The legacy x86 architecture.

legacy mode

An operating mode of the AMD64 architecture in which existing 16-bit and 32-bit applications and
operating systems run without modification. A processor implementation of the AMD64
architecture can run in either long mode or legacy mode. Legacy mode has three submodes, real
mode, protected mode, and virtual-8086 mode.

legacy SSE instructions
All Streaming SIMD Extensions instructions prior to AVX, XOP, and FMA4. Legacy SSE
instructions primarily utilize operands held in XMM registers. The legacy SSE instructions
include the original Streaming SIMD Extensions (SSE1) and the subsequent extensions SSE2,
SSE3, SSSE3, SSE4, SSE4A, SSE4.1, and SSE4.2. See Streaming SIMD instructions.

long mode
An operating mode unique to the AMDG64 architecture. A processor implementation of the
AMD64 architecture can run in either long mode or legacy mode. Long mode has two submodes,
64-bit mode and compatibility mode.

XXX

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Isb
Least-significant bit.

LSB
Least-significant byte.

main memory
Physical memory, such as RAM and ROM (but not cache memory) that is installed in a particular
computer system.

mask
(1) A control bit that prevents the occurrence of a floating-point exception from invoking an
exception-handling routine. (2) A field of bits used for a control purpose.

MBZ
Must be zero. If software attempts to set an MBZ bit to 1, a general-protection exception (#GP)
occurs. See reserved.

memory
Unless otherwise specified, main memory.

moffset

A 16, 32, or 64-bit offset that specifies a memory operand directly, without using a ModRM or SIB
byte.

msb
Most-significant bit.

MSB
Most-significant byte.

octword
Same as double quadword.

offset

Same as displacement.

overflow

The condition in which a floating-point number is larger in magnitude than the largest, finite,
positive or negative number that can be represented in the data-type format being used.

packed
See vector.

PAE
Physical-address extensions.

XxXXi

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

physical memory
Actual memory, consisting of main memory and cache.

probe

A check for an address in processor caches or internal buffers. External probes originate outside
the processor, and internal probes originate within the processor.

protected mode
A submode of legacy mode.

quadword
Four words, eight bytes, or 64 bits.

RAZ

Read as zero. Value returned on a read is always zero (0) regardless of what was previously
written. See reserved.

real-address mode, real mode
A short name for real-address mode, a submode of legacy mode.

relative

Referencing with a displacement (offset) from an instruction pointer rather than the base of a code
segment. See absolute.

reserved
Fields marked as reserved may be used at some future time.

To preserve compatibility with future processors, reserved fields require special handling when
read or written by software. Software must not depend on the state of a reserved field (unless
qualified as RAZ), nor upon the ability of such fields to return a previously written state.

If a field is marked reserved without qualification, software must not change the state of that field;
it must reload that field with the same value returned from a prior read.

Reserved fields may be qualified as IGN, MBZ, RAZ, or SBZ (see definitions).

REX
A legacy instruction modifier prefix that specifies 64-bit operand size and provides access to
additional registers.

RIP-relative addressing
Addressing relative to the 64-bit relative instruction pointer.

SBZ

Should be zero. An attempt by software to set an SBZ bit to 1 results in undefined behavior. See
reserved.

Xxxii

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

scalar

An atomic value existing independently of any specification of location, direction, etc., as opposed
to vectors.

set

To write the value 1 to a bit or a range of bits. See clear.

SIMD
Single instruction, multiple data. See vector.

Streaming SIMD Extensions (SSE)

Instructions that operate on scalar or vector (packed) integer and floating point numbers. The SSE
instruction set comprises the legacy SSE and extended SSE instruction sets.

SSEI

Original SSE instruction set. Includes instructions that operate on vector operands in both the
MMX and the XMM registers.

SSE2
Extensions to the SSE instruction set.

SSE3
Further extensions to the SSE instruction set.

SSSE3
Further extensions to the SSE instruction set.

SSE4.1
Further extensions to the SSE instruction set.

SSE4.2
Further extensions to the SSE instruction set.

SSE4A
A minor extension to the SSE instruction set adding the instructions EXTRQ, INSERTQ,
MOVNTSS, and MOVNTSD.

sticky bit
A bit that is set or cleared by hardware and that remains in that state until explicitly changed by
software.

TSS
Task-state segment.

xxxiii

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

underflow
The condition in which a floating-point number is smaller in magnitude than the smallest nonzero,
positive or negative number that can be represented in the data-type format being used.

vector

(1) A set of integer or floating-point values, called elements, that are packed into a single operand.
Most media instructions use vectors as operands. Also called packed or SIMD operands.

(2) An interrupt descriptor table index, used to access exception handlers. See exception.

VEX prefix

Extended instruction encoding escape prefix. Introduces a two- or three-byte encoding escape
sequence used in the encoding of AVX instructions. Opens a new extended instruction encoding
space. Fields select the opcode map and allow the specification of operand vector length and an
additional operand register. See XOP prefix.

virtual-8086 mode
A submode of legacy mode.

VMCB
Virtual machine control block.

VMM
Virtual machine monitor.

word
Two bytes, or 16 bits.

x86
See legacy x86.

XOP instructions
Part of the extended SSE instruction set using the XOP prefix. See Streaming SIMD Extensions.

XOP prefix

Extended instruction encoding escape prefix. Introduces a three-byte escape sequence used in the
encoding of XOP instructions. Opens a new extended instruction encoding space distinct from the
VEX opcode space. Fields select the opcode map and allow the specification of operand vector
length and an additional operand register. See VEX prefix.

Registers

In the following list of registers, mnemonics refer either to the register itself or to the register content:

AH-DH
The high 8-bit AH, BH, CH, and DH registers. See [AL—DL)].

XXXiv

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

AL-DL
The low 8-bit AL, BL, CL, and DL registers. See JAH-DH].

AL-r15B

The low 8-bit AL, BL, CL, DL, SIL, DIL, BPL, SPL, and [r8B—r15B] registers, available in 64-bit
mode.

BP
Base pointer register.

CRn
Control register number 7.

CS
Code segment register.

eAX—-eSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers. See [rAX—rSP].

EFER
Extended features enable register.

eFLAGS
16-bit or 32-bit flags register. See rFLAGS.

EFLAGS
32-bit (extended) flags register.

elP
16-bit or 32-bit instruction-pointer register. See »/P.

EIP
32-bit (extended) instruction-pointer register.

FLAGS
16-bit flags register.

GDTR
Global descriptor table register.

GPRs

General-purpose registers. For the 16-bit data size, these are AX, BX, CX, DX, DI, SI, BP, and SP.
For the 32-bit data size, these are EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP. For the 64-bit
data size, these include RAX, RBX, RCX, RDX, RDI, RSI, RBP, RSP, and R&R15.

XXXV

AMDZU

AMDG64 Technology

IDTR
Interrupt descriptor table register.

IP
16-bit instruction-pointer register.

LDTR
Local descriptor table register.

MSR
Model-specific register.

r8&rl5

26568—Rev. 3.177—May 2013

The 8-bit REB—R15B registers, or the 16-bit RSW—R15W registers, or the 32-bit RED—-R15D

registers, or the 64-bit R§—R15 registers.

rAX-rSP

The 16-bit AX, BX, CX, DX, DI, SI, BP, and SP registers, or the 32-bit EAX, EBX, ECX, EDX,
EDI, ESI, EBP, and ESP registers, or the 64-bit RAX, RBX, RCX, RDX, RDI, RSI, RBP, and RSP
registers. Replace the placeholder » with nothing for 16-bit size, “E” for 32-bit size, or “R” for 64-

bit size.

RAX

64-bit version of the EAX register.

RBP
64-bit version of the EBP register.

RBX
64-bit version of the EBX register.

RCX
64-bit version of the ECX register.

RDI
64-bit version of the EDI register.

RDX

64-bit version of the EDX register.

rFLAGS

16-bit, 32-bit, or 64-bit flags register. See RFLAGS.

RFLAGS
64-bit flags register. See rF'LAGS.

XXXVi

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

rIP
16-bit, 32-bit, or 64-bit instruction-pointer register. See RIP.

RIP
64-bit instruction-pointer register.

RSI
64-bit version of the ESI register.

RSP
64-bit version of the ESP register.

SP
Stack pointer register.

SS
Stack segment register.

TPR

Task priority register (CRS).
TR

Task register.

YMM/XMM

Set of sixteen (eight accessible in legacy and compatibility modes) 256-bit wide registers that hold
scalar and vector operands used by the SSE instructions.

Endian Order

The x86 and AMDG64 architectures address memory using little-endian byte-ordering. Multibyte
values are stored with the least-significant byte at the lowest byte address, and illustrated with their
least significant byte at the right side. Strings are illustrated in reverse order, because the addresses of
string bytes increase from right to left.

Related Documents

e Peter Abel, IBM PC Assembly Language and Programming, Prentice-Hall, Englewood Cliffs, NJ,
1995.

e Rakesh Agarwal, 80x86 Architecture & Programming: Volume II, Prentice-Hall, Englewood
Cliffs, NJ, 1991.

e AMD, AMD-K6™ MMX™ Enhanced Processor Multimedia Technology, Sunnyvale, CA, 2000.
* AMD, 3DNow!™ Technology Manual, Sunnyvale, CA, 2000.
* AMD, AMD Extensions to the 3DNow!™ and MMX™ Instruction Sets, Sunnyvale, CA, 2000.

XXXVii

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

* Don Anderson and Tom Shanley, Pentium Processor System Architecture, Addison-Wesley, New
York, 1995.

* Nabajyoti Barkakati and Randall Hyde, Microsoft Macro Assembler Bible, Sams, Carmel, Indiana,
1992.

* Barry B. Brey, 8086/8088, 80286, 80386, and 80486 Assembly Language Programming,
Macmillan Publishing Co., New York, 1994.

* Barry B. Brey, Programming the 80286, 80386, 80486, and Pentium Based Personal Computer,
Prentice-Hall, Englewood Cliffs, NJ, 1995.

e Ralf Brown and Jim Kyle, PC Interrupts, Addison-Wesley, New York, 1994.

e Penn Brumm and Don Brumm, 80386/80486 Assembly Language Programming, Windcrest
McGraw-Hill, 1993.

* Geoff Chappell, DOS Internals, Addison-Wesley, New York, 1994.

e Chips and Technologies, Inc. Super386 DX Programmer’s Reference Manual, Chips and
Technologies, Inc., San Jose, 1992.

* John Crawford and Patrick Gelsinger, Programming the 80386, Sybex, San Francisco, 1987.

e Cyrix Corporation, 5x86 Processor BIOS Writer's Guide, Cyrix Corporation, Richardson, TX,
1995.

e Cyrix Corporation, M1 Processor Data Book, Cyrix Corporation, Richardson, TX, 1996.

e Cyrix Corporation, MX Processor MMX Extension Opcode Table, Cyrix Corporation, Richardson,
TX, 1996.

e Cyrix Corporation, MX Processor Data Book, Cyrix Corporation, Richardson, TX, 1997.

* Ray Duncan, Extending DOS: A Programmer's Guide to Protected-Mode DOS, Addison Wesley,
NY, 1991.

* William B. Giles, Assembly Language Programming for the Intel 8Oxxx Family, Macmillan, New
York, 1991.

e Frank van Gilluwe, The Undocumented PC, Addison-Wesley, New York, 1994.

e John L. Hennessy and David A. Patterson, Computer Architecture, Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

e Thom Hogan, The Programmer s PC Sourcebook, Microsoft Press, Redmond, WA, 1991.

» Hal Katircioglu, Inside the 486, Pentium, and Pentium Pro, Peer-to-Peer Communications, Menlo
Park, CA, 1997.

e IBM Corporation, 486SLC Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

e IBM Corporation, 486SLC2 Microprocessor Data Sheet, IBM Corporation, Essex Junction, VT,
1993.

e IBM Corporation, 80486DX2 Processor Floating Point Instructions, IBM Corporation, Essex
Junction, VT, 1995.

XXXViii

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology

IBM Corporation, 80486DX2 Processor BIOS Writer's Guide, IBM Corporation, Essex Junction,
VT, 1995.

IBM Corporation, Blue Lightning 486DX2 Data Book, IBM Corporation, Essex Junction, VT,
1994.

Institute of Electrical and Electronics Engineers, IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Std 754-1985.

Institute of Electrical and Electronics Engineers, /EEE Standard for Radix-Independent Floating-
Point Arithmetic, ANSI/IEEE Std 854-1987.

Muhammad Ali Mazidi and Janice Gillispie Mazidi, 80X86 IBM PC and Compatible Computers,
Prentice-Hall, Englewood Cliffs, NJ, 1997.

Hans-Peter Messmer, The Indispensable Pentium Book, Addison-Wesley, New York, 1995.

Karen Miller, An Assembly Language Introduction to Computer Architecture: Using the Intel
Pentium, Oxford University Press, New York, 1999.

Stephen Morse, Eric Isaacson, and Douglas Albert, The 80386/387 Architecture, John Wiley &
Sons, New York, 1987.

NexGen Inc., Nx586 Processor Data Book, NexGen Inc., Milpitas, CA, 1993.
NexGen Inc., Nx686 Processor Data Book, NexGen Inc., Milpitas, CA, 1994.

Bipin Patwardhan, Introduction to the Streaming SIMD Extensions in the Pentium I,
www.x86.org/articles/sse_ptl/ simd1.htm, June, 2000.

Peter Norton, Peter Aitken, and Richard Wilton, PC Programmers Bible, Microsoft Press,
Redmond, WA, 1993.

PharLap 386|ASM Reference Manual, Pharlap, Cambridge MA, 1993.
PharLap TNT DOS-Extender Reference Manual, Pharlap, Cambridge MA, 1995.

Sen-Cuo Ro and Sheau-Chuen Her, i386/i486 Advanced Programming, Van Nostrand Reinhold,
New York, 1993.

Jeffrey P. Royer, Introduction to Protected Mode Programming, course materials for an onsite
class, 1992.

Tom Shanley, Protected Mode System Architecture, Addison Wesley, NY, 1996.

SGS-Thomson Corporation, 80486DX Processor SMM Programming Manual, SGS-Thomson
Corporation, 1995.

Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall, Englewood Cliffs, NJ, 1992.
John Wharton, The Complete x86, MicroDesign Resources, Sebastopol, California, 1994.
Web sites and newsgroups:

- www.amd.com

- news.comp.arch

- news.comp.lang.asm.x86

- news.intel.microprocessors

XXXiX

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

- news.microsoft

xI

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

1 Introduction

Processors capable of performing the same mathematical operation simultaneously on multiple data
streams are classified as single-instruction, multiple-data (SIMD). Instructions that utilize this
hardware capability are called SIMD instructions.

Software can utilize SIMD instructions to drastically increase the performance of media applications
which typically employ algorithms that perform the same mathematical operation on a set of values in
parallel. The original SIMD instruction set was called MMX and operated on 64-bit wide vectors of
integer and floating-point elements. Subsequently a new SIMD instruction set called the Streaming
SIMD Extensions (SSE) was added to the architecture.

The SSE instruction set defines a new programming model with its own array of vector data registers
(YMM/XMM registers) and a control and status register (MXCSR). Most SSE instructions pull their
operands from one or more YMM/XMM registers and store results in a YMM/XMM register,
although some instructions use a GPR as either a source or destination. Most instructions allow one
operand to be loaded from memory. The set includes instructions to load a YMM/XMM register from
memory (aligned or unaligned) and store the contents of a YMM/XMM register.

An overview of the SSE instruction set is provided in Volume 1, Chapter 4.

This volume provides detailed descriptions of each instruction within the SSE instruction set. The SSE
instruction set comprises the legacy SSE instructions and the extended SSE instructions.

Legacy SSE instructions comprise the following subsets:

* The original Streaming SIMD Extensions (herein referred to as SSE1)

e SSE2

e SSE3

» SSSE3

 SSE4.1
e SSE4.2
* SSE4A

* Advanced Encryption Standard (AES)

Extended SSE instructions comprise the following subsets:

« AVX
 FMA
* FMA4
« XOP

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Legacy SSE architecture supports operations involving 128-bit vectors and defines the base
programming model including the SSE registers, the Media eXtension Control and Status Register
(MXCSR), and the instruction exception behavior.

The Streaming SIMD Extensions (SSE) instruction set is extended to include the AVX, FMA, FMA4,
and XOP instruction sets. The AVX instruction set provides an extended form for most legacy SSE
instructions and several new instructions. Extensions include providing for the specification of a
unique destination register for operations with two or more source operands and support for 256-bit
wide vectors. Some AVX instructions also provide enhanced functionality compared to their legacy
counterparts.

A significant feature of the extended SSE instruction set architecture is the doubling of the width of the
XMM registers. These registers are referred to as the YMM registers. The XMM registers overlay the
lower octword (128 bits) of the YMM registers. Registers YMM/XMMO0-7 are accessible in legacy
and compatibility mode. Registers YMM/XMMB8-15 are available in 64-bit mode (a subset of long
mode). VEX/XOP instruction prefixes allow instruction encodings to address the additional registers.

The SSE instructions can be used in processor legacy mode or long (64-bit) mode. CPUID
Fn8000 0001 EDX[LM] indicates the availability of long mode.

Compilation for execution in 64-bit mode offers the following advantages:

* Access to an additional eight YMM/XMM registers for a total of 16
e Access to an additional eight 64-bit general-purpose registers for a total of 16

* Access to the 64-bit virtual address space and the RIP-relative addressing mode

Hardware support for each of the subsets of SSE instructions listed above is indicated by CPUID
feature flags. Refer to Volume 3, Appendix D, “Instruction Subsets and CPUID Feature Flags,” for a
complete list of instruction-related feature flags. The CPUID feature flags that pertain to each
instruction are also given in the instruction descriptions below. For information on using the CPUID
instruction, see the instruction description in Volume 3.

Chapter 2, “Instruction Reference” contains detailed descriptions of each instruction, organized in
alphabetic order by mnemonic. For those legacy SSE instructions that have an AVX form, the
extended form of the instruction is described together with the legacy instruction in one entry. For
these instructions, the instruction reference page is located based on the instruction mnemonic of the
legacy SSE and not the extended (AVX) form. Those AVX instructions without a legacy form are
listed in order by their AVX mnemonic. The mnemonic for all extended SSE instructions including the
FMA and XOP instructions begin with the letter V.

1.1 Syntax and Notation

The descriptive synopsis of opcode syntax for legacy SSE instructions follows the conventions
described in Volume 3: General Purpose and System Instructions. See Chapter 2 and the section
entitled “Notation.”

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

For general information on the programming model and overview descriptions of the SSE instruction
set, see:

e “Streaming SIMD Extensions Media and Scientific Programming” in Volume 1.
e “Instruction Encoding” in Volume 3

e “Summary of Registers and Data Types” in Volume 3.

The syntax of the extended instruction sets requires an expanded synopsis. The expanded synopsis
includes a mnemonic summary and a summary of prefix sequence fields. Figure 1-1 shows the
descriptive synopsis of a typical XOP instruction. The synopsis of VEX-encoded instructions have the
same format, differing only in regard to the instruction encoding escape prefix, that is, VEX instead of
XOP.

Mnemonic Encoding
XOP RXB.map_select W.vvvv.L.pp Opcode
VPCMOQOV ymm1, ymm2, ymm3/mem256, ymm4 8F RXB.08 0.src.1.00 A2 /rib

W bit J)
. vvvv field
assembly language representation
; : L bit
d fi
encoding escape prefix op field

3-bit field representing R, X, B bit values opcode

register/memory type specifier
5-bit map_select field
immediate operand

Figure 1-1. Typical Descriptive Synopsis - Extended SSE Instructions

1.2 Extended Instruction Encoding

The legacy SSE instructions are encoded using the legacy encoding syntax and the extended
instructions are encoded using an enhanced encoding syntax which is compatible with the legacy
syntax. Both are described in detail in Chapter 1 of Volume 3.

As described in Volume 3, the extended instruction encoding syntax utilizes multi-byte escape
sequences to both select alternate opcode maps as well as augment the encoding of the instruction.
Multi-byte escape sequences are introduced by one of the two VEX prefixes or the XOP prefix.

The AVX instructions utilize either the two-byte (introduced by the VEX C5h prefix) or the three-byte
(introduced by the VEX C4h prefix) encoding escape sequence. XOP instructions are encoded using a
three-byte encoding escape sequence introduced by the XOP prefix (except for the XOP instructions
VPERMIL2PD and VPERMIL2PS which are encoded using the VEX prefix). The XOP prefix is 8Fh.
The three-byte encoding escape sequences utilize the map_select field of the second byte to select the
opcode map used to interpret the opcode byte.

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

The two-byte VEX prefix sequence implicitly selects the secondary (“two-byte’’) opcode map.

1.2.1 Immediate Byte Usage Unique to the SSE instructions

An immediate is a value, typically an operand, explicitly provided within the instruction encoding.
Depending on the opcode and the operating mode, the size of an immediate operand canbe 1, 2, 4, or 8
bytes. Legacy and extended media instructions typically use an immediate byte operand (imm$).

A one-byte immediate is generally shown in the instruction synopsis as “ib” suffix. For extended SSE
instructions with four source operands, the suffix “is4” is used to indicate the presence of the
immediate byte used to select the fourth source operand.

The VPERMIL2PD and VPERMIL2PS instructions utilize a fifth 2-bit operand which is encoded
along with the fourth register select index in an immediate byte. For this special case the immediate
byte will be shown in the instruction synopsis as “is5”.

1.2.2 Instruction Format Examples

The following sections provide examples of two-, three-, and four-operand extended instructions.
These instructions generally perform nondestructive-source operations, meaning that the result of the
operation is written to a separately specified destination register rather than overwriting one of the
source operands. This preserves the contents of the source registers. Most legacy SSE instructions
perform destructive-source operations, in which a single register is both source and destination, so
source content is lost.

1.2.2.1 XMM Register Destinations
The following general properties apply to YMM/XMM register destination operands.

* For legacy instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are not affected.

* For extended instructions that use XMM registers as a destination: When a result is written to a
destination XMM register, bits [255:128] of the corresponding YMM register are cleared.

1.2.2.2 Two Operand Instructions

Two-operand instructions use ModRM-based operand assignment. For most instructions, the first
operand is the destination, selected by the ModRM.reg field, and the second operand is either a register
or a memory source, selected by the ModRM.r/m field.

VCVTDQ2PD is an example of a two-operand AVX instruction.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.01 0.1111.0.10 EG6 /r
VCVTDQ2PD ymm1, xmm2/mem128 C4 RXB.01 0.1111.1.10 E6 /r

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

The destination register is selected by ModRM.reg. The size of the destination register is determined
by VEX.L. The source is either an YMM/XMM register or a memory location specified by
ModRM.r/m Because this instruction converts packed doubleword integers to double-precision
floating-point values, the source data size is smaller than the destination data size.

VEX.vvvv is not used and must be setto 1111b.

1.2.2.3 Three-Operand Instructions

These extended instructions have two source operands and a destination operand.

VPROTB is an example of a three-operand XOP instruction.

There are versions of the instruction for variable-count rotation and for fixed-count rotation.
VPROTB dest, src, variable-count

VPROTB dest, src, fixed-count

Mnemonic Encoding

XOP RXB.map_select W.vvvv.L.pp Opcode
VPROTB xmm1, xmm2/mem128, xmm3 8F RXB.09 0.5rc.0.00 90 /r
VPROTB xmm1, xmm2, xmm3/mem128 8F RXB.09 1.src.0.00 90 /r
VPROTB xmm1, xmm2/mem128, imm8 8F RXB.08 0.1111.0.00 90 /rib

For both versions of the instruction, the destination (dest) operand is an XMM register specified by
ModRM.reg.

The variable-count version of the instruction rotates each byte of the source as specified by the
corresponding byte element variable-count.

Selection of src and variable-count is controlled by XOP.W.

* When XOP.W =0, src is either an XMM register or a 128-bit memory location specified by
ModRM.r/m, and variable-count is an XMM register specified by XOP.vvvv.

* When XOP.W =1, src is an XMM register specified by XOP.vvvv and variable-count is either an
XMM register or a 128-bit memory location specified by ModRM.r/m.

Table 1-1 summarizes the effect of the XOP.W bit on operand selection.

Table 1-1. Three-Operand Selection

XOP.W dest src variable-count
0 ModRM.reg ModRM.r/m XOP.vvvv
1 ModRM.reg XOP.vvvv ModRM.r/m

The fixed-count version of the instruction rotates each byte of src as specified by the immediate byte
operand fixed-count. For this version, src is either an XMM register or a 128-bit memory location

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

specified by ModRM.r/m. Because XOP.vvvv is not used to specify the source register, it must be set
to 1111b or execution of the instruction will cause an Invalid Opcode (#UD) exception.

1.2.2.4 Four-Operand Instructions

Some extended instructions have three source operands and a destination operand. This is
accomplished by using the VEX/XOP.vvvv field, the ModRM.reg and ModRM.r/m fields, and bits
[7:4] of an immediate byte to select the operands. The opcode suffix “is4” is used to identify the
immediate byte, and the selected operands are shown in the synopsis.

VFMSUBPD is an example of an four-operand FM A4 instruction.
VFMSUBPD dest, srcl, src2, src3 dest = srcl* src2 - src3

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VFMSUBPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.03 0.src.0.01 6D /ris4
VFMSUBPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.03 0.src.1.01 6D /ris4
VFMSUBPD xmm1, xmm2, xmm3, xmm4/mem128 C4 RXB.03 1.5rc.0.01 6D /ris4
VFMSUBPD ymm1, ymm2, ymm3, ymm4/mem256 C4 RXB.03 1.src.1.01 6D /ris4

The first operand, the destination (des?), is an XMM register or a YMM register (as determined by
VEX.L) selected by ModRM.reg. The following three operands (srcl, src2, src3) are sources.

The srcl operand is an XMM or YMM register specified by VEX.vvvv.

VEX.W determines the configuration of the src2 and src3 operands.

* When VEX.W =0, src2 is either a register or a memory location specified by ModRM.r/m, and
src3 is a register specified by bits [7:4] of the immediate byte.

e When VEX.W = 1, src2 is a register specified by bits [7:4] of the immediate byte and src3 is either
a register or a memory location specified by ModRM.r/m.

Table 1-1 summarizes the effect of the VEX.W bit on operand selection.
Table 1-2. Four-Operand Selection

VEX.W dest src1 src2 src3
0 ModRM.reg VEX.vvvv ModRM.r/m is4[7:4]
1 ModRM.reg VEX.vvvv is4[7:4] ModRM.r/m

1.3 Enabling SSE Instruction Execution

Application software that utilizes the SSE instructions requires support from operating system
software.

To enable and support SSE instruction execution, operating system software must:

* enable hardware for supported SSE subsets

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

* manage the SSE hardware architectural state, saving and restoring it as required during and after
task switches

* provide exception handlers for all unmasked SSE exceptions.

See Volume 3, Chapter 11, for details on enabling SSE execution and managing its execution state.

1.4 String Compare Instructions

The legacy SSE instructions PCMPESTRI, PCMPESTRM, PCMPISTRI, and PCMPISTRM and the
extended SSE instructions VPCMPESTRI, VPCMPESTRM, VPCMPISTRI, and VPCMPISTRM
provide a versatile means of classifying characters of a string by performing one of several different
types of comparison operations using a second string as a prototype.

This section describes the operation of the legacy string compare instructions. This discussion applies
equally to the extended versions of the instructions. Any difference between the legacy and the
extended version of a given instruction is described in the instruction reference entry for the
instruction in the following chapter.

A character string is a vector of data elements that is normally used to represent an ordered
arrangement of graphemes which may be stored, processed, displayed, or printed. Ordered strings of
graphemes are most often used to convey information in a human-readable manner. The string
compare instructions, however, do not restrict the use or interpretation of their operands.

The first source operand provides the prototype string and the second operand is the string to be
scanned and characterized (referred to herein as the string under test, or SUT). Four string formats and
four types of comparisons are supported. The intermediate result of this processing is a bit vector that
summarizes the characterization of each character in the SUT. This bit vector is then post-processed
based on options specified in the instruction encoding. Instruction variants determine the final result—
either an index or a mask.

Instruction execution affects the arithmetic status flags (ZF, CF, SF, OF, AF, PF), but the significance
of many of the flags is redefined to provide information tailored to the result of the comparison
performed. See Section 1.4.6, “Affect on Flags” on page 15.

The instructions have a defined base function and additional functionality controlled by bit fields in an
immediate byte operand (imm8). The base function determines whether the source strings have
implicitly (PCMPISTRI and PCMPISTRM) or explicitly (PCMPESTRI and PCMPESTRM) defined
lengths, and whether the result is an index (PCMPISTRI and PCMPESTRI) or a mask (PCMPISTRM
and PCMPESTRM).

PCMPISTRI and PCMPESTRI return their final result (an integer value) via the ECX register, while
PCMPISTRM and PCMPESTRM write a bit or character mask, depending on the option selected, to
the XMMO register.

There are a number of different schemes for encoding a set of graphemes, but the most common ones
use either an 8-bit code (ASCII) or a 16-bit code (unicode). The string compare instructions support
both character sizes.

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Bit fields of the immediate operand control the following functions:

* Source data format — character size (byte or word), signed or unsigned values

e Comparison type

e Intermediate result postprocessing

e Output option selection

This overview description covers functions common to all of the string compare instructions and
describes some of the differentiated features of specific instructions. Information on instruction

encoding and exception behavior are covered in the individual instruction reference pages in the
following chapter.

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

1.4.1 Source Data Format

The character strings that constitute the source operands for the string compare instructions are
formatted as either 8-bit or 16-bit integer values packed into a 128-bit data type. The figure below
illustrates how a string of byte-wide characters is laid out in memory and how these characters are
arranged when loaded into an XMM register.

[null] (00) 112h Highest address
- (2Eh) 111h
Memory Image 5 67 o
n (6Eh) 10Fh
i (69h) 10Eh
r(72h) 10Dh
128-bit String of t (74h) 10Ch
Byte-wide s (73h) 10Bh
MeCnr;irr?/C(t,Egsclﬂ [blank] (20h) 10Ah
Encoded) t (74h) 109h
r(72h) 108h
o (6Fh) 107h
h (68h) 106h
s (73h) 105h

[blank] (20h) | 104h

Lowest address

A(41h) 103h Defines address of string

XMM Register Image

63 7 6 5 4 3 2 1 0 0
[blank] (20h)| t (74h) r (72h) o (6Fh) h (68h) s (73h) |[blank] (20h)| A (41h)

127 15 14 13 12 11 10 9 8 64
[null] (00) . (2Eh) g (67h) n (6Eh) i (69h) r (72h) t (74h) s (73h)

v4_String_layout.eps

Figure 1-2. Byte-wide Character String — Memory and Register Image

Note from the figure that the longest string that can be packed in a 128-bit data object is either sixteen
8-bit characters (as illustrated) or eight 16-bit characters. When loaded from memory, the character
read from the lowest address in memory is placed in the least-significant position of the register and
the character read from the highest address is placed in the most-significant position. In other words,
for character i of width w, bits [w—1:0] of the character are placed in bits [iw + (w—1):iw] of the
register.

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Bits [1:0] of the immediate byte operand specify the source string data format, as shown in Table 1-3.

Table 1-3. Source Data Format

Imm8[1:0] Character Format Maximum String Length
00b unsigned bytes 16
01b unsigned words 8
10b signed bytes 16
11b signed words 8

The string compare instructions are defined with the capability of operating on strings of lengths from
0 to the maximum that can be packed into the 128-bit data type as shown in the table above. Because
strings being processed may be shorter than the maximum string length, a means is provided to
designate the length of each string. As mentioned above, one pair of string compare instructions relies
on an explicit method while the other utilizes an implicit method.

For the explicit method, the length of the first operand (the prototype string) is specified by the
absolute value of the signed integer contained in rAX and the length of the second operand (the SUT)
is specified by the absolute value of the signed integer contained in rDX. If a specified length is greater
than the maximum allowed, the maximum value is used. Using the explicit method of length
specification, null characters (characters whose numerical value is 0) can be included within a string.

Using the implicit method, a string shorter than the maximum length is terminated by a null character.
If no null character is found in the string, its length is implied to be the maximum. For the example
illustrated in Figure 1-2 above, the implicit length of the string is 15 because the final character is null.
However, using the the explicit method, a specified length of 16 would include the null character in the
string.

In the following discussion, /; is the length of the first operand string (the prototype string), /, is the
length of the second operand string (the SUT) and m is the maximum string length based on the
selected character size.

1.4.2 Comparison Type

Although the string compare instructions can be implemented in many different ways, the instructions
are most easily understood as the sequential processing of the SUT using the characters of the
prototype string as a template. The template is applied at each character index of SUT, processing the
string from the first character (index 0) to the last character (index /,~1).

The result of each comparison is recorded in successive positions of a summary bit vector CmprSumm.
When the sequence of comparisons is complete, this bit vector summarizes the results of comparison
operations that were performed. The length of the CmprSumm bit vector is equal to the maximum
input operand string length (m). The rules for the setting of CmprSumm bits beyond the end of the SUT
(CmprSumm[m—1:1,]) are dependent on the comparison type (see Table 1-4 below.)

Bits [3:2] of the immediate byte operand determine the comparison type, as shown in Table 1-4.

10

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Table 1-4. Comparison Type

Comparison
Imm8[3:2] Type Description

00b Subset Tests each character of the SUT to determine if it is within the subset of
characters specified by the prototype string. Each set bit of CmprSumm
indicates that the corresponding character of the SUT is within the subset
specified by the prototype. Bits [m—-1:/,] are cleared.

01b Ranges Tests each character of the SUT to determine if it lies within one or more
ranges specified by pairs of values within the prototype string. The ranges
are inclusive. Each set bit in CmprSumm indicates that the corresponding
character of the SUT is within one or more of the inclusive ranges specified.
Bits [m—-1:/,] are cleared. If the length of the prototype is odd, the last value

in the prototype is effectively ignored.

10b Match Performs a character-by-character comparison between the SUT and the
prototype string. Each set bit of CmprSumm indicates that the
corresponding characters in the two strings match. If not, the bit is cleared.
Bits [m—1:max(ly, 1,)] of CmprSumm are set.

11b Sub-string | Searches for an exact match between the prototype string and an ordered
sequence of characters (a sub-string) in the SUT beginning at the current
index i. Bit i of CmprSumm is set for each value of i where the sub-string
match is made, otherwise the bit is cleared. See discussion below.

In the Sub-string comparison type, any matching sub-string of the SUT must match the prototype
string one-for-one, in order, and without gaps. Null characters in the SUT do not match non-null
characters in the prototype. If the prototype and the SUT are equal in length, the two strings must be
identical for the comparison to be TRUE. In this case, bit 0 of CmprSumm is set to one and the
remainder are all Os. If the length of the SUT is less than the prototype string, no match is possible and
CmprSumm is all Os.

If the prototype string is shorter than the SUT (/; </,), a sequential search of the SUT is performed.
For each i from 0 to /,—1;, the prototype is compared to characters [i + /;—1:i] of the SUT. If the
prototype and the sub-string SUT[i + /;—1:7] match exactly, then CmprSumml(i] is set, otherwise the bit
1s cleared. When the comparison at i = /,—/; is complete, no further testing is required because there
are not enough characters remaining in the SUT for a match to be possible. The remaining bits /,=/;+1
through m-1 are all set to 0.

For the Match comparison type, the character-by-character comparison is performed on all m
characters in the 128-bit operand data, which may extend beyond the end of one or both strings. A null
character at index i within one string is not considered a match when compared with a character
beyond the end of the other string. In this case, CmprSumm]i] is cleared. For index positions beyond
the end of both strings, CmprSumm(i] is set.

The following section provides more detail on the generation of the comparison summary bit vector
based on the specified comparison type.

11

AMDZU

AMDG64 Technology

1.4.3 Comparison Summary Bit Vector

26568—Rev. 3.177—May 2013

The following pseudo code provides more detail on the generation of the comparison summary bit
vector CmprSumm. The function CompareStrgs defined below returns a bit vector of length m, the

maximum length of the operand data strings.

bit vector CompareStrgs (ProtoType,
doubleword vector StrUndTst
doubleword vector StrProto

lengthl, SUT,

// temp vector;
// temp vector;

length2, CmpType, signed, m)
holds string under test
holds prototype string

bit vector[m] Result // length of vector is m

StrProto = m{0} //initialize m elements of StrProto to 0
StrUndTst = m{0} //initialize m elements of StrUndTst to 0
Result = m{0} //initialize result bit vector

FOR 1 = 0 to lengthl

StrProto[1i] =
FOR i = 0 to length2
StrUndTst[i] = signed ? SignExtend (SUTI[il])

IF CmpType == Subset
FOR j = 0 to length2 - 1

signed ? SignExtend (ProtoTypel[i])

ZeroExtend (ProtoType[i])

ZeroExtend (SUT[i])

// 3 indexes SUT
// 1 indexes prototype

FOR 1 = 0 to lengthl - 1
Result[j] |= (StrProto[i] == StrUndTst[]j])
IF CmpType == Ranges
FOR j = 0 to length2 -1

// j indexes SUT
// 1 indexes prototype

length2) -1)

FOR 1 = 0 to lengthl - 2, BY 2
Result[j] |= (StrProto[i] <= StrUndTst[j])
&& (StrProto[i+l] >= StrUndTst[j])
IF CmpType == Match
FOR i = 0 to (min(lengthl, length2)-1)
Result[i] = (StrProto[i] == StrUndTst[i])
FOR i1 = min(lengthl, length2) to (max(lengthl,
Result([i] = 0
FOR i = max(lengthl, length2) to (m-1)
Result[i] =1
IF CmpType == Sub-string

IF length2 >= lengthl

bit vector

the SUT
the Prototype

do not match

FOR j = 0 to length2 - lengthl // J indexes result
Result[j] =1
k = 7 // k scans
FOR i = 0 to lengthl - 1 // 1 scans
Result[j] &= (StrProto[i] == StrUndTst[k])
// Result[j] is cleared if any of the comparisons
k++
else

Return Result

12

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Given the above definition of CompareStrgs (), the following pseudo code computes the value of
CmprSumm:

ProtoType = contents of first source operand (xmml)

SUT = contents of xmm2 or 128-bit value read from the specified memory location
lengthl = length of first operand string //specified implicitly or explicitly
length2 = length of second operand string //specified implicitly or explicitly
m = Maximum String Length from Table 1-3 above

CmpType = Comparison Type from Table 1-4 above

signed = (imm8[1] == 1) ? TRUE : FALSE

bit vector [m] CmprSumm // CmprSumm is m bits long

CmprSumm = CompareStrgs (ProtoType, lengthl, SUT, length2, CmpType, signed, m)

The following examples demonstrate the comparison summary bit vector CmprSumm for each
comparison type. For the sake of illustration, the operand strings are represented as ASCII-encoded
strings. Each character value is represented by its ASCII grapheme. Strings are displayed with the
lowest indexed character on the left as they would appear when printed or displayed. CmprSumm: is
shown in reverse order with the least significant bit on the left to agree with the string presentation.

Comparison Type = Subset

Prototype: ZCx
SUT: aCx%$xbZreCx
CmprSumm: 0110101001100000

Comparison Type = Ranges

Prototype: ACax
SUT: aCx%xbZreCx
CmprSumm: 1110110111100000

Comparison Type = Match

Prototype: ZCx
SUT: aCx%xbZreCx
CmprSumm: 0110000000011111

Comparison Type = Sub-string

Prototype: ZCx
SUT: aZCx%xCZrezZzCxCZ
CmprSumm: 0100000000100000

13

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

1.4.4 Intermediate Result Post-processing

Post-processing of the CmprSumm bit vector is controlled by imm8[5:4]. The result of this step is
designated pCmprSumm.

Bit [4] of the immediate operand determines whether a ones’ complement (bit-wise inversion) is
performed on CmprSumm; bit [5] of the immediate operand determines whether the inversion applies
to the entire comparison summary bit vector (CmprSumm) or just to those bits that correspond to
characters within the SUT. See Table 1-5 below for the encoding of the imm&8[5:4] field.

Table 1-5. Post-processing Options
Imm8[5:4] Post-processing Applied
x0b pCmprSumm = CmprSumm

01b pCmprSumm = NOT CmprSumm
11b pCmprSumm[i] = !ICmprSummli] for i < /5,
pCmprSumm(i] = CmprSumm(i], for [, < i< m

1.4.5 Output Option Selection

For PCMPESTRI and PCMPISTRI, imm&8[6] determines whether the index of the lowest set bit or the
highest set bit of pCmprSumm is written to ECX, as shown in Table 1-6.

Table 1-6. Indexed Output Option Selection

Imm8[6] Description
0b Return the index of the least significant set bit in pCmprSumm.

1b Return the index of the most significant set bit in pCmprSumm.

For PCMPESTRM and PCMPISTRM, imm&8[6] specifies whether the output from the instruction is a
bit mask or an expanded mask. The bit mask is a copy of pCmprSumm zero-extended to 128 bits. The
expanded mask is a packed vector of byte or word elements, as determined by the string operand
format (as indicated by imm8[0]). The expanded mask is generated by copying each bit of
pCmprSumm to all bits of the element of the same index. Table 1-7 below shows the encoding of
immd8[6].

Table 1-7. Masked Output Option Selection
Imm8[6] Description

Ob Return pCmprSumm as the output with zero extension to 128 bits.

1b Return expanded pCmprSumm byte or word mask.

The PCMPESTRM and PCMPISTRM instructions return their output in register XMMO. For the
extended forms of the instructions, bits [127:64] of YMMO are cleared.

14

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

1.4.6 Affect on Flags

The execution of a string compare instruction updates the state of the CF, PF, AF, ZF, SF, and OF flags
within the rFLAGs register. All other flags are unaffected. The PF and AF flags are are always cleared.
The ZF and SF flags are set or cleared based on attributes of the source strings and the CF and OF flags
are set or cleared based on attributes of the summary bit vector after post processing.

The CF flag is cleared if the summary bit vector, after post processing, is zero; the flag is set if one or
more of the bits in the post-processed bit vector are 1. The OF flag is updated to match the value of the
Isb of the post-processed summary bit vector.

The ZF flag is set if the length of the second string operand (SUT) is shorter than m, the maximum
number of 8-bit or 16-bit characters that can be packed into 128 bits. Similiarly, the SF flag is set if the
length of the first string operand (prototype) is shorter than m.

This information is summarized in Table 1-8 below.

Table 1-8. State of Affected Flags After Execution

Unconditional Source String Length Post-processed Bit Vector
PF AF SF ZF CF OF
0 0 (I <m) (Io<m) pCmprSumm # 0 | pCmprSumm [0]

15

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

16

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

2 Instruction Reference

Instructions are listed by mnemonic, in alphabetic order. Each entry describes instruction function,
syntax, opcodes, affected flags and exceptions related to the instruction.

Figure 2-1 shows the conventions used in the descriptions. Items that do not pertain to a particular
instruction, such as a synopsis of the 256-bit form, may be omitted.

INST Instruction
VINST Mnemonic Expansion

Brief functional description

INST

Description of legacy version of instruction.

VINST

Description of extended version of instruction.

XMM Encoding

Description of 128-bit extended instruction.

YMM Encoding

Description of 256-bit extended instruction.

Information about CPUID functions related to the instruction set.

Synopsis diagrams for legacy and extended versions of the instruction.

Mnemonic Opcode Description
INST xmm1, xmm2/mem128 FF FF /r Brief summary of legacy operation.
Mnemonic Encoding

VEX RXB.mmmmm W.vvvv.L.pp Opcode
VINST xmm1, xmm2/mem128, xmm3 c4 RXB.11 0.src.0.00 FF 4
VINST ymm1, ymm2/imem256, ymm3 c4 RXB.11 0.src.0.00 FF /

Related Instructions

Instructions that perform similar or related functions.
rFLAGS Affected

Rflags diagram.

MXCSR Flags Affected

MXCSR diagram.

Exceptions

Exception summary table.

Figure 2-1. Typical Instruction Description

Instruction Reference 17

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Instruction Exceptions

Under various conditions instructions described below can cause exceptions. The conditions that
cause these exceptions can differ based on processor mode and instruction subset. This information is
summarized at the end of each instruction reference page in an Exception Table. Rows list the appli-
cable exceptions and the different conditions that trigger each exception for the instruction. For each
processor mode (real, virtual, and protected) a symbol in the table indicates whether this exception
condition applies.

Each AVX instruction has a legacy form that comes from one of the legacy (SSE1, SSE2, ...) subsets.
An “X” at the intersection of a processor mode column and an exception cause row indicates that the
causing condition and potential exception applies to both the AVX instruction and the legacy SSE
instruction. “A” indicates that the causing condition applies only to the AVX instruction and “S” indi-
cates that the condition applies to the SSE legacy instruction.

Note that XOP and FM A4 instructions do not have corresponding instructions from the SSE legacy
subsets. In the exception tables for these instructions, “X” represents the XOP instruction and “F”
represents the FMA4 instruction.

18 Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
ADDPD Add
VADDPD Packed Double-Precision Floating-Point

Adds each packed double-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
quadword of the destination.

There are legacy and extended forms of the instruction:
ADDPD

Adds two pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds two pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Adds four pairs of values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ADDPD is an SSE2 instruction and VADDPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

ADDPD xmm1, xmm2/mem128 66 OF 58 /r Adds two packed double-precision floating-point
values in xmm1 to corresponding values in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 58 Ir
VADDPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 58 /r

Related Instructions
(V)ADDPS, (V)ADDSD, (V)ADDSS

rFLAGS Affected
None

Instruction Reference ADDPD, VADDPD 19

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A |XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmasses SIUD foatine pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

20

ADDPD, VADDPD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
ADDPS Add
VADDPS Packed Single-Precision Floating-Point

Adds each packed single-precision floating-point value of the first source operand to the correspond-
ing value of the second source operand and writes the result of each addition into the corresponding
elements of the destination.

There are legacy and extended forms of the instruction:
ADDPS

Adds four pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Adds four pairs of values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Adds eight pairs of values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ADDPS is an SSE2 instruction and VADDPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

ADDPS xmm1, xmm2/mem128 OF 58 /r Adds four packed single-precision floating-point values in
xmm1 to corresponding values in xmm2 or mem128. Writes
results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 58 Ir
VADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 58 /Ir

Related Instructions
(V)ADDPD, (V)ADDSD, (V)ADDSS

rFLAGS Affected
None

Instruction Reference ADDPS, VADDPS 21

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A |XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmasses SIUD foatine pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

22

ADDPS, VADDPS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
ADDSD Add
VADDSD Scalar Double-Precision Floating-Point

Adds the double-precision floating-point value in the low-order quadword of the first source operand
to the corresponding value in the low-order quadword of the second source operand and writes the
result into the low-order quadword of the destination.

There are legacy and extended forms of the instruction:
ADDSD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding YMM register are not affected.

VADDSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first
source operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

ADDSD is an SSE2 instruction and VADDSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

ADDSD xmm1, xmm2/mem64 F2 OF 58 /r Adds low-order double-precision floating-point values in
xmm1 to corresponding values in xmm2 or mem64.
Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 58 /r

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSS

rFLAGS Affected
None
MXCSR Flag_;s Affected
MM | FZ RC PM|UM|OM|ZM |[DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

N
o

Instruction Reference ADDSD, VADDSD 23

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Somasses SIUD foatine-pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

24

ADDSD, VADDSD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
ADDSS Add
VADDSS Scalar Single-Precision Floating-Point

Adds the single-precision floating-point value in the low-order doubleword of the first source oper-
and to the corresponding value in the low-order doubleword of the second source operand and writes
the result into the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:
ADDSS

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.

VADDSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM regis-
ter that corresponds to the destination are cleared.

ADDSS is an SSE1 instruction and VADDSS is an AVX instruction. Support for these instructions is
indicated by CPUID feature flags CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

ADDSS xmm1, xmm2/mem32 F3 OF 58 /r Adds a single-precision floating-point value in the low-order
doubleword of xmm1 to a corresponding value in xmm2 or
mem32. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 58 /r

Related Instructions
(V)ADDPD, (V)ADDPS, (V)ADDSD

rFLAGS Affected
None
MXCSR Flag_;s Affected
MM | FZ RC PM|UM|OM|ZM |[DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M M M
17 15 14 ‘ 13 12 " 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Instruction Reference ADDSS, VADDSS 25

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Somasses SIUD foatine-pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

26

ADDSS, VADDSS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
ADDSUBPD Alternating Addition and Subtraction
VADDSUBPD Packed Double-Precision Floating-Point

Adds the odd-numbered packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the sum to the corresponding odd-
numbered element of the destination; subtracts the even-numbered packed double-precision floating-
point values of the second source operand from the corresponding values of the first source operand
and writes the differences to the corresponding even-numbered element of the destination.

There are legacy and extended forms of the instruction:
ADDSUBPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDSUBPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ADDSUBPD is an SSE2 instruction and VADDSUBPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

ADDSUBPD xmm1, xmm2/mem128 66 OF DO /r Adds a value in the upper 64 bits of xmm1 to the
corresponding value in xmm2 and writes the result to
the upper 64 bits of xmm1; subtracts the value in the
lower 64 bits of xmm1 from the corresponding value
in xmm2 and writes the result to the lower 64 bits of

xmm1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DO /r
VADDSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 DO /r

Related Instructions
(V)ADDSUBPS

Instruction Reference ADDSUBPD, VADDSUBPD 27

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

rFLAGS Affected

None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M

17 | 15 14\13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmasses SIUD foatine pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

28

ADDSUBPD, VADDSUBPD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
ADDSUBPS Alternating Addition and Subtraction
VADDSUBPS Packed Single-Precision Floating Point

Adds the second and fourth single-precision floating-point values of the first source operand to the
corresponding values of the second source operand and writes the sums to the second and fourth ele-
ments of the destination. Subtracts the first and third single-precision floating-point values of the sec-
ond source operand from the corresponding values of the first source operand and writes the
differences to the first and third elements of the destination.

There are legacy and extended forms of the instruction:
ADDSUBPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VADDSUBPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ADDSUBPS is an SSE1 instruction and VADDSUBPS is an AVX instruction. Support for these
instructions is indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

ADDSUBPS xmm1, xmm2/mem128 F2 OF DO /r Adds the second and fourth packed single-precision
values in xmm2 or mem128 to the corresponding
values in xmm<1 and writes results to the
corresponding positions of xmm1. Subtracts the first
and third packed single-precision values in xmm2 or
mem128 from the corresponding values in xmm1 and
writes results to the corresponding positions of xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VADDSUBPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 DO /r
VADDSUBPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 DO /r

Related Instructions
(V)ADDSUBPD

Instruction Reference ADDSUBPS, VADDSUBPS 29

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

rFLAGS Affected

None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M M M

17 | 15 14\13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmasses SIUD foatine pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

30

ADDSUBPS, VADDSUBPS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
AESDEC AES
VAESDEC Decryption Round

Performs a single round of AES decryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Appendix A on page 825 for more information about the operation of the AES instructions.

Decryption consists of 1, ..., N,.— 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,. The AESDEC and VAESDEC instructions perform all the rounds except the
last; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:

AESDEC

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESDEC

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESDEC is an AES instruction and VAESDEC is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

AESDEC xmm1, xmm2/mem128 66 OF 38 DE /r Performs one decryption round on a state value
in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESDEC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DE /r

Related Instructions
(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected

None

Instruction Reference AESDEC, VAESDEC 31

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.177—May 2013

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

32

AESDEC, VAESDEC Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
AESDECLAST AES
VAESDECLAST Last Decryption Round

Performs the final round of AES decryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.

See Appendix A on page 825 for more information about the operation of the AES instructions.

Decryption consists of 1, ..., N,.— 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,.The AESDEC and VAESDEC instructions perform all the rounds before the
final round; the AESDECLAST and VAESDECLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:
AESDECLAST

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESDECLAST

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESDECLAST is an AES instruction and VAESDECLAST is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

AESDECLAST xmm1, xmm2/mem128 66 OF 38 DF/r Performs the last decryption round on a state
value in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESDECLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DF /r

Related Instructions
(V)AESENC, (V)AESENCLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected

None

Instruction Reference AESDECLAST, VAESDECLAST 33

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.177—May 2013

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S_|CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

34

AESDECLAST, VAESDECLAST

Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
AESENC AES
VAESENC Encryption Round

Performs a single round of AES encryption. Transforms a state value specified by the first source
operand using a round key value specified by the second source operand, and writes the result to the
destination.

See Appendix A on page 825 for more information about the operation of the AES instructions.

Encryption consists of 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register

There are legacy and extended forms of the instruction:
AESENC

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESENC

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESENC is an AES instruction and VAESENC is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

AESENC xmm1, xmm2/mem128 66 OF 38 DC /r Performs one encryption round on a state value
in xmm1 using the key value in xmm2 or
mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESENC xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DC/r

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected
None

Instruction Reference AESENC, VAESENC 35

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.177—May 2013

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

36

AESENC, VAESENC Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
AESENCLAST AES
VAESENCLAST Last Encryption Round

Performs the final round of AES encryption. Completes transformation of a state value specified by
the first source operand using a round key value specified by the second source operand, and writes
the result to the destination.

See Appendix A on page 825 for more information about the operation of the AES instructions.

Encryption consists of 1, ..., N, — 1 iterations of sequences of operations called rounds, terminated by
a unique final round, N,. The AESENC and VAESENC instructions perform all the rounds before the
final round; the AESENCLAST and VAESENCLAST instructions perform the final round.

The 128-bit state and round key vectors are interpreted as 16-byte column-major entries in a 4-by-4
matrix of bytes.The transformed state is written to the destination in column-major order. For both
instructions, the destination register is the same as the first source register.

There are legacy and extended forms of the instruction:
AESENCLAST

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESENCLAST

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESENCLAST is an AES instruction and VAESENCLAST is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

AESENCLAST xmm1, xmm2/mem128 66 OF 38 DD /r Performs the last encryption round on a
state value in xmm<1 using the key value in xmm2
or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESENCLAST xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 DD /r

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESIMC, (V)AESKEYGENASSIST

rFLAGS Affected

None

Instruction Reference AESENCLAST, VAESENCLAST 37

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.177—May 2013

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S_|CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

38

AESENCLAST, VAESENCLAST

Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
AESIMC AES
VAESIMC InvMixColumn Transformation

Applies the AES InvMixColumns() transformation to expanded round keys in preparation for decryp-
tion. Transforms an expanded key specified by the second source operand and writes the result to a
destination register.

See Appendix A on page 825 for more information about the operation of the AES instructions.

The 128-bit round key vector is interpreted as 16-byte column-major entries in a 4-by-4 matrix of
bytes.The transformed result is written to the destination in column-major order.

AESIMC and VAESIMC are not used to transform the first and last round key in a decryption
sequence.

There are legacy and extended forms of the instruction:
AESIMC

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESIMC

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESIMC is an AES instruction and VAESIMC is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[AES] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

AESIMC xmm1, xmm2/mem128 66 OF 38 DB /r Performs AES InvMixColumn transformation on
a round key in the xmm2 or mem128 and stores
the result in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VAESIMC xmm1, xmm2/mem128 C4 RXB.00010 X.src.0.01 DB /r

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST, (V)AESKEYGENASSIST

rFLAGS Affected

None

MXCSR Flags Affected
None

Instruction Reference AESIMC, VAESIMC 39

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

40 AESIMC, VAESIMC Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
AESKEYGENASSIST AES
VAESKEYGENASSIST Assist Round Key Generation

Expands a round key for encryption. Transforms a 128-bit round key operand using an 8-bit round
constant and writes the result to a destination register.

See Appendix A on page 825 for more information about the operation of the AES instructions.

The round key is provided by the second source operand and the round constant is specified by an
immediate operand. The 128-bit round key vector is interpreted as 16-byte column-major entries in a
4-by-4 matrix of bytes. The transformed result is written to the destination in column-major order.

There are legacy and extended forms of the instruction:
AESKEYGENASSIST

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VAESKEYGENASSIST

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register. The second source operand is either another XMM reg-

ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

AESKEYGENASSIST is an AES instruction and VAESKEYGENASSIST is an AVX instruction.
Support for these instructions is indicated by CPUID Fn0000 00001 ECX[AES] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

AESKEYGENASSIST xmm1, xmm2/mem128, imm8 66 OF 3A DF /rib Expands a round key in xmm?2 or
mem128 using an immediate
round constant. Writes the result

to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
AESKEYGENASSIST xmm1, xmm2 /mem128, imm8 C4 RXB.00011 X.src.0.01 DF /rib

Related Instructions
(V)AESDEC, (V)AESDECLAST, (V)AESENC, (V)AESENCLAST,(V)AESIMC

rFLAGS Affected

None

MXCSR Flags Affected

None

Instruction Reference = AESKEYGENASSIST, VAESKEYGENASSIST 41

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CRA.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

42

AESKEYGENASSIST, VAESKEYGENASSIST Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
ANDNPD AND NOT
VANDNPD Packed Double-Precision Floating-Point

Performs a bitwise AND of two packed double-precision floating-point values in the second source
operand with the ones’-complement of the two corresponding packed double-precision floating-point
values in the first source operand and writes the result into the destination.

There are legacy and extended forms of the instruction:
ANDNPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDNPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ANDNPD is an SSE2 instruction and VANDNPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

ANDNPD xmm1, xmm2/mem128 66 OF 55 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of two packed double-precision floating-
point values in xmm<1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDNPD xmm1, xmm2, xmm3/mem128 c4 RXB.00001 X.src.0.01 55 /r
VANDNPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 55/r

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

rFLAGS Affected

None

Instruction Reference ANDNPD, VANDNPD 43

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.177—May 2013

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

44

ANDNPD, VANDNPD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
ANDNPS AND NOT
VANDNPS Packed Single-Precision Floating-Point

Performs a bitwise AND of four packed single-precision floating-point values in the second source
operand with the ones’-complement of the four corresponding packed single-precision floating-point
values in the first source operand, and writes the result in the destination.

There are legacy and extended forms of the instruction:
ANDNPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDNPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ANDNPS is an SSE1 instruction and VANDNPS is an AVX instruction. Support for these instruc-
tions is indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

ANDNPS xmm1, xmm2/mem128 OF 55 /r Performs bitwise AND of four packed double-precision
floating-point values in xmm2 or mem128 with the ones’-
complement of four packed double-precision floating-point
values in xmm1. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDNPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 55 /r
VANDNPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 55/r

Related Instructions
(V)ANDNPD, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

rFLAGS Affected

None

Instruction Reference ANDNPS, VANDNPS 45

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |[CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

46 ANDNPS, VANDNPS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
ANDPD AND
VANDPD Packed Double-Precision Floating-Point

Performs bitwise AND of two packed double-precision floating-point values in the first source oper-
and with the corresponding two packed double-precision floating-point values in the second source
operand and writes the results into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ANDPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ANDPD is an SSE2 instruction and VANDPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

ANDPD xmm1, xmm2/mem128 66 OF 54 /r Performs bitwise AND of two packed double-precision
floating-point values in xmm1 with corresponding values in
xmm?2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 54 Ir
VANDPD ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.01 54 Ir

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPS, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

rFLAGS Affected

None

MXCSR Flags Affected

None

Instruction Reference ANDPD, VANDPD 47

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

48 ANDPD, VANDPD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
ANDPS AND
VANDPS Packed Single-Precision Floating-Point

Performs bitwise AND of the four packed single-precision floating-point values in the first source
operand with the corresponding four packed single-precision floating-point values in the second
source operand, and writes the result into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ANDPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VANDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ANDPS is an SSEI instruction and VANDPS is an AVX instruction. Support for these instructions is
indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

ANDPS xmm1, xmm2/mem128 OF 54 /r Performs bitwise AND of four packed double-precision
floating-point values in xmm1 with corresponding values in
xmm?2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VANDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 54 /r
VANDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 54 Ir

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ORPD, (V)ORPS, (V)XORPD, (V)XORPS

rFLAGS Affected

None

Instruction Reference ANDPS, VANDPS 49

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |[CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

50 ANDPS, VANDPS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
BLENDPD Blend
VBLENDPD Packed Double-Precision Floating-Point

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 64-bit element in a source location and a corresponding 64-bit element in
the destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:
BLENDPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Only mask bits [1:0] are used.

VBLENDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Only mask bits [1:0] are used.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

BLENDPD is an SSE4.1 instruction and VBLENDPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

BLENDPD xmm1, xmm2/mem128, imm8 66 OF 3BA0D /rib Copies values from xmm1 or
xmm2/mem128 to xmm1, as
specified by immS8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 0D /rib
VBLENDPD ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 0D /rib

Related Instructions
(V)BLENDPS, (B)BLENDVPD, (V)BLENDVPS

Instruction Reference BLENDPD, VBLENDPD 51

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

52

BLENDPD, VBLENDPD

Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
BLENDPS Blend
VBLENDPS Packed Single-Precision Floating-Point

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by an 8-bit mask operand.

Each mask bit specifies a 32-bit element in a source location and a corresponding 32-bit element in
the destination register. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination register. When a mask bit = 1, the specified element of the
second source is copied to the corresponding position in the destination register.

There are legacy and extended forms of the instruction:
BLENDPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Only mask bits [3:0] are used.

VBLENDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.Only mask bits [3:0] are used.

YMM Encoding

The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. Only mask bits [3:0] are used.

BLENDPS is an SSE4.1 instruction and VBLENDPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

BLENDPS xmm1, xmm2/mem128, imm8 66 OF 3BA0C /rib Copies values from xmm1 or
xmm2/mem128 to xmm1, as
specified by immS8.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDPS xmm1, xmm2, xmm3/mem128 c4 RXB.00011 X.src.0.01 0C Irib
VBLENDPS ymm1, ymm2, ymm3/mem256 c4 RXB.00011 X.src.1.01 0C Irib

Related Instructions
(V)BLENDPD, (V)BLENDVPD, (V)BLENDVPS

Instruction Reference BLENDPS, VBLENDPS 53

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
Invalid opcode, #UD S S S |CR4.OSFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

54

BLENDPS, VBLENDPS

Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
BLENDVPD Variable Blend
VBLENDVPD Packed Double-Precision Floating-Point

Copies packed double-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.

Each mask bit specifies a 64-bit element of a source location and a corresponding 64-bit element of
the destination. The position of a mask bit corresponds to the position of the most significant bit of a
copied value. When a mask bit = 0, the specified element of the first source is copied to the corre-
sponding position in the destination. When a mask bit = 1, the specified element of the second source
is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:
BLENDVPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of

the YMM register that corresponds to the destination are not affected. The mask is defined by bits 127
and 63 of the implicit register XMMO.

VBLENDVPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask is defined by bits 127 and 63
of a fourth XMM register.

YMM Encoding

The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. The mask is defined by bits 255,
191, 127, and 63 of a fourth YMM register.

BLENDVPD is an SSE4.1 instruction and VBLENDVPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

BLENDVPD xmm1, xmm2/mem128 66 OF 38 15 /r Copies values from xmm1 or xmm2/mem128 to
xmm1, as specified by the MSB of corresponding
elements of xmmO.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDVPD xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4B /v
VBLENDVPD ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4B Ir

Instruction Reference BLENDVPD, VBLENDVPD 55

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPS

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Mode
Exception Cause of Exception
P Real| Virt |Prot P
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|[2:1]! = 11b.
A |VEXW=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

56 BLENDVPD, VBLENDVPD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
BLENDVPS Variable Blend
VBLENDVPS Packed Single-Precision Floating-Point

Copies packed single-precision floating-point values from either of two sources to a destination, as
specified by a mask operand.

Each mask bit specifies a 32-bit element of a source location and a corresponding 32-bit element of
the destination register. The position of a mask bits corresponds to the position of the most significant
bit of a copied value. When a mask bit = 0, the specified element of the first source is copied to the
corresponding position in the destination. When a mask bit = 1, the specified element of the second
source is copied to the corresponding position in the destination.

There are legacy and extended forms of the instruction:
BLENDVPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask is defined by bits
127,95, 63, and 31 of the implicit register XMMO.

VBLENDVPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask is defined by bits 127, 95, 63,
and 31 of a fourth XMM register.

YMM Encoding

The first operand is a YMM register and the second operand is either another YMM register or a
256-bit memory location. The destination is a third YMM register. The mask is defined by bits 255,
223,191, 159, 127, 95, 63, and 31 of a fourth YMM register.

BLENDVPS is an SSE4.1 instruction and VBLENDVPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

BLENDVPS xmm1, xmm2/mem128 66 OF 38 14 /r Copies packed single-precision
floating-point values from xmm1 or
xmm2/mem128 to xmm1, as
specified by bits in xmmaO.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VBLENDVPS xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 X.src.0.01 4A Ir
VBLENDVPS ymm1, ymm2, ymm3/mem256, ymm4 C4 RXB.00011 X.src.1.01 4A Ir

Instruction Reference BLENDVPS, VBLENDVPS 57

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Related Instructions
(V)BLENDPD, (V)BLENDPS, (V)BLENDVPD

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Mode
Exception Cause of Exception
P Real| Virt |Prot P
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|[2:1]! = 11b.
A |VEXW=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

58 BLENDVPS, VBLENDVPS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
CMPPD Compare
VCMPPD Packed Double-Precision Floating-Point

Compares each of the two packed double-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 64-bit element of the destination. When a comparison is TRUE, all 64 bits of the desti-
nation element are set; when a comparison is FALSE, all 64 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPPD

The first source operand is an XMM register and the second source operand is either another XMM
register or al28-bit memory location.The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Comparison type is specified
by bits [2:0] of an immediate byte operand.

VCMPPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Comparison type is specified by bits
[4:0] of an immediate byte operand.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination operand is a YMM register. Comparison type is speci-
fied by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPD uses bits [2:0] of the 8-bit immediate operand and VCMPPD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPD supports 20h encoding values, the comparison types echo
those of CMPPD on 4-bit boundaries. The following table shows the immediate operand value for
CMPPD and each of the VCMPPD echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations.

Instruction Reference CMPPD, VCMPPD 59

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, ODh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPPD with appropriate value of imm& are supported.

Mnemonic Implied Value of imm8
(V)CMPEQPD 00h, 08h, 10h, 18h
(V)CMPLTPD 01h, 09h, 11h, 19h
(V)CMPLEPD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDPD 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPD 04h, 0Ch, 14h, 1Ch
(V)CMPNLTPD 05h, ODh, 15h, 1Dh
(V)CMPNLEPD 06h, OEh, 16h, 1Eh
(V)CMPORDPD 07h, OFh, 17h, 1Fh

CMPPD is an SSE2 instruction and VCMPPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic

CMPPD xmm1, xmm2/mem128, imm8

Opcode

66 OF C2 /rib

Description
Compares two pairs of values in xmm1 to

corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

60

CMPPD, VCMPPD

Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCMPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.01 C2/rib
VCMPPD ymm1, ymm2, ymm3/mem256, inm8 C4 RXB.00001 X.src.1.01 C2/rib

Related Instructions

(V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None

MXCSR Flags Affected

MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M

17 | 15 14\13 12 | 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
) Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASKJ[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pontexception whle O OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.

Instruction Reference

CMPPD, VCMPPD 61

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Exceptions
Mode
Exception Cause of Exception
P Real| Virt |Prot P
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

62

CMPPD, VCMPPD

Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
CMPPS Compare
VCMPPS Packed Single-Precision Floating-Point

Compares each of the four packed single-precision floating-point values of the first source operand to
the corresponding values of the second source operand and writes the result of each comparison to the
corresponding 32-bit element of the destination. When a comparison is TRUE, all 32 bits of the desti-
nation element are set; when a comparison is FALSE, all 32 bits of the destination element are
cleared. The type of comparison is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. Comparison type is specified
by bits [2:0] of an immediate byte operand.

VCMPPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. Comparison type is specified by bits
[4:0] of an immediate byte operand.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination operand is a YMM register. Comparison type is speci-
fied by bits [4:0] of an immediate byte operand.

Immediate Operand Encoding

CMPPS uses bits [2:0] of the 8-bit immediate operand and VCMPPS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPPS supports 20h encoding values, the comparison types echo
those of CMPPS on 4-bit boundaries. The following table shows the immediate operand value for
CMPPS and each of the VCMPPDS echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown in
with the directly supported comparison operations.

Instruction Reference CMPPS, VCMPPS 63

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, ODh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPPS with appropriate value of imm§ are supported.

Mnemonic Implied Value of imm8
(V)CMPEQPS 00h, 08h, 10h, 18h
(V)CMPLTPS 01h, 09h, 11h, 19h
(V)CMPLEPS 02h, OAh, 12h, 1Ah

(V)CMPUNORDPS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQPS 04h, 0Ch, 14h, 1Ch
(V)CMPNLTPS 05h, ODh, 15h, 1Dh
(V)CMPNLEPS 06h, OEh, 16h, 1Eh
(V)CMPORDPS 07h, OFh, 17h, 1Fh

CMPPS is an SSE1 instruction and VCMPPS is an AVX instruction. Support for these instructions is
indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX]

respectively.

Instruction Encoding

Mnemonic

CMPPS xmm1, xmm2/mem128, imm8

Opcode
OF C2/rib

Description
Compares four pairs of values in xmm1 to

corresponding values in xmm2 or mem128.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

64

CMPPS, VCMPPS

Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCMPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00001 X.src.0.00 C2/rib

Related Instructions
(V)CMPPD, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None

MXCSR Flag_;s Affected

MM | FZ RC PM|UM|OM|ZM |[DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M M

17 | 15 14\13 12 | 11 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S CRO.EM =1.
S S CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASKJ[2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

CRO.TS =1.

Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Non-aligned memory operand while MXCSR.MM = Q.

Null data segment used to reference memory.

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1

Memory operand not 16-byte aligned when alignment checking enabled.
Instruction execution caused a page fault.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
X | A source operand was an SNaN value.
S S X | Undefined operation.

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

DO n | w
N n | w

General protection, #GP

Alignment check, #AC

Page fault, #PF
SIMD floating-point, #XF S

X [X[>P| O [X0 X|X X X |X>>>OoO

w
w

Invalid operation, IE

Instruction Reference CMPPS, VCMPPS 65

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Exceptions
Mode
Exception Cause of Exception
P Real| Virt |Prot P
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

66

CMPPS, VCMPPS

Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
CMPSD Compare
VCMPSD Scalar Double-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 64 bits of the first source operand
with a double-precision floating-point value in the low-order 64 bits of the second source operand and
writes the result to the low-order 64 bits of the destination. When a comparison is TRUE, all 64 bits
of the destination element are set; when a comparison is FALSE, all 64 bits of the destination element
are cleared. Comparison type is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only when the comparison type is not
Equal, Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPSD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 64-bit memory location. The first source register is also the destination. Bits [127:64] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

This CMPSD instruction must not be confused with the same-mnemonic CMPSD (compare strings
by doubleword) instruction in the general-purpose instruction set. Assemblers can distinguish the
instructions by the number and type of operands.

VCMPSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the desti-
nation are copied from bits [127:64] of the first source. Bits [255:128] of the YMM register that
corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate
byte operand.

Immediate Operand Encoding

CMPSD uses bits [2:0] of the 8-bit immediate operand and VCMPSD uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSD supports 20h encoding values, the comparison types echo
those of CMPSD on 4-bit boundaries. The following table shows the immediate operand value for
CMPSD and each of the VCMPSD echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
with the directly supported comparison operations. When operands are swapped, the first source
XMM register is overwritten by the result.

Instruction Reference CMPSD, VCMPSD 67

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, ODh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPSD with appropriate value of imm& are supported.

Mnemonic Implied Value of imm8
(V)CMPEQSD 00h, 08h, 10h, 18h
(V)CMPLTSD 01h, 09h, 11h, 19h
(V)CMPLESD 02h, 0Ah, 12h, 1Ah

(V)CMPUNORDSD 03h, 0Bh, 13h, 1Bh
(V)YCMPNEQSD 04h, 0Ch, 14h, 1Ch
(V)CMPNLTSD 05h, ODh, 15h, 1Dh
(V)CMPNLESD 06h, OEh, 16h, 1Eh
(V)CMPORDSD 07h, OFh, 17h, 1Fh

CMPSD is an SSE2 instruction and VCMPSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic

CMPSD xmm1, xmm2/mem64, imm8

Opcode

F20F C2/rib

Description
Compares double-precision floating-point

values in the low-order 64 bits of xmm1 with
corresponding values in xmm2 or mem64.
Comparison type is determined by imma8.
Writes comparison results to xmm1.

68

CMPSD, VCMPSD

Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCMPSD xmm1, xmm2, xmm3/mem64, imm8 C4 RXB.00001 X.src.X.11 C2/rib

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSS, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected
None
MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foating-pont, #xF | s [s | x | UIEsed SIME featng pont excopton whle CRA OSMMEXCPT =
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference CMPSD, VCMPSD 69

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
CMPSS Compare
VCMPSS Scalar Single-Precision Floating-Point

Compares a single-precision floating-point value in the low-order 32 bits of the first source operand
with a single-precision floating-point value in the low-order 32 bits of the second source operand and
writes the result to the low-order 32 bits of the destination. When a comparison is TRUE, all 32 bits
of the destination element are set; when a comparison is FALSE, all 32 bits of the destination element
are cleared. Comparison type is specified by an immediate byte operand.

Signed comparisons return TRUE only when both operands are valid numbers and the numbers have
the relation specified by the type of comparison operation. Ordered comparison returns TRUE when
both operands are valid numbers, or FALSE when either operand is a NaN. Unordered comparison
returns TRUE only when one or both operands are NaN and FALSE otherwise.

QNaN operands generate an Invalid Operation Exception (IE) only if the comparison type isn't Equal,
Unequal, Ordered, or Unordered. SNaN operands always generate an IE.

There are legacy and extended forms of the instruction:
CMPSS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected. Comparison type is specified by bits [2:0] of an immediate byte operand.

VCMPSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the desti-
nation are copied from bits [127L.32] of the first source. Bits [255:128] of the YMM register that
corresponds to the destination are cleared. Comparison type is specified by bits [4:0] of an immediate
byte operand.

Immediate Operand Encoding

CMPSS uses bits [2:0] of the 8-bit immediate operand and VCMPSS uses bits [4:0] of the 8-bit
immediate operand. Although VCMPSS supports 20h encoding values, the comparison types echo

those of CMPSS on 4-bit boundaries. The following table shows the immediate operand value for
CMPSS and each of the VCMPSS echoes.

Some comparison operations that are not directly supported by immediate-byte encodings can be
implemented by swapping the contents of the source and destination operands and executing the
appropriate comparison of the swapped values. These additional comparison operations are shown
below with the directly supported comparison operations. When operands are swapped, the first
source XMM register is overwritten by the result.

70 CMPSS, VCMPSS Instruction Reference

AMDZU

26568—Rev. 3.177—May

2013

AMDG64 Technology

Immediate Operand Compare Operation Result If NaN Operand | QNaN Operand Causes
Value Invalid Operation
Exception

00h, 08h, 10h, 18h Equal FALSE No
01h, 09h, 11h, 19h Less than FALSE Yes
Greater than FALSE Yes

(swapped operands)
02h, OAh, 12h, 1Ah Less than or equal FALSE Yes
Greater than or equal FALSE Yes

(swapped operands)
03h, 0Bh, 13h, 1Bh Unordered TRUE No
04h, 0Ch, 14h, 1Ch Not equal TRUE No
05h, ODh, 15h, 1Dh Not less than TRUE Yes
Not greater than TRUE Yes

(swapped operands)
06h, OEh, 16h, 1Eh Not less than or equal TRUE Yes
Not greater than or equal TRUE Yes

(swapped operands)
07h, OFh, 17h, 1Fh Ordered FALSE No

The following alias mnemonics for (V)CMPSS with appropriate value of imm§ are supported.

Mnemonic Implied Value of imm8
(V)CMPEQSS 00h, 08h, 10h, 18h
(V)CMPLTSS 01h, 09h, 11h, 19h
(V)CMPLESS 02h, OAh, 12h, 1Ah

(V)CMPUNORDSS 03h, 0Bh, 13h, 1Bh
(V)CMPNEQSS 04h, 0Ch, 14h, 1Ch
(V)CMPNLTSS 05h, ODh, 15h, 1Dh
(V)CMPNLESS 06h, OEh, 16h, 1Eh
(V)CMPORDSS 07h, OFh, 17h, 1Fh

CMPSS is an SSE1 instruction and VCMPSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000_ 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic

CMPSS xmm1, xmm2/mem32, imm8

Opcode

F3OF C2/rib

Description
Compares single-precision floating-point

values in the low-order 32 bits of xmm1 with
corresponding values in xmm2 or mem32.
Comparison type is determined by imm8.
Writes comparison results to xmm1.

Instruction Reference

CMPSS, VCMPSS

71

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCMPSS xmm1, xmm2, xmm3/mem32, imm8 C4 RXB.00001 X.src.X.10 C2/rib

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)COMISD, (V)COMISS, (V)UCOMISD, (V)UCOMISS

rFLAGS Affected

None
MXCSR Flags Affected
MM | FZ RC PM | UM | OM | ZM | DM IM [DAZ| PE | UE | OE | ZE | DE IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foating-pont, #xF | s [s | x | UIEsed SIME featng pont excopton whle CRA OSMMEXCPT =
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

72 CMPSS, VCMPSS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
COMISD Compare Ordered
VCOMISD Scalar Double-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 64 bits of an operand with a dou-
ble-precision floating-point value in the low-order 64 bits of another operand or a 64-bit memory
location and sets rFLAGS.ZF, PF, and CF to show the result of the comparison:

Comparison ZF PF CF
NaN input 1 1 1
operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 == operand 2 1 0 0

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.
There are legacy and extended forms of the instruction:

COMISD

The first source operand is an XMM register and the second source operand is another XMM register
or a 64-bit memory location.

VCOMISD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location.

COMISD is an SSE2 instruction and VCOMISD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description
COMISD xmm1, xmm2/mem64 66 OF 2F /r Compares double-precision floating-point values in xmm1
with corresponding values in xmm2 or mem64 and sets
rFLAGS.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCOMISD xmm1, xmm2 /mem64 C4 RXB.00001 X.src.X.01 2F Ir

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISS, (V)UCOMISD, (V)UCOMISS

Instruction Reference COMISD, VCOMISD 73

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013

rFLAGS Affected

ID | VIP|VIF{|AC|VM [RF [NT| IOPL |[OF |[DF [IF | TF | SF | ZF | AF | PF | CF
0 0 M 0 M | M

21 20 19 | 18 | 17 | 16 | 14 | 13 |12 1110 | 9 8 7 6 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 | 15 14\13 12 | 11 [10 | 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Unaffected flags are blank.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK[2:1]!= 11b.
A | VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaskes SIUD foatne pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.
X — AVX and SSE exception

A — AVX exception

S — SSE exception

74 COMISD, VCOMISD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
COMISS Compare
VCOMISS Ordered Scalar Single-Precision Floating-Point

Compares a double-precision floating-point value in the low-order 32 bits of an operand with a dou-
ble-precision floating-point value in the low-order 32 bits of another operand or a 32-bit memory
location and sets rFLAGS.ZF, PF, and CF to show the result of the comparison:

Comparison ZF PF CF
NaN input 1 1 1
operand 1 > operand 2 0 0 0
operand 1 < operand 2 0 0 1
operand 1 == operand 2 1 0 0

The result is unordered if one or both of the operand values is a NaN. The rFLAGS.OF, AF, and SF
bits are cleared. If an #XF SIMD floating-point exception occurs the rFLAGS bits are not updated.
There are legacy and extended forms of the instruction:

COMISS

The first source operand is an XMM register and the second source operand is another XMM register
or a 32-bit memory location.

VCOMISS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location.

COMISS is an SSE1 instruction and VCOMISS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description
COMISS xmm1, xmm2/mem32 OF 2F /r Compares single-precision floating-point values in xmm1
with corresponding values in xmm2 or mem32 and sets
rFLAGS.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCOMISS xmm1, xmm2 Imem32 C4 RXB.00001 X.src.X.00 2F Ir

Related Instructions
(V)CMPPD, (V)CMPPS, (V)CMPSD, (V)CMPSS, (V)COMISD, (V)UCOMISD, (V)UCOMISS

Instruction Reference COMISS, VCOMISS 75

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013

rFLAGS Affected

ID | VIP|VIF{|AC|VM [RF [NT| IOPL |[OF |[DF [IF | TF | SF | ZF | AF | PF | CF
0 0 M 0 M | M

21 20 19 | 18 | 17 | 16 | 14 | 13 |12 1110 | 9 8 7 6 4 2 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Bits 31:22, 15, 5, 3, and 1 are reserved. For #XF, rFLAGS bits are not updated.

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM |[DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 | 15 14\13 12 | 11 [10 | 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK[2:1]!= 11b.
A | VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaskes SIUD foatne pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.
X — AVX and SSE exception

A — AVX exception

S — SSE exception

76 COMISS, VCOMISS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
CVTDQ2PD Convert Packed Doubleword Integers
VCVTDQ2PD to Packed Double-Precision Floating-Point

Converts packed 32-bit signed integer values to packed double-precision floating-point values and
writes the converted values to the destination.

There are legacy and extended forms of the instruction:
CVTDQ2PD

Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted values to an XMM register. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VCVTDQ2PD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed 32-bit signed integer values in the low-order 64 bits of an XMM register or in a
64-bit memory location to two packed double-precision floating-point values and writes the con-
verted values to an XMM register. Bits [255:128] of the YMM register that corresponds to the desti-
nation are cleared.

YMM Encoding

Converts four packed 32-bit signed integer values in the low-order 128 bits of a YMM register or a
256-bit memory location to four packed double-precision floating-point values and writes the con-
verted values to a YMM register.

CVTDQ2PD is an SSE2 instruction and VCVTDQ2PD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTDQ2PD xmm1, xmm2/mem64 F3 OF E6 /r Converts packed doubleword signed integers in xmm2
or mem64 to double-precision floating-point values in

xmmf1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTDQ2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.10 E6 /r
VCVTDQ2PD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 E6 /r

Related Instructions

(V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SL, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected

None

Instruction Reference CVTDQ2PD, VCVTDQ2PD 77

AMDZU

AMDG64 Technology

MXCSR Flags Affected

26568—Rev. 3.177—May 2013

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|[2:1]! = 11b.
A |VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

78

CVTDQ2PD, VCVTDQ2PD

Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
CVTDQ2PS Convert Packed Doubleword Integers
VCVTDQ2PS to Packed Single-Precision Floating-Point

Converts packed 32-bit signed integer values to packed single-precision floating-point values and
writes the converted values to the destination. When the result is an inexact value, it is rounded as
specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTDQ2PS

Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location
to four packed single-precision floating-point values and writes the converted values to an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTDQ2PS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts four packed 32-bit signed integer values in an XMM register or a 128-bit memory location
to four packed double-precision floating-point values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed 32-bit signed integer values in a YMM register or a 256-bit memory location
to eight packed double-precision floating-point values and writes the converted values to a YMM reg-
ister.

CVTDQ2PS is an SSE2 instruction and the VCVTDQ2PS instruction is an AVX instruction. Support
for these instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTDQ2PS xmm1, xmm2/mem128 OF 5B /r Converts packed doubleword integer values in xmm2 or
mem128 to packed single-precision floating-point
values in xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTDQ2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.00 5B /r
VCVTDQ2PS ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.00 5B /Ir

Related Instructions
(V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

rFLAGS Affected

None

Instruction Reference CVTDQ2PS, VCVTDQ2PS 79

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK[2:1]!=11b
A |VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaskes SIUD foatne pont exceptor whle CRAOSXMMEXCPT =1

SIMD Floating-Point Exceptions
Precision, PE | 8 | 8 | X |Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

80 CVTDQ2PS, VCVTDQ2PS Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTPD2DQ Convert Packed Double-Precision Floating-Point
VCVTPD2DQ to Packed Doubleword Integer

Converts packed double-precision floating-point values to packed signed doubleword integers and
writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (—23 To +231 - 1), the instruction returns the 32-bit indefinite integer value (8000 _0000h)
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:

CVTPD2DQ

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPD2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword values and writes the converted values to an XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

CVTPD2DQ is an SSE2 instruction and VCVTPD2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTPD2DQ xmm1, xmm2/mem128 F2 OF E6 /r Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.11 EG /r
VCVTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X1111.1.11 E6 /r

Instruction Reference CVTPD2DQ, VCVTPD2DQ 81

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Related Instructions

(V)CVTDQ2PD, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTITPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected
None
MXCSR FIa_c_;s Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S CRO.EM =1.
S S CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK][2:1] ! = 11b

VEX.vvwv ! = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

CRO.TS =1.

Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.
Instruction execution caused a page fault.

Unmasked SIMD floating-point exception while CR4.0OSXMMEXCPT =1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

A source operand was an SNaN value.

Undefined operation.

Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

DOnn | vn
DOnn | ln

General protection, #GP

Alignment check, #AC

Page fault, #PF
SIMD floating-point, #XF S

X | X[P| O | XX X|X| X | X|Z>>>0W0

w
w
X

Invalid operation, |E

(%))
(@]
x

82 CVTPD2DQ, VCVTPD2DQ Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTPD2PS Convert Packed Double-Precision Floating-Point
VCVTPD2PS to Packed Single-Precision Floating-Point

Converts packed double-precision floating-point values to packed single-precision floating-point val-
ues and writes the converted values to the low-order doubleword elements of the destination. When
the result is an inexact value, it is rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTPD2PS

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VCVTPD2PS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed single-precision floating-point values and writes the converted values to an
XMM register. Bits [127:64] of the destination are cleared. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four packed single-precision floating-point values and writes the converted values to a
YMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

CVTPD2PS is an SSE2 instruction and VCVTPD2PS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTPD2PS xmm1, xmm2/mem128 66 OF 5A /r Converts packed double-precision floating-point
values in xmm2 or mem128 to packed single-
precision floating-point values in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPD2PS xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5A Ir
VCVTPD2PS xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5A Ir

Related Instructions
(V)CVTPS2PD, (V)CVTSD2SS, (V)CVTSS2SD

rFLAGS Affected

None

Instruction Reference CVTPD2PS, VCVTPD2PS 83

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M M M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
) Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S CRO.EM =1.
S S CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK[2:1]!=11b

VEX.vwwv ! = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

CRO.TS =1.

Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1

Memory operand not 16-byte aligned when alignment checking enabled.
Instruction execution caused a page fault.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

DO v v
DO v v

General protection, #GP

Alignment check, #AC

Page fault, #PF
SIMD floating-point, #XF S

X [X[>P| O | X O X|XIX X |X>>>> 0O

Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
S S X

Precision, PE

X — AVX and SSE exception
A — AVX exception
S — SSE exception

A result could not be represented exactly in the destination format.

84 CVTPD2PS, VCVTPD2PS Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTPS2DQ Convert Packed Single-Precision Floating-Point
VCVTPS2DQ to Packed Doubleword Integers

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value is a NaN, infinity, or the result of the conversion is larger than the maximum signed dou-
bleword (—23 To +231 - 1), the instruction returns the 32-bit indefinite integer value (8000 _0000h)
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTPS2DQ

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VCVTPS2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

CVTPS2DQ is an SSE2 instruction and VCVTPS2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTPS2DQ xmm1, xmm2/mem128 66 OF 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 5B /r
VCVTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 5B /r

Related Instructions
(V)CVTDQ2PS, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ, (V)CVTTSS2SI

Instruction Reference CVTPS2DQ, VCVTPS2DQ 85

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

rFLAGS Affected

None

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK[2:1]!=11b
A |VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, 1 | 5 | s | x | Snmasses SIUD foatine-pont exceptor whle CRAOSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

86 CVTPS2DQ, VCVTPS2DQ Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTPS2PD Convert Packed Single-Precision Floating-Point
VCVTPS2PD to Packed Double-Precision Floating-Point

Converts packed single-precision floating-point values to packed double-precision floating-point val-
ues and writes the converted values to the destination.

There are legacy and extended forms of the instruction:
CVTPS2PD

Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VCVTPS2PD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed single-precision floating-point values in the two low order doubleword ele-
ments of an XMM register or a 64-bit memory location to two double-precision floating-point values
and writes the converted values to an XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

YMM Encoding

Converts four packed single-precision floating-point values in a YMM register or a 128-bit memory
location to four double-precision floating-point values and writes the converted values to a YMM
register.

CVTPS2PD is an SSE2 instruction and VCVTPS2PD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTPS2PD xmm1, xmm2/mem64 OF 5A/r Converts packed single-precision floating-point values
in xmm2 or memé64 to packed double-precision floating-
point values in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTPS2PD xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.00 5A Ir
VCVTPS2PD ymm1, ymm2/mem128 C4 RXB.00001 X.1111.1.00 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTSD2SS, (V)CVTSS2SD

rFLAGS Affected

None

Instruction Reference CVTPS2PD, VCVTPS2PD 87

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
) Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foating-pont, #xF | s [s | x| UIEsed SIME featng pont excopton whle CRA OSMMEXCPT =
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

88 CVTPS2PD, VCVTPS2PD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
CVTSD2SI Convert Scalar Double-Precision Floating-Point
VCVTSD2SI to Signed Doubleword or Quadword Integer

Converts a scalar double-precision floating-point value to a 32-bit or 64-bit signed integer value and
writes the converted value to a general-purpose register.

When the result is an inexact value, it is rounded as specified by MXCSR.RC. When the floating-
point value i isa NaN infinity, or the result of the conversmn is larger than the maximum signed dou-
bleword (— 23140 4231 — 1) or quadword value (- 263 o +263 — 1), the instruction returns the indefinite
integer value (8000 _0000h for 32-bit integers, 8000 _0000_0000 0000h for 64-bit integers) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CvTSsD2sI

The legacy form has two encodings:

* When REX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of'an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

e When REX.W =1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTSD2SI

The extended form of the instruction has two 128-bit encodings:

* When VEX.W = 0, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

e When VEX.W =1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

CVTSD2SI is an SSE2 instruction and VCVTSD2SI is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

CVTSD2SI reg32, xmm1/mem64 F2 (WO0) OF 2D /r Converts a packed double-precision floating-point value
in xmm1 or mem64 to a doubleword integer in reg32.

CVTSD2SI reg64, xmm1/mem64 F2 (W1) OF 2D /r Converts a packed double-precision floating-point value
in xmm1 or memé64 to a quadword integer in reg64.

Mnemonic Encoding

Instruction Reference CVTSD2SI, VCVTSD2SI 89

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2D /Ir
VCVTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2D /r

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSI2SD, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected
None
MXCSR Flags Affected
MM | FZ RC PM|UM|OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foating-pont #xF | s | s | x | Unmasked SIMD feati pantexcoption whi CRA OSXMIMEXCT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.

Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

90 CVTSD2SI, VCVTSD2SI Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTSD2SS Convert Scalar Double-Precision Floating-Point
VCVTSD2SS to Scalar Single-Precision Floating-Point

Converts a scalar double-precision floating-point value to a scalar single-precision floating-point
value and writes the converted value to the low-order 32 bits of the destination. When the result is an
inexact value, it is rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSD2SS

Converts a scalar double-precision floating-point value in the low-order 64 bits of the second source
XMM register or a 64-bit memory location to a scalar single-precision floating-point value and writes
the converted value to the low-order 32 bits of a destination XMM register. Bits [127:32] of the desti-
nation are not affected. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VCVTSD2SS

The extended form of the instruction has a 128-bit encoding only.

Converts a scalar double-precision floating-point value in the low-order 64 bits of a source XMM
register or a 64-bit memory location to a scalar single-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the destina-
tion are copied from the first source XMM register. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

CVTSD2SS is an SSE2 instruction and VCVTSD2SS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTSD2SS xmm1, xmm2/mem64 F2 OF 5A/r Converts a scalar double-precision floating-point
value in xmm2 or mem64 to a scalar single-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSD2SS xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSS2SD

rFLAGS Affected
None

Instruction Reference CVTSD2SS, VCVTSD2SS 91

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions
) Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foating-point #xF | s | s | x| nmasked SIMD featig partexcoption i ReOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

92

CVTSD2SS, VCVTSD2SS

Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTSI2SD Convert Signed Doubleword or Quadword Integer
VCVTSI2SD to Scalar Double-Precision Floating-Point

Converts a signed integer value to a double-precision floating-point value and writes the converted
value to a destination register. When the result of the conversion is an inexact value, the value is
rounded as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSI2SD

The legacy form as two encodings:

e When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

e When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a 64-bit double-precision floating-point value and
writes the converted value to the low-order 64 bits of an XMM register. Bits [127:64] of the
destination XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SD

The extended form of the instruction has two 128-bit encodings:

e When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

* When VEX.W =1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a double-precision floating-point value and writes the
converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

CVTSI2SD is an SSE2 instruction and VCVTSI2SD is an AVX instruction. Support for these instruc-

tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

CVTSI2SD xmm1, reg32/mem32 F2 (W0) OF 2A /r Converts a doubleword integer in reg32 or mem32 to a
double-precision floating-point value in xmm?1.

CVTSI2SD xmm1, reg64/mem64 F2 (W1) OF 2A /r Converts a quadword integer in reg64 or mem64 to a
double-precision floating-point value in xmm?1.

Instruction Reference CVTSI2SD, VCVTSI2SD 93

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSI2SD xmm1, xmm2, reg32/mem32 C4 RXB.00001 0.src.X.11 2A Ir
VCVTSI2SD xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X. 11 2A Ir

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTTPD2DQ,
(V)CVTTSD2SI

rFLAGS Affected
None
MXCSR Flags Affected
MM | FZ RC PM|UM|OM|ZM |[DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
S S X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions
Precision, PE | S | S | X |A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

SIMD floating-point, #XF S S X

94 CVTSI2SD, VCVTSI2SD Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTSI2SS Convert Signed Doubleword or Quadword Integer
VCVTSI2SS to Scalar Single-Precision Floating-Point

Converts a signed integer value to a single-precision floating-point value and writes the converted
value to an XMM register. When the result of the conversion is an inexact value, the value is rounded
as specified by MXCSR.RC.

There are legacy and extended forms of the instruction:
CVTSI2SS

The legacy form has two encodings:

e When REX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

e When REX.W = 1, converts a a signed quadword integer value from a 64-bit source general-
purpose register or a 64-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of an XMM register. Bits [127:32] of the destination
XMM register and bits [255:128] of the corresponding YMM register are not affected.

VCVTSI2SS

The extended form of the instruction has two 128-bit encodings:

e When VEX.W = 0, converts a signed doubleword integer value from a 32-bit source general-
purpose register or a 32-bit memory location to a single-precision floating-point value and writes
the converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the
first source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

* When VEX.W =1, converts a signed quadword integer value from a 64-bit source general-purpose
register or a 64-bit memory location to a single-precision floating-point value and writes the
converted value to the low-order 32 bits of the destination XMM register. Bits [127:32] of the first
source XMM register are copied to the destination XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

CVTSI2SS is an SSEI instruction and VCVTSI2SS is an AVX instruction. Support for these instruc-
tions is indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTSI2SS xmm1, reg32/mem32 F3 (WO0) OF 2A /r Converts a doubleword integer in reg32 or mem32 to a
single-precision floating-point value in xmm1.

CVTSI2SS xmm1, reg64/mem64 F3 (W1) OF 2A /r Converts a quadword integer in reg64 or mem64 to a
single-precision floating-point value in xmm?1.

Instruction Reference CVTSI2SS, VCVTSI2SS 95

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSI2SS xmm1, xmm?2, reg32/mem32 C4 RXB.00001 0.src.X.10 2A I
VCVTSI2SS xmm1, xmm2, reg64/mem64 C4 RXB.00001 1.src.X.10 2AIr

Related Instructions

(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSS2SL, (V)CVTTPS2DQ, (V)CVTTSS2SI

rFLAGS Affected
None
MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE
M
17 | 15 14\13 12 | 11 | 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foatngrpoi, e | 5 | s | x | Somasses SIWD foating pont oxcepton while R OSXMMEXCPT =1,

SIMD Floating-Point Exceptions

Precision, PE

S | S | X |Aresu|tcou|d not be represented exactly in the destination format.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

96

CVTSI2SS, VCVTSI2SS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
CVTSS2SD Convert Scalar Single-Precision Floating-Point
VCVTSS2SD to Scalar Double-Precision Floating-Point

Converts a scalar single-precision floating-point value to a scalar double-precision floating-point
value and writes the converted value to the low-order 64 bits of the destination.

There are legacy and extended forms of the instruction:
CVTSS2SD

Converts a scalar single-precision floating-point value in the low-order 32 bits of a source XMM reg-
ister or a 32-bit memory location to a scalar double-precision floating-point value and writes the con-
verted value to the low-order 64 bits of a destination XMM register. Bits [127:64] of the destination
and bits [255:128] of the corresponding YMM register are not affected.

VCVTSS2SD

The extended form of the instruction has a 128-bit encoding only.

Converts a scalar single-precision floating-point value in the low-order 32 bits of the second source
XMM register or 32-bit memory location to a scalar double-precision floating-point value and writes
the converted value to the low-order 64 bits of the destination XMM register. Bits [127:64] of the des-
tination are copied from the first source XMM register. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

CVTSD2SD is an SSE2 instruction and VCVTSD2SD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTSS2SD xmm1, xmm2/mem32 F3 OF 5A /r Converts a scalar single-precision floating-point value
in xmm2 or mem32 to a scalar double-precision
floating-point value in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSS2SD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.10 5A Ir

Related Instructions
(V)CVTPD2PS, (V)CVTPS2PD, (V)CVTSD2SS

Instruction Reference CVTSS2SD, VCVTSS2SD 97

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M | M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SD foatngrpoi, 1 | 5 | s | x | Somasses SIUD foatine pont excepton while CRE OSXMMEXCPT =1,
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

98

CVTSS2SD, VCVTSS2SD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
CVTSS2SI Convert Scalar Single-Precision Floating-Point
VCVTSS2SI to Signed Doubleword or Quadword Integer

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.

When the result of the conversion is an inexact value, the value is rounded as specified by
MXCSR.RC. When the floating-point Value 1sa NaN infinity, or the result of the converswn is larger
than the maximum signed doubleword (- 2310 +231 — 1) or quadword value (- 263 10 +293 — 1), the
indefinite integer value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers)
is returned when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTSS2sI

The legacy form has two encodings:

e When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

* When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

VCVTSS2SI

The extended form of the instruction has two 128-bit encodings:

e When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register.

* When VEX.W =1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register.

CVTSS2SI is an SSEI instruction and VCVTSS2SI is an AVX instruction. Support for these instruc-
tions is indicated by CPUID feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTSS2SI reg32, xmm1/mem32 F3 (W0) OF 2D /r Converts a single-precision floating-point value in
xmm1 or mem32 to a 32-bit integer value in reg32

CVTSS2SI reg64, xmm1//mem64 F3 (W1) OF 2D /r Converts a single-precision floating-point value in
xmm1 or mem64 to a 64-bit integer value in reg64

Instruction Reference CVTSS2SI, VCVTSS2SI 929

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTSS2SI reg32, xmm1/mem32 C4 RXB.00001 0.1111.X.10 2D /r
VCVTSS2SI reg64, xmm1/mem64 C4 RXB.00001 1.1111.X.10 2D /r

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTTPS2DQ, (V)CVTTSS2SI

MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
) Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED_MASK[2:1]! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SMD foating-pont, #xF | s [s | x | UIEsed SIME featng pantexcopton whle CRA OSMMEXCPT =
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.

Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

100 CVTSS2SI, VCVTSS2SI Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTTPD2DQ Convert Packed Double-Precision Floating-Point
VCVTTPD2DQ to Packed Doubleword Integer, Truncated

Converts packed double-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result is an inexact value, it is truncated (rounded toward zero). When the floating-point
value is a NaN, infinity, or the result of the conversion is larger than the maximum signed doubleword
(—231 to +231 — 1), the instruction returns the 32-bit indefinite integer value (8000 _0000h) when the
invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTPD2DQ

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two packed signed doubleword integers and writes the converted values to the two low-
order doublewords of the destination XMM register. Bits [127:64] of the destination are cleared. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VCVTTPD2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Converts two packed double-precision floating-point values in an XMM register or a 128-bit memory
location to two signed doubleword values and writes the converted values to the lower two double-
word elements of the destination XMM register. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

YMM Encoding

Converts four packed double-precision floating-point values in a YMM register or a 256-bit memory
location to four signed doubleword integer values and writes the converted values to an XMM regis-
ter. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

CVTTPD2DQ is an SSE2 instruction and VCVTTPD2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTTPD2DQ xmm1, xmm2/mem128 66 OF E6 /r Converts two packed double-precision floating-point
values in xmm2 or mem128 to packed doubleword
integers in xmm1. Truncates inexact result.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTPD2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 E6 /r
VCVTTPD2DQ xmm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 E6 /r

Instruction Reference CVTTPD2DQ, VCVTTPD2DQ 101

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Related Instructions
(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SI, (V)CVTSI2SD, (V)CVTTSD2SI

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S CRO.EM =1.
S S CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK][2:1]!=11b

VEX.vvwv ! = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.

CRO.TS =1.

Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Non-aligned memory operand while MXCSR.MM = 0.

Null data segment used to reference memory.

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.
Instruction execution caused a page fault.

Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 1,
see SIMD Floating-Point Exceptions below for details.

SIMD Floating-Point Exceptions

A source operand was an SNaN value.

Undefined operation.

Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

NHnnnl | "
Nnnnl | "

General protection, #GP

Alignment check, #AC

Page fault, #PF
SIMD floating-point, #XF S

X [X[>] O | X X|X|X| X [X[>>>>00

w
w
X

Invalid operation, IE

w
w
X

102 CVTTPD2DQ, VCVTTPD2DQ Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTTPS2DQ Convert Packed Single-Precision Floating-Point
VCVTTPS2DQ to Packed Doubleword Integers, Truncated

Converts packed single-precision floating-point values to packed signed doubleword integer values
and writes the converted values to the destination.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point value is a NaN, infinity, or the result of the conversion is larger than the max-
imum signed doubleword (=231 to +231 - 1), the instruction returns the 32-bit indefinite integer value
(8000 _0000h) when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTPS2DQ

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. The high-order 128-bits of the corresponding YMM register are not affected.

VCVTTPS2DQ

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Converts four packed single-precision floating-point values in an XMM register or a 128-bit memory
location to four packed signed doubleword integer values and writes the converted values to an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Converts eight packed single-precision floating-point values in a YMM register or a 256-bit memory
location to eight packed signed doubleword integer values and writes the converted values to a YMM
register.

CVTTPS2DQ is an SSE2 instruction and VCVTTPS2DQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTTPS2DQ xmm1, xmm2/mem128 F3 OF 5B /r Converts four packed single-precision floating-point
values in xmm2 or mem128 to four packed
doubleword integers in xmm1. Truncates inexact

result.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTPS2DQ xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 5B /r
VCVTTPS2DQ ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.10 5B /r

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTSS2SI

Instruction Reference CVTTPS2DQ, VCVTTPS2DQ 103

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK[2:1]!=11b
A |VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmaske SIUD foatine pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

104 CVTTPS2DQ, VCVTTPS2DQ Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTTSD2SI Convert Scalar Double-Precision Floating-Point
VCVTTSD2SI to Signed Double- or Quadword Integer, Truncated

Converts a scalar double-precision floating-point value to a signed integer value and writes the con-
verted value to a general-purpose register.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point Value isa NaN infinity, or the result of the conversmn is larger than the max-
imum signed doubleword (— 23t +231 — 1) or quadword value (- 26310 +203 — 1), the instruction
returns the indefinite integer value (8000 0000h for 32-bit integers, 8000 0000 0000 _0000h for 64-
bit integers) when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTSD2SI

The legacy form of the instruction has two encodings:

* When REX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

e When REX.W =1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

VCVTTSD2SI

The extended form of the instruction has two 128-bit encodings.

* When VEX.W =0, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 32-bit signed integer and writes the converted
value to a 32-bit general purpose register.

* When VEX.W = 1, converts a scalar double-precision floating-point value in the low-order 64 bits
of an XMM register or a 64-bit memory location to a 64-bit sign-extended integer and writes the
converted value to a 64-bit general purpose register.

CVTTSD2SI is an SSE2 instruction and VCVTTSD2SI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

CVTTSD2SI reg32, xmm1/mem64 F2 (WO0) OF 2C /r Converts a packed double-precision floating-point
value in xmm1 or memé64 to a doubleword integer in
reg32. Truncates inexact result.

CVTTSD2SI reg64, xmm1/mem64 F2 (W1) OF 2C /r Converts a packed double-precision floating-point
value in xmm1 or mem64 to a quadword integer in
reg64.Truncates inexact result.

Instruction Reference CVTTSD2SI, VCVTTSD2SI 105

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTSD2SI reg32, xmm2/mem64 C4 RXB.00001 0.1111.X.11 2C/r
VCVTTSD2SI reg64, xmm2/mem64 C4 RXB.00001 1.1111.X.11 2C/r

Related Instructions

(V)CVTDQ2PD, (V)CVTPD2DQ, (V)CVTPI2PD, (V)CVTSD2SL (V)CVTSI2SD,
(V)CVTTPD2DQ

MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: A flag that may be set or cleared is M (modified). Unaffected flags are blank.

Exceptions
] Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK][2:1] ! = 11b.
A |VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foating-poin, #XF | 5 | S | x | Lrmaskes SIUD feating pont exception whle CRa OSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.

Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

106 CVTTSD2SI, VCVTTSD2SI Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

CVTTSS2SI Convert Scalar Single-Precision Floating-Point
VCVTTSS2SI to Signed Double or Quadword Integer, Truncated

Converts a single-precision floating-point value to a signed integer value and writes the converted
value to a general-purpose register.

When the result of the conversion is an inexact value, the value is truncated (rounded toward zero).
When the floating-point Value isa NaN infinity, or the result of the conversmn is larger than the max-
imum signed doubleword (— 2314 4230 — 1) or quadword value (— 2630 +293 — 1), the indefinite inte-
ger value (8000_0000h for 32-bit integers, 8000_0000_0000_0000h for 64-bit integers) is returned
when the invalid-operation exception (IE) is masked.

There are legacy and extended forms of the instruction:
CVTTSS2SI

The legacy form of the instruction has two encodings:

e When REX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

* When REX.W = 1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are not affected.

VCVTTSS2SI

The extended form of the instruction has two 128-bit encodings:

e When VEX.W = 0, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 32-bit signed integer value and writes the
converted value to a 32-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

* When VEX.W =1, converts a single-precision floating-point value in the low-order 32 bits of an
XMM register or a 32-bit memory location to a 64-bit signed integer value and writes the
converted value to a 64-bit general-purpose register. Bits [255:128] of the YMM register that
corresponds to the source are cleared.

CVTTSS2SI is an SSEI instruction and VCVTTSS2SI is an AVX instruction. Support for these
instructions is indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Reference CVTTSS2SI, VCVTTSS2SI 107

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

Instruction Encoding

Mnemonic Opcode Description

CVTTSS2SI reg32, xmm1/mem32 F3 (WO0) OF 2C /r Converts a single-precision floating-point value in
xmm<1 or mem32 to a 32-bit integer value in reg32.
Truncates inexact result.

CVTTSS2SI reg64, xmm1/mem64 F3 (W1) OF 2C /r Converts a single-precision floating-point value in
xmm<1 or mem64 to a 64-bit integer value in reg64.
Truncates inexact result.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VCVTTSS2SI reg32, xmm1/mem32 C4 RXB.00001 0.1111.X.10 2C /Ir
VCVTTSS2SI regb4, xmm1/mem64 C4 RXB.00001 1.1111.X.10 2CIr

Related Instructions
(V)CVTDQ2PS, (V)CVTPS2DQ, (V)CVTSI2SS, (V)CVTSS2SI, (V)CVTTPS2DQ

MXCSR FIa_c_;s Affected
MM | FZ RC PM|{UM | OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE

M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
. S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
X

Unmasked SIMD floating-point exception while CR4.0OSXMMEXCPT = 1,

SIMD fioating-point, #XF S see SIMD Floating-Point Exceptions below for details.

108 CVTTSS2SI, VCVTTSS2SI Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Cause of Exception

Exception

Real| Virt |Prot

SIMD Floating-Point Exceptions

Invalid operation. |E S S X | A source operand was an SNaN value.
P ’ S S X | Undefined operation.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

CVTTSS2SI, VCVTTSS2SI

109

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
DIVPD Divide
VDIVPD Packed Double-Precision Floating-Point

Divides each of the packed double-precision floating-point values of the first source operand by the
corresponding packed double-precision floating-point values of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:
DIVPD

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Divides two packed double-precision floating-point values in the first source XMM register by the
corresponding packed double-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes the two results a destination XMM register. Bits [255:128] of
the YMM register that corresponds to the destination are cleared.

YMM Encoding

Divides four packed double-precision floating-point values in the first source YMM register by the
corresponding packed double-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

DIVPD is an SSE2 instruction and VDIVPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

DIVPD xmm1, xmm2/mem128 66 OF 5E /r Divides packed double-precision floating-point values in
xmm<1 by the packed double-precision floating-point
values in xmm2 or mem128. Writes quotients to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5E /r
VDIVPD ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.01 5E Ir

Related Instructions
(V)DIVPS, (V)DIVSD, (V)DIVSS

110 DIVPD, VDIVPD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatne pont exceptor whle crie > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DIVPD, VDIVPD 111

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
DIVPS Divide
VDIVPS Packed Single-Precision Floating-Point

Divides each of the packed single-precision floating-point values of the first source operand by the
corresponding packed single-precision floating-point values of the second source operand and writes
the quotients to the destination.

There are legacy and extended forms of the instruction:
DIVPS

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VDIVPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Divides four packed single-precision floating-point values in the first source XMM register by the
corresponding packed single-precision floating-point values in either a second source XMM register
or a 128-bit memory location and writes two results to a third destination XMM register. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Divides eight packed single-precision floating-point values in the first source YMM register by the
corresponding packed single-precision floating-point values in either a second source YMM register
or a 256-bit memory location and writes the two results a destination YMM register.

DIVPS is an SSEI instruction and VDIVPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

DIVPS xmm1, xmm2/mem128 OF 5E /r Divides packed single-precision floating-point values in
xmm1 by the corresponding values in xmm2 or mem128.
Writes quotients to xmm1

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5E /r
VDIVPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5E /r

Related Instructions
(V)DIVPD, (V)DIVSD, (V)DIVSS

112 DIVPS, VDIVPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatne pont exceptor whle crie > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | Aresult could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DIVPS, VDIVPS 113

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
DIVSD Divide
VDIVSD Scalar Double-Precision Floating-Point

Divides the double-precision floating-point value in the low-order quadword of the first source oper-
and by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the quotient to the low-order quadword of the destination.

There are legacy and extended forms of the instruction:

DIVSD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination are not affected. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VDIVSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. Bits [127:64] of the first source operand are copied to bits [127:64] of
the destination. The destination is a third XMM register. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

DIVSD is an SSE2 instruction and VDIVSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

DIVSD xmm1, xmm2/mem64 F2 OF 5E /r Divides the double-precision floating-point value in the low-
order 64 bits of xmm1by the corresponding value in xmm2
or mem64. Writes quotient to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 5E /r

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSS

MXCSR Flags Affected
MM | FZ RC PM | UM |OM | ZM DM | IM (DAZ| PE | UE | OE | ZE | DE | IE
M M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

114 DIVSD, VDIVSD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Somasses SIUD foatine-pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DIVSD, VDIVSD 115

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
DIVSS Divide Scalar Single-Precision Floating-Point
VDIVSS

Divides the single-precision floating-point value in the low-order doubleword of the first source oper-
and by the single-precision floating-point value in the low-order doubleword of the second source
operand and writes the quotient to the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:

DIVSS

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination register. Bits [127:32]
of the destination are not affected. Bits [255:128] of the YMM register that corresponds to the desti-
nation are not affected.

VDIVSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:32] of the first
source operand are copied to bits [127:32] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

DIVSS is an SSEI instruction and VDIVSS is an AVX instruction. Support for these instructions is
indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

DIVSS xmm1, xmm2/mem32 F3 OF 5E /r Divides a single-precision floating-point value in the low-
order doubleword of xmm<1 by a corresponding value in
xmm2 or mem32. Writes the quotient to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VDIVSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5E /r

Related Instructions
(V)DIVPD, (V)DIVPS, (V)DIVSD

MXCSR Flags Affected
MM | FZ | RC PM | UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

116 DIVSS, VDIVSS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Somasses SIUD foatine-pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Division by zero, ZE S S X | Division of finite dividend by zero-value divisor.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DIVSS, VDIVSS 117

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
DPPD Dot Product
VDPPD Packed Double-Precision Floating-Point

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.

Selectively multiplies packed double-precision values in a source operand by the corresponding val-
ues in another source operand, writes the results to a temporary location, adds the results, writes the
sum to a second temporary location and selectively writes the sum to a destination.

Mask bits [5:4] of an 8-bit immediate operand perform multiplicative selection. Bit 5 selects bits
[127:64] of the source operands; bit 4 selects bits [63:0] of the source operands. When a mask bit=1,
the corresponding packed double-precision floating point values are multiplied and the product is
written to the corresponding position of a 128-bit temporary location. When a mask bit = 0, the corre-
sponding position of the temporary location is cleared.

After the two 64-bit values in the first temporary location are added and written to the 64-bit second
temporary location, mask bits [1:0] of the same 8-bit immediate operand perform write selection. Bit
1 selects bits [127:64] of the destination; bit 0 selects bits [63:0] of the destination. When a mask bit =
1, the 64-bit value of the second temporary location is written to the corresponding position of the
destination. When a mask bit = 0, the corresponding position of the destination is cleared.

When the operation produces a NaN, its value is determined as follows.

Source Operands (in either order) NaN Result!
QNaN Any non-NaN floating-point value Value of QNaN
(or single-operand instruction)
SNaN Any non-NaN floating-point value Value of SNaN,
(or single-operand instruction) converted to a QNaN?
QNaN QNaN First operand
QNaN SNaN First operand
(converted to QNaN if SNaN
SNaN SNaN First operand
converted to a QNaN?
Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when both
multiplications produce NaNs, the one that corresponds to bits [64:0] is written to all indicated fields
of the destination, regardless of how those NaNs were generated from the sources. When the high-
order multiplication produces NaNs and the low-order multiplication produces infinities of opposite
signs, the real indefinite QNaN (produced as the sum of the infinities) is written to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

118 DPPD, VDPPD Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

There are legacy and extended forms of the instruction:
DPPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VDPPD

The extended form of the instruction has a single 128-bit encoding.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

DPPD is an SSE4.1 instruction and VDPPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_ 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

DPPD xmm1, xmm2/mem128, imm8 66 OF 3A 41 /rib Selectively multiplies packed double-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VDPPD xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 41 /rib

Related Instructions

(V)DPPS
MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M M M M
17 | 15 | 14 ‘ 13 | 12 | 1 10 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.
Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Instruction Reference DPPD, VDPPD 119

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
Invalid opcode, #UD A | XFEATURE_ENABLED MASK][2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x | Snmasses SIUD foatng-pont exceptor whle CRAOSXMMEXCPT = 1.
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

120

DPPD, VDPPD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
DPPS Dot Product
VDPPS Packed Single-Precision Floating-Point

Computes the dot-product of the input operands. An immediate operand specifies both the input val-
ues and the destination locations to which the products are written.

Selectively multiplies packed single-precision values in a source operand by corresponding values in
another source operand, writes results to a temporary location, adds pairs of results, writes the sums to
additional temporary locations, and selectively writes a cumulative sum to a destination.

Mask bits [7:4] of an 8-bit immediate operand perform multiplicative selection. Each bit selects a 32-
bit segment of the source operands; bit 7 selects bits [127:96], bit 6 selects bits [95:64], bit 5 selects
bits [63:32], and bit 4 selects bits [31:0]. When a mask bit = 1, the corresponding packed single-preci-
sion floating point values are multiplied and the product is written to the corresponding position of a
128-bit temporary location. When a mask bit = 0, the corresponding position of the temporary loca-
tion is cleared.

After multiplication, three pairs of 32-bit values are added and written to temporary locations.

Bits [63:32] and [31:0] of temporary location 1 are added and written to 32-bit temporary location 2;
bits [127:96] and [95:64] of temporary location 1 are added and written to 32-bit temporary location
3; then the contents of temporary locations 2 and 3 are added and written to 32-bit temporary location
4.

After addition, mask bits [3:0] of the same 8-bit immediate operand perform write selection. Each bit
selects a 32-bit segment of the source operands; bit 3 selects bits [127:96], bit 2 selects bits [95:64],
bit 1 selects bits [63:32], and bit 0 selects bits [31:0] of the destination. When a mask bit = 1, the 64-
bit value of the fourth temporary location is written to the corresponding position of the destination.
When a mask bit = 0, the corresponding position of the destination is cleared.

For the 256-bit extended encoding, this process is performed on the upper and lower 128 bits of the
affected YMM registers.

When the operation produces a NaN, its value is determined as follows.

Source Operands (in either order) NaN Result!
QNaN Any non-NaN floating-point value Value of QNaN
(or single-operand instruction)
SNaN Any non-NaN floating-point value Value of SNaN,
(or single-operand instruction) converted to a QNaN?
QNaN QNaN First operand
QNaN SNaN First operand
(converted to QNaN if SNaN
SNaN SNaN First operand
converted to a QNaN?

Note: 1. A NaN result produced when the floating-point invalid-operation exception is masked.
2. The conversion is done by changing the most-significant fraction bit to 1.

For each addition occurring in either the second or third step, for the purpose of NaN propagation, the
addend of lower bit index is considered to be the first of the two operands. For example, when all four
multiplications produce NaNs, the one that corresponds to bits [31:0] is written to all indicated fields

Instruction Reference DPPS, VDPPS 121

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

of the destination, regardless of how those NaNs were generated from the sources. When the two
highest-order multiplication produce NaNs and the two lowest-low-order multiplications produce
infinities of opposite signs, the real indefinite QNaN (produced as the sum of the infinities) is written
to the destination.

NaNs in source operands or in computational results result in at least one NaN in the destination. For
the 256-bit version, NaNs are propagated within the two independent dot product operations only to
their respective 128-bit results.

There are legacy and extended forms of the instruction:
DPPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VDPPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

DPPS is an SSE4.1 instruction and VDPPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

DPPS xmm1, xmm2/mem128, imm8 66 OF 3A 40 /rib Selectively multiplies packed single-precision
floating-point values in xmm2 or mem128 by
corresponding values in xmm1, adds interim
products, selectively writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VDPPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 40 /rib
VDPPS ymm1, ymm2, ymm3/mem256, imm8 C4 RXB.00011 X.src.1.01 40 /rib

Related Instructions
(V)DPPD

122 DPPS, VDPPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions are determined separately for each add-multiply operation.
Unmasked exceptions do not affect the destination

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmasses SIUD foatne pont exceptor whle crie > MEXCPT = T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

DPPS, VDPPS 123

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
EXTRACTPS Extract
VEXTRACTPS Packed Single-Precision Floating-Point

Copies one of four packed single-precision floating-point values from a source XMM register to a
general purpose register or a 32-bit memory location.

Bits [1:0] of an immediate byte operand specify the location of the 32-bit value that is copied. 00b
corresponds to the low word of the source register and 11b corresponds to the high word of the source
register. Bits [7:2] of the immediate operand are ignored.

There are legacy and extended forms of the instruction:
EXTRACTPS

The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location. A 32-bit single-precision value extracted to a general purpose register is zero-
extended to 64-bits.

VEXTRACTPS

The extended form of the instruction has a single 128-bit encoding.

The source operand is an XMM register. The destination can be a general purpose register or a 32-bit
memory location.

EXTRACTPS is an SSE4.1 instruction and VEXTRACTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description
EXTRACTPS reg32/mem32, xmm1 66 OF 3A 17 /rib Extract the single-precision floating-point
imm8 element of xmm1 specified by imm8 to
reg32/mem32.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VEXTRACTPS reg32/mem32, xmm1, imm8 C4 RXB.00011 X.1111.0.01 17 Irib

Related Instructions
(V)INSERTPS

124 EXTRACTPS, VEXTRACTPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N nnn

NDnnnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X| X[X[X|X|>|> > > > 00w

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

EXTRACTPS, VEXTRACTPS 125

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

EXTRQ Extract Field From Register

Extracts specified bits from the lower 64 bits of the first operand (the destination XMM register). The
extracted bits are saved in the least-significant bit positions of the lower quadword of the destination;
the remaining bits in the lower quadword of the destination register are cleared to 0. The upper quad-
word of the destination register is undefined.

The portion of the source data being extracted is defined by the bit index and the field length. The bit
index defines the least-significant bit of the source operand being extracted. Bits [bit index + length
field — 1]:[bit index] are extracted. If the sum of the bit index + length field is greater than 64, the
results are undefined.

For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source [47:32] in bits 15:0, with zeros in bits 63:16.

A value of zero in the field length is defined as a length of 64. If the length field is 0 and the
bit index 1s 0, bits 63:0 of the source are extracted. For any other value of the bif index, the results are
undefined.

The bit index and field length can be specified as immediate values (second and first immediate oper-
ands, respectively, in the case of the three argument version of the instruction), or they can both be
specified by fields in an XMM source operand. In the latter case, bits [5:0] of the XMM register spec-
ify the number of bits to extract (the field length) and bits [13:8] of the XMM register specify the
index of the first bit in the field to extract. The bit index and field length are each six bits in length;
other bits of the field are ignored.

The diagram below illustrates the operation of this instruction.

XMM1

second imm38 first imm38
‘ 0 7 5 0 7 5 0

=7 B

127 6463

shift right g

mask to field length-e
|

XMM1 XMM2
127 6463 % 0 127 138 50
shift right g
mask to field length-e
|

126 EXTRQ Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

EXTRQ is an SSE4A instruction. Support for SSE4A instructions is indicated by CPUID
Fn8000 0001 ECX[SSE4A] = 1. Software must check the CPUID bit once per program or library
initialization before using the EXTRQ instruction, or inconsistent behavior may result.

Instruction Encoding

Mnemonic Opcode Description

Extract field from xmm1, with the least significant bit
of the extracted data starting at the bit index

EXTRQ xmm1,imm8,imm8 66 0F 78 /0ibib specified by [5:0] of the second immediate byte, with
the length specified by [5:0] of the first immediate
byte.

Extract field from xmm1, with the least significant bit
EXTRQ xmm1. xmm2 66 OF 79 /r of the extracted data starting at the bit index

specified by xmm2[13:8], with the length specified
by xmm2[5:0].

Related Instructions
INSERTQ, PINSRW, PEXTRW

rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X SSE4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.
popice notavaiable, | X X | The task-switch bit (TS) of CRO was set to 1.

Instruction Reference EXTRQ 127

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
HADDPD Horizontal Add
VHADDPD Packed Double-Precision Floating-Point

Adds adjacent pairs of double-precision floating-point values in two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:
HADDPD

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination; adds the corresponding doublewords of the
second source XMM register or a 128-bit memory location and writes the sum to bits [127:64] of the
destination. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VHADDPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the first source XMM reg-
ister and writes the sum to bits [63:0] of the destination XMM register; adds the corresponding dou-
blewords of the second source XMM register or a 128-bit memory location and writes the sum to bits
[127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the destination
are cleared.

YMM Encoding

Adds the packed double-precision values in bits [127:64] and bits [63:0] of the of the first source
YMM register and writes the sum to bits [63:0] of the destination YMM register; adds the corre-
sponding doublewords of the second source YMM register or a 256-bit memory location and writes

the sum to bits [127:64] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

HADDPD is an SSE3 instruction and VHADDPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description
HADDPD xmm1, xmm2/mem128 66 OF 7C /r Adds adjacent pairs of double-precision values in xmm1
and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHADDPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7CIr
VHADDPD ymm1, ymm2, ymm3/mem?256 C4 RXB.00001 X.src.1.01 7CIr

Related Instructions
(V)HADDPS, (V)HSUBPD, (V)HSUBPS

128 HADDPD, VHADDPD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatne pont exceptor whle crie > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

HADDPD, VHADDPD 129

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
HADDPS Horizontal Add
VHADDPS Packed Single-Precision

Adds adjacent pairs of single-precision floating-point values in two source operands and writes the
sums to a destination.

There are legacy and extended forms of the instruction:
HADDPS

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM regis-
ter and writes the sum to bits [31:0] of the destination; adds the packed single-precision values in bits

[127:96] and bits [95:64] of the first source register and writes the sum to bits [63:32] of the destina-

tion. Adds the corresponding values in the second source XMM register or a 128-bit memory location
and writes the sum to bits [95:64] and [127:96] of the destination. The first source register is also the

destination. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VHADDPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source XMM regis-
ter and writes the sum to bits [31:0] of the destination XMM register; adds the packed single-preci-
sion values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source XMM register or a
128-bit memory location and writes the sum to bits [95:64] and [127:96] of the destination. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Adds the packed single-precision values in bits [63:32] and bits [31:0] of the first source YMM regis-
ter and writes the sum to bits [31:0] of the destination YMM register; adds the packed single-preci-
sion values in bits [127:96] and bits [95:64] of the first source register and writes the sum to bits
[63:32] of the destination. Adds the corresponding values in the second source YMM register or a
256-bit memory location and writes the sums to bits [95:64] and [127:96] of the destination. Performs
the same process for the upper 128 bits of the sources and destination.

HADDPS is an SSE3 instruction and VHADDPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description
HADDPS xmm1, xmm2/mem128 F2 OF 7C /r Adds adjacent pairs of single-precision values in xmm1
and xmm2 or mem128. Writes the sums to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHADDPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.11 7CIr
VHADDPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.11 7CIr

130 HADDPS, VHADDPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Related Instructions

AMDG64 Technology

(V)HADDPD, (V)HSUBPD, (V)HSUBPS

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatna pont exceptor whle cri > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

HADDPS, VHADDPS 131

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
HSUBPD Horizontal Subtract
VHSUBPD Packed Double-Precision

Subtracts adjacent pairs of double-precision floating-point values in two source operands and writes
the sums to a destination.

There are legacy and extended forms of the instruction:
HSUBPD

The first source register is also the destination.

Subtracts the packed double-precision value in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination; subtracts the corre-
sponding values of the second source XMM register or a 128-bit memory location and writes the dif-
ference to bits [127:64] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are not affected.

VHSUBPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the first
source XMM register and writes the difference to bits [63:0] of the destination XMM register; sub-
tracts the corresponding values of the second source XMM register or a 128-bit memory location and
writes the difference to bits [127:64] of the destination. Bits [255:128] of the YMM register that cor-
responds to the destination are cleared.

YMM Encoding

Subtracts the packed double-precision values in bits [127:64] from the value in bits [63:0] of the of
the first source YMM register and writes the difference to bits [63:0] of the destination YMM regis-
ter; subtracts the corresponding values of the second source YMM register or a 256-bit memory loca-
tion and writes the difference to bits [127:64] of the destination. Performs the same process for the
upper 128 bits of the sources and destination.

HSUBPD is an SSE3 instruction and VHSUBPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

HSUBPD xmm1, xmm2/mem128 66 OF 7D /r Subtracts adjacent pairs of double-precision floating-
point values in xmm1 and xmm2 or mem128. Writes the
differences to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VHSUBPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 7D Ir
VHSUBPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 7D Ir

132 HSUBPD, VHSUBPD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Related Instructions

AMDG64 Technology

(V)HSUBPS, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatna pont exceptor whle cri > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

HSUBPD, VHSUBPD 133

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
HSUBPS Horizontal Subtract Packed Single
VHSUBPS

Subtracts adjacent pairs of single-precision floating-point values in two source operands and writes
the differences to a destination.

There are legacy and extended forms of the instruction:
HSUBPS

Subtracts the packed single-precision values in bits [63:32] from the values in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination; subtracts the packed
single-precision values in bits [127:96] from the value in bits [95:64] of the first source register and
writes the difference to bits [63:32] of the destination. Subtracts the corresponding values of the sec-
ond source XMM register or a 128-bit memory location and writes the differences to bits [95:64] and
[127:96] of the destination. The first source register is also the destination. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VHSUBPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source XMM register and writes the difference to bits [31:0] of the destination XMM register; sub-
tracts the packed single-precision values in bits [127:96] from the value bits [95:64] of the first source
register and writes the sum to bits [63:32] of the destination. Subtracts the corresponding values of the
second source XMM register or a 128-bit memory location and writes the differences to bits [95:64]
and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to the destina-
tion are cleared.

YMM Encoding

Subtracts the packed single-precision values in bits [63:32] from the value in bits [31:0] of the first
source YMM register and writes the difference to bits [31:0] of the destination YMM register; sub-
tracts the packed single-precision values in bits [127:96] from the value in bits [95:64] of the first
source register and writes the difference to bits [63:32] of the destination. Subtracts the corresponding
values of the second source YMM register or a 256-bit memory location and writes the differences to
bits [95:64] and [127:96] of the destination. Performs the same process for the upper 128 bits of the
sources and destination.

HSUBPS is an SSE3 instruction and VHSUBPS is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description
HSUBPS xmm1, xmm2/mem128 F2 OF 7D /r Subtracts adjacent pairs of values in xmm1 and xmm2
or mem128. Writes differences to xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VHSUBPS xmm1, xmm2, xmm3/mem128 c4 RXB.00001 X.src.0.11 7D I
VHSUBPS ymm1, ymm2, ymm3/mem256 c4 RXB.00001 X.src.1.11 7D Ir

134 HSUBPS, VHSUBPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Related Instructions

AMDG64 Technology

(V)HSUBPD, (V)HADDPD, (V)HADDPS

MXCSR Flags Affected

MM | FZ | RC PM UM |[OM | ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M [M| M M

17 |15 [14 [13 [12 [11][10] 9 8 7 6 5 4 3 2 1 0

Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatna pont exceptor whle cri > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.
Overflow, OE S S X | Rounded result too large to fit into the format of the destination operand.
Underflow, UE S S X | Rounded result too small to fit into the format of the destination operand.
Precision, PE S S X | A result could not be represented exactly in the destination format.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

HSUBPS, VHSUBPS 135

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
INSERTPS Insert
VINSERTPS Packed Single-Precision Floating-Point

Copies a selected single-precision floating-point value from a source operand to a selected location in
a destination register and optionally clears selected elements of the destination. The legacy and
extended forms of the instruction treat the remaining elements of the destination in different ways.

Selections are specified by three fields of an immediate 8-bit operand:

7 6 5 4 3 \ 2 | 1 \ 0
COUNT_S | COUNT D ZMASK

COUNT _S — The binary value of the field specifies a 32-bit element of a source register, counting
upward from the low-order doubleword. COUNT S is used only for register source; when the source
is a memory operand, COUNT S =0.

COUNT _D — The binary value of the field specifies a 32-bit destination element, counting upward
from the low-order doubleword.

ZMASK — Set a bit to clear a 32-bit element of the destination.
There are legacy and extended forms of the instruction:

INSERTPS

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

When the source operand is a register, the instruction copies the 32-bit element of the source specified
by Count S to the location in the destination specified by Count D, and clears destination elements
as specified by ZMask. Elements of the destination that are not cleared are not affected.

When the source operand is a memory location, the instruction copies a 32-bit value from memory, to
the location in the destination specified by Count_D, and clears destination elements as specified by
ZMask. Elements of the destination that are not cleared are not affected.

VINSERTPS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [255:128] of the YMM
register that corresponds to the destination are cleared.

When the second source operand is a register, the instruction copies the 32-bit element of the source
specified by Count_S to the location in the destination specified by Count D. The other elements of
the destination are either copied from the first source operand or cleared as specified by ZMask.

When the second source operand is a memory location, the instruction copies a 32-bit value from the
source to the location in the destination specified by Count D. The other elements of the destination
are either copied from the first source operand or cleared as specified by ZMask.

INSERTPS is an SSE4.1 instruction and VINSERTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

136 INSERTPS, VINSERTPS Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

INSERTPS xmm1, xmm2/mem32, imm8 66 OF 3A 21 /rib Insert a selected single-precision floating-
point value from xmm2 or from mem32 at a
selected location in xmm1 and clear
selected elements of xmm1. Selections
specified by imm8.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VINSERTPS xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 21 /rib

Related Instructions

(V)EXTRACTPS
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference INSERTPS, VINSERTPS 137

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

INSERTQ Insert Field

Inserts bits from the lower 64 bits of the source operand into the lower 64 bits of the destination oper-
and. No other bits in the lower 64 bits of the destination are modified. The upper 64 bits of the desti-
nation are undefined.

The least-significant / bits of the source operand are inserted into the destination, with the least-signif-
icant bit of the source operand inserted at bit position n, where / and » are defined as the field length
and bit index, respectively.

Bits (field length — 1):0 of the source operand are inserted into bits (bit index + field length — 1):(bit
index) of the destination. If the sum of the bit index + length field is greater than 64, the results are
undefined.

For example, if the bit index is 32 (20h) and the field length is 16 (10h), then the result in the destina-
tion register will be source operand[15:0] in bits 47:32. Bits 63:48 and bits 31:0 are not modified.

A value of zero in the field length is defined as a length of 64. If the length field is 0 and the bit index
is 0, bits 63:0 of the source operand are inserted. For any other value of the bit index, the results are
undefined.

The bits to insert are located in the XMM2 source operand. The bit index and field length can be spec-
ified as immediate values or can be specified in the XMM source operand. In the immediate form, the
bit index and the field length are specified by the fourth (second immediate byte) and third operands
(first immediate byte), respectively. In the register form, the bit index and field length are specified in
bits [77:72] and bits [69:64] of the source XMM register, respectively. The bit index and field length
are each six bits in length; other bits in the field are ignored.

The diagram below illustrates the operation of this instruction.

first second

XMM2 imm8 imm38
XMMA 127 6463 075 075 0
| 0 JE |
127 6463 ‘ 0 select number of bits to insert -¢——

select bit position for insert -
|

XMM1 XMM2

77 69
127 6463 0 127 72 6463 0

|| | P

Lselect nulnber of bits to insert

G :
L select bit position for insert

138 INSERTQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

INSERTQ is an SSE4A instruction. Support for SSE4A instructions is indicated CPUID
Fn8000 0001 ECX[SSE4A] = 1. Software must check the CPUID bit once per program or library
initialization before using the INSERTQ instruction, or inconsistent behavior may result.

Instruction Encoding

Mnemonic Opcode

INSERTQ xmm1, xmm2, imm8,

Description

Insert field starting at bit 0 of xmm2 with the length

F2 OF 78 Irib ib specified by [5:0] of the first immediate byte. This

imm8 field is inserted into xmm1 starting at the bit position
specified by [5:0] of the second immediate byte.
Insert field starting at bit 0 of xmm2 with the length
specified by xmm2[69:64]. This field is inserted into
INSERTQ xmm1, xmm2 F20F79/r xmm?1 starting at the bit position specified by
xmm2[77:72].
Related Instructions
EXTRQ, PINSRW, PEXTRW
rFLAGS Affected
None
Exceptions
Virtual
Exception Real | 8086 |Protected Cause of Exception
X X X SSE4A instructions are not supported, as indicated by
CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (EM) of CRO was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(OSFXSR) of CR4 is cleared to 0.
pelice notavaiable, |y X X | The task-switch bit (TS) of CRO was set to 1.

Instruction Reference

INSERTQ 139

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
LDDQU Load
VLDDQU Unaligned Double Quadword

Loads unaligned double quadwords from a memory location to a destination register.

Like the (V)MOVUPD instructions, (V)LDDQU loads a 128-bit or 256-bit operand from an
unaligned memory location. However, to improve performance when the memory operand is actually
misaligned, (V)LDDQU may read an aligned 16 or 32 bytes to get the first part of the operand, and an
aligned 16 or 32 bytes to get the second part of the operand. This behavior is implementation-specific,
and (V)LDDQU may only read the exact 16 or 32 bytes needed for the memory operand. If the mem-
ory operand is in a memory range where reading extra bytes can cause performance or functional
issues, use (V)MOVUPD instead of (V)LDDQU.

Memory operands that are not aligned on 16-byte or 32-byte boundaries do not cause general-protec-
tion exceptions.

There are legacy and extended forms of the instruction:
LDDQU

The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are not
affected.

VLDDQU

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The source operand is an unaligned 128-bit memory location. The destination operand is an XMM
register. Bits [255:128] of the YMM register that corresponds to the destination register are cleared.

YMM Encoding

The source operand is an unaligned 256-bit memory location. The destination operand is a YMM reg-
ister.

LDDQU is an SSE3 instruction and VLDDQU is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description
LDDQU xmm1, mem128 F20F FO/r Loads a 128-bit value from an unaligned mem128 to
xmmf1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VLDDQU xmm1, mem128 C4 RXB.00001 X.1111.0.11 FO /r
VLDDQU ymm1, mem256 C4 RXB.00001 XA111.1.11 FO /r

Related Instructions
(V)MOVDQU

140 LDDQU, VLDDQU Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

D nn

D nn

Write to a read-only data segment.

Null data segment used to reference memory.

Alignment check, #AC

(@]

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

XIX|X| X[X[X|X|X|> > > > 0nn

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

LDDQU, VLDDQU 141

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
LDMXCSR Load
VLDMXCSR MXCSR Control/Status Register

Loads the MXCSR register with a 32-bit value from memory.

For both legacy LDMXCSR and extended VLDMXCSR forms of the instruction, the source operand
is a 32-bit memory location and the destination operand is the MXCSR.

If an MXCSR load clears a SIMD floating-point exception mask bit and sets the corresponding
exception flag bit, a SIMD floating-point exception is not generated immediately. An exception is
generated only when the next instruction that operates on an XMM or YMM register operand and
causes that particular SIMD floating-point exception to be reported executes.

A general protection exception occurs if the instruction attempts to load non-zero values into reserved
MXCSR bits. Software can use MXCSR MASK to determine which bits are reserved. For details,
see “128-Bit, 64-Bit, and x87 Programming” in Volume 2.

The MXCSR register is described in “Registers” in Volume 1.

LDMXCSR is an SSEI instruction and VLDMXCSR is an AVX instruction. Support for these
instructions is indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description
LDMXCSR mem32 OF AE /2 Loads MXCSR register with 32-bit value from memory.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VLDMXCSR mem32 C4 RXB.00001 X.1111.0.00 AE /2

Related Instructions
(V)STMXCSR

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M M M M M M M M M M M M M
17 15 14 13 12 1" 10 9 8 7 6 5 4 3 2
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

N
o

142 LDMXCSR, VLDMXCSR Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
S S S |CRO.EM =1.
. S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | XFEATURE_ENABLED_MASK[2:1] ! = 11b.
A |VEX.vwwwy ! =1111b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Null data segment used to reference memory.
S S X | Attempt to load non-zero values into reserved MXCSR bits
Page fault, #PF X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

LDMXCSR, VLDMXCSR 143

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MASKMOVDQU Masked Move
VMASKMOVDQU Double Quadword Unaligned

Moves bytes from the first source operand to a memory location specified by the DS:rDI register.
Bytes are selected by mask bits in the second source operand. The memory location may be
unaligned.

The mask consists of the most significant bit of each byte of the second source register.
When a mask bit = 1, the corresponding byte of the first source register is written to the destination;
when a mask bit = 0, the corresponding byte is not written.

Exception and trap behavior for elements not selected for storage to memory are implementation
dependent. For instance, a given implementation may signal a data breakpoint or a page fault for
bytes that are zero-masked and not actually written.

The instruction implicitly uses weakly-ordered, write-combining buffering for the data, as described
in “Buffering and Combining Memory Writes” in Volume 2. For data that is shared by multiple pro-
cessors, this instruction should be used together with a fence instruction in order to ensure data coher-
ency (see “Cache and TLB Management” in Volume 2).

There are legacy and extended forms of the instruction:
MASKMOVDQU

The first source operand is an XMM register and the second source operand is another XMM register.
The destination is a 128-bit memory location.

VMASKMOVDQU

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is another XMM register.
The destination is a 128-bit memory location.

MASKMOVDQU is an SSE2 instruction and VMASKMOVDQU is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MASKMOVDQU xmm1, xmm2 66 OF F7 /r Move bytes selected by a mask value in xmm2 from
xmm1 to the memory location specified by DS:rDI.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMASKMOVDQU xmm1, xmm2 C4 RXB.00001 X.1111.0.01 F7r

Related Instructions
(V)MASKMOVPD, (V)MASKMOVPS

144 MASKMOVDQU, VMASKMOVDQU Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X 0O [X|X|X|X[X|>>>>>0WOV

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MASKMOVDQU, VMASKMOVDQU 145

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MAXPD Maximum
VMAXPD Packed Double-Precision Floating-Point

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXPD

Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMAXPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Compares four pairs of packed double-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

MAXPD is an SSE2 instruction and VMAXPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MAXPD xmm1, xmm2/mem128 66 OF 5F /r Compares two pairs of packed double-precision values in
xmm1 and xmm2 or mem128 and writes the greater value
to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5F Ir
VMAXPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5F I

Related Instructions
(VIMAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

146 MAXPD, VMAXPD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatne pont exceptor whle crie > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXPD, VMAXPD 147

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MAXPS Maximum
VMAXPS Packed Single-Precision Floating-Point

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically greater value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXPS

Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMAXPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Compares eight pairs of packed single-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

MAXPS is an SSEI instruction and VMAXPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000_ 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MAXPS xmm1, xmm2/mem128 OF 5F /r Compares four pairs of packed single-precision values in
xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5F /r
VMAXPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5F Ir

Related Instructions
(VIMAXPD, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

148 MAXPS, VMAXPS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatne pont exceptor whle crie > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MAXPS, VMAXPS 149

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MAXSD Maximum
VMAXSD Scalar Double-Precision Floating-Point

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXSD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 64-bit memory location. The first source register is also the destination. When the second
source is a 64-bit memory location, the upper 64 bits of the first source register are copied to the des-
tination. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VMAXSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 64-bit memory location. The destination is an XMM register. When the second source is
a 64-bit memory location, the upper 64 bits of the first source register are copied to the destination.
Bits [127:64] of the destination are copied from bits [127:64] of the first source. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

MAXSD is an SSE2 instruction and VMAXSD is an AVX instruction. Support for these instructions
1s indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MAXSD xmm1, xmm2/mem64 F2 OF 5F /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or memé64 and
writes the greater value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X. 11 5F Ir

Related Instructions
(VYMAXPD, (V)MAXPS, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

150 MAXSD, VMAXSD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Smasses SIUD foatne-pont exceptor whle CRAOSXMMEXCPT = 1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.

Denormalized operand, DE | S S X | A source operand was a denormal value.
X — AVX and SSE exception

A — AVX exception

S — SSE exception

Instruction Reference MAXSD, VMAXSD 151

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MAXSS Maximum
VMAXSS Scalar Single-Precision Floating-Point

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically greater
value into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MAXSS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMAXSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the desti-
nation are copied from the first source operand. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

MAXSS is an SSE1 instruction and VMAXSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MAXSS xmm1, xmm2/mem32 F3 OF 5F /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the greater value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMAXSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5F Ir

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MINPD, (V)MINPS, (V)MINSD, (V)MINSS

152 MAXSS, VMAXSS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Smasses SIUD foatne-pont exceptor whle CRAOSXMMEXCPT = 1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MAXSS, VMAXSS 153

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MINPD Minimum
VMINPD Packed Double-Precision Floating-Point

Compares each packed double-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINPD

Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMINPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares two pairs of packed double-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Compares four pairs of packed double-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

MINPD is an SSE2 instruction and VMINPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MINPD xmm1, xmm2/mem128 66 OF 5D /r Compares two pairs of packed double-precision values in
xmm<1 and xmm2 or mem128 and writes the lesser value
to the corresponding position in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMINPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 5D /r
VMINPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 5D /r

Related Instructions
(VIMAXPD, (V)MAXPS, (V)IMAXSD, (VIMAXSS, (V)MINPS, (V)MINSD, (V)MINSS

154 MINPD, VMINPD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatne pont exceptor whle crie > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINPD, VMINPD 155

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MINPS Minimum
VMINPS Packed Single-Precision Floating-Point

Compares each packed single-precision floating-point value of the first source operand to the corre-
sponding value of the second source operand and writes the numerically lesser value into the corre-
sponding location of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINPS

Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMINPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Compares four pairs of packed single-precision floating-point values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding
Compares eight pairs of packed single-precision floating-point values.

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a YMM register.

MINPS is an SSE1 instruction and VMINPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000_ 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MINPS xmm1, xmm2/mem128 OF 5D /r Compares four pairs of packed single-precision values in
xmm1 and xmm2 or mem128 and writes the lesser values
to the corresponding positions in xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMINPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 5D /r
VMINPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 5D /Ir

Related Instructions
(VIMAXPD, (V)MAXPS, (V)IMAXSD, (V)MAXSS, (V)MINPD, (V)MINSD, (V)MINSS

156 MINPS, VMINPS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatne pont exceptor whle crie > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MINPS, VMINPS 157

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MINSD Minimum
VMINSD Scalar Double-Precision Floating-Point

Compares the scalar double-precision floating-point value in the low-order 64 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 64 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINSD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 64-bit memory location. The first source register is also the destination. Bits [127:64] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMINSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 64-bit memory location. The destination is an XMM register. Bits [127:64] of the desti-
nation are copied from the first source operand. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

MINSD is an SSE2 instruction and VMINSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MINSD xmm1, xmm2/mem64 F2 OF 5D /r Compares a pair of scalar double-precision values in the
low-order 64 bits of xmm1 and xmm2 or mem64 and
writes the lesser value to the low-order 64 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMINSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.sre.X. 11 5D /Ir

Related Instructions
(VYMAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSS

158 MINSD, VMINSD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

MXCSR Flags Affected
MM | FZ | RC PM UM |OM|zZmM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M
17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Smasses SIUD foatne-pont exceptor whle CRAOSXMMEXCPT = 1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MINSD, VMINSD 159

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MINSS Minimum
VMINSS Scalar Single-Precision Floating-Point

Compares the scalar single-precision floating-point value in the low-order 32 bits of the first source
operand to a corresponding value in the second source operand and writes the numerically lesser
value into the low-order 32 bits of the destination.

If both source operands are equal to zero, the value of the second source operand is returned. If either
operand is a NaN (SNaN or QNaN), and invalid-operation exceptions are masked, the second source
operand is written to the destination.

There are legacy and extended forms of the instruction:
MINSS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination are not affected. Bits [255:128] of the YMM register that corresponds to the destination
are not affected.

VMINSS

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 32-bit memory location. The destination is an XMM register. Bits [127:32] of the desti-
nation are copied from the first source operand. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

MINSS is an SSE1 instruction and VMINSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MINSS xmm1, xmm2/mem32 F3 OF 5D /r Compares a pair of scalar single-precision values in the
low-order 32 bits of xmm1 and xmm2 or mem32 and
writes the lesser value to the low-order 32 bits of xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMINSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 5D /r

Related Instructions
(V)MAXPD, (V)MAXPS, (V)MAXSD, (V)MAXSS, (V)MINPD, (V)MINPS, (V)MINSD

MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

160 MINSS, VMINSS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Somasses SIUD foatine-pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MINSS, VMINSS 161

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVAPD Move Aligned
VMOVAPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values. Values can be moved from a register or mem-
ory location to a register; or from a register to a register or memory location.

A memory operand that is not aligned causes a general-protection exception.
There are legacy and extended forms of the instruction:
MOVAPD

Moves two double-precision floating-point values. There are encodings for each type of move.
* The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVAPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move:

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves four double-precision floating-point values. There are encodings for each type of move:

e The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVAPD is an SSE2 instruction and VMOVAPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

162 MOVAPD, VMOVAPD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Instruction Encoding

Mnemonic

MOVAPD xmm1, xmm2/mem128

MOVAPD xmm1/mem128, xmm?2

Mnemonic

VMOVAPD xmm1, xmm2/mem128
VMOVAPD xmm1/mem128, xmm2
VMOVAPD ymm1, ymmZ2/mem256
VMOVAPD ymm1/mem256, ymm2

Related Instructions

AMDG64 Technology

Opcode Description
66 OF 28 /r Moves two packed double-precision floating-point

values from xmm2 or mem128 to xmm1.

66 OF 29 /r Moves two packed double-precision floating-point

values from xmm1 or mem128 to xmm?2.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 28 Ir
C4 RXB.00001 X.1111.0.01 29 /r
C4 RXB.00001 X.1111.1.01 28 Ir
C4 RXB.00001 X.1111.1.01 29 /r

(V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nw|lnl>

0nln| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK]2:1] ! = 11b.

VEX.vvwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

DO nnn

DO nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| T [X|O|X|X|X|X|> > >>0n®

Instruction execution caused a page fault.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

MOVAPD, VMOVAPD 163

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVAPS Move Aligned
VMOVAPS Packed Single-Precision Floating-Point

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned causes a general-protection exception.

There are legacy and extended forms of the instruction:
MOVAPS

Moves four single-precision floating-point values.

There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVAPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves four single-precision floating-point values. There are encodings for each type of move.

* The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves eight single-precision floating-point values. There are encodings for each type of move.

e The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVAPS is an SSEI instruction and VMOVAPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] respec-
tively.

164 MOVAPS, VMOVAPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Instruction Encoding

Mnemonic

MOVAPS xmm1, xmm2/mem128

MOVAPS xmm1/mem128, xmm?2

Mnemonic

VMOVAPS xmm1, xmm2/mem128
VMOVAPS xmm1/mem128, xmm2
VMOVAPS ymm1, ymm2/mem256
VMOVAPS ymm1/mem256, ymm?2

Related Instructions

AMDG64 Technology

Opcode Description
OF 28 /r Moves four packed single-precision floating-point

values from xmm2 or mem128 to xmm?1.

OF 29 /r Moves four packed single-precision floating-point

values from xmm1 or mem128 to xmm2.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.00 28 /r
C4 RXB.00001 X.1111.0.00 29 /r
C4 RXB.00001 X.1111.1.00 28 Ir
C4 RXB.00001 X.1111.1.00 29 /r

(VYMOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,

(V)MOVUPS

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nw|lnl>

0nln| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK]2:1] ! = 11b.

VEX.vvwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

DO nnn

DO nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| T [X|O|X|X|X|X|> > >>0n®

Instruction execution caused a page fault.

A — AVX exception
S — SSE exception

X — AVX and SSE exception

Instruction Reference

MOVAPS, VMOVAPS 165

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MOVD Move
VMOVD Doubleword or Quadword

Moves 32-bit and 64-bit values. A value can be moved from a general-purpose register or memory
location to the corresponding low-order bits of an XMM register, with zero-extension to 128 bits; or
from the low-order bits of an XMM register to a general-purpose register or memory location.

The quadword form of this instruction is distinct from the differently-encoded (V)MOVQ instruction.
There are legacy and extended forms of the instruction:
MOVD

There are two encodings for 32-bit moves, characterized by REX.W = 0.
* The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The
destination is an XMM register. The 32-bit value is zero-extended to 128 bits.

e The source operand is an XMM register. The destination is either a 32-bit general-purpose register
or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by REX.W = 1.

e The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The
destination is an XMM register. The 64-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 64-bit general-purpose register
or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVD

The extended form of the instruction has four 128-bit encodings:

There are two encodings for 32-bit moves, characterized by VEX.W = 0.

e The source operand is either a 32-bit general-purpose register or a 32-bit memory location. The
destination is an XMM register. The 32-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 32-bit general-purpose register
or a 32-bit memory location.

There are two encodings for 64-bit moves, characterized by VEX.W = 1.

* The source operand is either a 64-bit general-purpose register or a 64-bit memory location. The
destination is an XMM register. The 64-bit value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either a 64-bit general-purpose register
or a 64-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVD is an SSE2 instruction and VMOVD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

166 MOVD, VMOVD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Instruction Encoding

Mnemonic
MOVD xmm, reg32/mem32
MOVQ xmm, reg64/mem64
MOVD reg32/mem32, xmm
MOVQ reg64/mem64, xmm
Mnemonic

VMOVD xmm, reg32/mem32
VMOVQ xmm, reg64/mem64
VMOVD reg32/mem32, xmm
VMOVQ reg64/mem64, xmm

Related Instructions

AMDG64 Technology

Opcode Description
66 (W0) OF 6E /r Move a 32-bit value from reg32/mem32 to xmm.
66 (W1) OF 6E /r Move a 64-bit value from reg64/mem64 to xmm.
66 (W0) OF 7E /r Move a 32-bit value from xmm to reg32/mem32
66 (W1) OF 7E /r Move a 64-bit value from xmm to reg64/mem64.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 0.1111.0.01 6E /r
C4 RXB.00001 1.1111.0.01 6E /r
C4 RXB.00001 0.1111.1.01 TE Ir
C4 RXB.00001 1.1111.1.01 TE Ir

(V)MOVDQA, (V)MOVDQU, (V)MOVQ

Exceptions

Mode

E .
xception Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

wln|>

nlm| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASK[2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

nNnnnnn

General protection, #GP

nNnnnnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

XX X| X[X[X|X|X|>Z > >I> > O0O®

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVD, VMOVD 167

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVDDUP Move and Duplicate
VMOVDDUP Double-Precision Floating-Point

Moves and duplicates double-precision floating-point values.
There are legacy and extended forms of the instruction:
MOVDDUP

Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is another XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are not affected.

VMOVDDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Moves and duplicates one quadword value.

The source operand is either the low 64 bits of an XMM register or the address of the least-significant
byte of 64 bits of data in memory. The destination is another XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves and duplicates two even-indexed quadword values.

The source operand is either a YMM register or the address of the least-significant byte of 256 bits of
data in memory. The destination is another YMM register.Bits [63:0] of the source are written to bits
[127:64] and [63:0] of the destination; bits [191:128] of the source are written to bits [255:192] and
[191:128] of the destination.

MOVDDUP is an SSE3 instruction and VMOVDDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description
MOVDDUP xmm1, xmm2/mem64 F2 OF 12 /r Moves two copies of the low 64 bits of xmm2 or
mem64 to xmmf1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
MOVDDUP xmm1, xmm2/mem64 C4 RXB.00001 X.1111.0.11 12 /r
MOVDDUP ymm1, ymm2/mem256 C4 RXB.00001 XA111.1.11 12 /r

Related Instructions
(V)MOVSHDUP, (V)MOVSLDUP

168 MOVDDUP, VMOVDDUP Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference with alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVDDUPFP, VMOVDDUP 169

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MOVDQA Move Aligned
VMOVDQA Double Quadword

Moves aligned packed integer values. Values can be moved from a register or a memory location to
another register, or from a register to another register or a memory location.

A memory operand that is not aligned causes a general-protection exception.
There are legacy and extended forms of the instruction:

MOVDQA

Moves two aligned quadwords (128-bit move). There are two encodings.
* The source operand is an XMM register. The destination is either another XMM register or a
128-bit memory location.

e The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVDQA

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two aligned quadwords (128-bit move). There are two encodings.

* The source operand is an XMM register. The destination is either another XMM register or a
128-bit memory location.

* The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves four aligned quadwords (256-bit move). There are two encodings.

* The source operand is a YMM register. The destination is either another YMM register or a 256-bit
memory location.

e The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

MOVDQA is an SSE2 instruction and VMOVDQA is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

170 MOVDQA, VMOVDQA Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Instruction Encoding

Mnemonic
MOVDQA xmm1, xmm2/mem128

MOVDQA xmm1/mem128, xmm?2

Mnemonic

VMOVDQA xmm1, xmm2/mem128
VMOVDQA xmm1/mem128, xmm?2
VMOVDQA ymm1, xmm2/mem256
VMOVDQA ymm1/mem256, ymm2

Related Instructions

AMDG64 Technology

Opcode Description
66 OF 6F /r Moves aligned packed integer values from xmm2

ormem128 to xmm1.

66 OF 7F /r Moves aligned packed integer values from xmm1 or

mem128 to xmm?2.
Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.01 6F /r
C4 RXB.00001 X.1111.0.01 6F /r
C4 RXB.00001 X.1111.1.01 TF Ir
C4 RXB.00001 X.1111.1.01 TF Ir

(V)MOVD, (V)MOVDQU, (V)MOVQ

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
S S S | Memory operand not aligned on a 16-byte boundary.
General protection, #GP S S X | Write to a read-only data segment.
A VEX256: Memory operand not 32-byte al?gned.
VEX128: Memory operand not 16-byte aligned.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVDQA, VMOVDQA 171

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MOVDQU Move
VMOVDQU Unaligned Double Quadword

Moves unaligned packed integer values. Values can be moved from a register or a memory location to
another register, or from a register to another register or a memory location.

There are legacy and extended forms of the instruction:
MovDQU

Moves two unaligned quadwords (128-bit move). There are two encodings.
* The source operand is an XMM register. The destination is either another XMM register or a
128-bit memory location.

e The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVDQU

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two unaligned quadwords (128-bit move). There are two encodings:

* The source operand is an XMM register. The destination is either another XMM register or a
128-bit memory location.

* The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves four unaligned quadwords (256-bit move). There are two encodings:

* The source operand is a YMM register. The destination is either another YMM register or a 256-bit
memory location.

e The source operand is either a YMM register or a 256-bit memory location. The destination is a
YMM register.

MOVDQU is an SSE2 instruction and VMOVDQU is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

172 MOVDQU, VMOVDQU Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Instruction Encoding

Mnemonic

MOVDQU xmm1, xmm2/mem128

MOVDQU xmm1/mem128, xmm?2

Mnemonic

VMOVDQU xmm1, xmm2/mem128
VMOVDQU xmm1/mem128, xmm2
VMOVDQU ymm1, xmm2/mem256
VMOVDQU ymm1/mem256, ymm?2

Related Instructions

AMDG64 Technology

Opcode Description
F3 OF 6F /r Moves unaligned packed integer values from xmm2 or

mem128 to xmm1.

F3 OF 7F /r Moves unaligned packed integer values from xmm1 or

mem128 to xmm?2.
Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.10 6F /r
C4 RXB.00001 X.1111.0.10 6F /r
C4 RXB.00001 X.1111.1.10 TF Ir
C4 RXB.00001 X1111.1.10 TF Ir

(VMOVD, (V)MOVDQA, (V)MOVQ

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Invalid opcode, #UD

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

nw|lnl>

0nln| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK]2:1] ! = 11b.

VEX.vvwv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

Memory address exceeding data segment limit or non-canonical.

DO nn

D nn

Write to a read-only data segment.

Null data segment used to reference memory.

Alignment check, #AC

w

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X|X|X| X[X|X|X|X[>>> > 00

Instruction execution caused a page fault.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVDQU, VMOVDQU 173

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVHLPS Move High to Low
VMOVHLPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point values from the high quadword of an XMM regis-
ter to the low quadword of another XMM register.

There are legacy and extended forms of the instruction:
MOVHLPS

The source operand is bits [127:64] of an XMM register. The destination is bits [63:0] of another
XMM register. Bits [127:64] of the destination are not affected. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VMOVHLPS

The extended form of the instruction has a 128-bit encoding only.

The source operands are bits [127:64] of two XMM registers. The destination is a third XMM regis-
ter. Bits [127:64] of the first source are moved to bits [127:64] of the destination; bits [127:64] of the
second source are moved to bits [63:0] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MOVHLPS is an SSE1 instruction and VMOVHLPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description
MOVHLPS xmm1, xmm2 OF 12 /r Moves two packed single-precision floating-point
values from xmm2[127:64] to xmm1[63:0].
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVHLPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 12 Ir

Related Instructions

(V)MOVAPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

174 MOVHLPS, VMOVHLPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
] Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVHLPS, VMOVHLPS 175

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVHPD Move High
VMOVHPD Packed Double-Precision Floating-Point

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVHPD

There are two encodings.

e The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM
register.

e The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPD

The extended form of the instruction has two 128-bit encodings:
* There are two source operands. The first source is an XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [63:0] of the source register are written

to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

* The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVHPD is an SSE2 instruction and VMOVHPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description
MOVHPD xmm1, mem64 66 OF 16 /r Moves a packed double-precision floating-point value from
mem64 to xmm1[127:64].
MOVHPD memé64, xmm1 66 OF 17 /r Moves a packed double-precision floating-point value from
xmm1[127:64] to mem64.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVHPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 16 Ir
VMOVHPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 17 1Ir

176 MOVHPD, VMOVHPD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Related Instructions

AMDG64 Technology

(V)MOVAPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

X

X

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvwv | = 1111b (for memory destination encoding only).

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N0 nnn

nNnnnnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X| X[X[X|X|>Z|> > > > 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVHPD, VMOVHPD 177

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVHPS Move High
VMOVHPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point value. Values can be moved from a 64-bit memory
location to the high-order quadword of an XMM register, or from the high-order quadword of an
XMM register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVHPS

There are two encodings.

e The source operand is a 64-bit memory location. The destination is bits [127:64] of an XMM
register.

e The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVHPS

The extended form of the instruction has two 128-bit encodings:
* There are two source operands. The first source is an XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [63:0] of the source register are written

to bits [63:0] of the destination; bits [63:0] of the source memory location are written to bits
[127:64] of the destination.

* The source operand is bits [127:64] of an XMM register. The destination is a 64-bit memory
location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVHPS is an SSE1 instruction and VMOVHPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECXJ[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description
MOVHPS xmm1, mem64 OF 16 /r Moves two packed double-precision floating-point value from
mem64 to xmm1[127:64].
MOVHPS mem64, xmm1 OF 17 /Ir Moves two packed double-precision floating-point value from
xmm1[127:64] to mem64.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVHPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 16 /r
VMOVHPS mem64, xmm1 C4 RXB.00001 X.1111.0.00 17 Ir

178 MOVHPS, VMOVHPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Related Instructions

AMDG64 Technology

(V)MOVAPS, (V)MOVHLPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,

(V)MOVUPS
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
’ A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.vwwv ! = 1111b (for memory destination encoding only).
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVHPS, VMOVHPS 179

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVLHPS Move Low to High
VMOVLHPS Packed Single-Precision Floating-Point

Moves two packed single-precision floating-point values from the low quadword of an XMM register
to the high quadword of another XMM register.

There are legacy and extended forms of the instruction:
MOVLHPS

The source operand is bits [63:0] of an XMM register. The destination is bits [127:64] of another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VMOVLHPS

The extended form of the instruction has a 128-bit encoding only.

The source operands are bits [63:0] of two XMM registers. The destination is a third XMM register.
Bits [63:0] of the first source are moved to bits [63:0] of the destination; bits [63:0] of the second
source are moved to bits [127:64] of the destination. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

MOVLHPS is an SSE1 instruction and VMOVLHPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description
MOVLHPS xmm1, xmm2 OF 16 /r Moves two packed single-precision floating-point
values from xmmZ2[63:0] to xmm1[127:64].
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVLHPS xmm1, xmm2, xmm3 C4 RXB.00001 X.src.0.00 16 /r

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

180 MOVLHPS; VMOVLHPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
] Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVLHPS; VMOVLHPS 181

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVLPD Move Low
VMOVLPD Packed Double-Precision Floating-Point

Moves a packed double-precision floating-point value. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.

There are legacy and extended forms of the instruction:
MOVLPD

There are two encodings.
e The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.

* The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

VMOVLPD

The extended form of the instruction has two 128-bit encodings.

e There are two source operands. The first source is an XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

e The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

MOVLPD is an SSE2 instruction and VMOVLPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description
MOVLPD xmm1, mem64 66 OF 12 /r Moves a packed double-precision floating-point value from
mem64 to xmm1[63:0].
MOVHPD memé64, xmm1 66 OF 13 /r Moves a packed double-precision floating-point value from
xmm1[63:0] to mem64.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVLPD xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.01 12 /r
VMOVLPD mem64, xmm1 C4 RXB.00001 X.1111.0.01 13 /r

Related Instructions
(V)IMOVAPD, (V)MOVHPD, (V)MOVMSKPD, (V)MOVSD, (V)MOVUPD

182 MOVLPD, VMOVLPD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvwv | = 1111b (for memory destination encoding only).

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

NDnnnn

Nnnunnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(7))

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X| X[X[X|X|>|> > > > 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVLPD, VMOVLPD 183

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MOVLPS Move Low Packed Single-Precision
VMOVLPS Floating-Point

Moves two packed single-precision floating-point values. Values can be moved from a 64-bit memory
location to the low-order quadword of an XMM register, or from the low-order quadword of an XMM
register to a 64-bit memory location.

There are legacy and extended forms of the instruction:

MOVLPS

There are two encodings.

e The source operand is a 64-bit memory location. The destination is bits [63:0] of an XMM register.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.

* The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

VMOVLPS

The extended form of the instruction has two 128-bit encodings.

* There are two source operands. The first source is an XMM register. The second source is a 64-bit
memory location. The destination is an XMM register. Bits [127:64] of the source register are
written to bits [127:64] of the destination; bits [63:0] of the source memory location are written to
bits [63:0] of the destination. Bits [255:128] of the YMM register that corresponds to the
destination are cleared.

e The source operand is bits [63:0] of an XMM register. The destination is a 64-bit memory location.

MOVLPS is an SSEI instruction and VMOVLPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description
MOVLPS xmm1, mem64 OF 12 /r Moves two packed single-precision floating-point value from
mem64 to xmm1[63:0].
MOVLPS mem64, xmm1 OF 13 /r Moves two packed single-precision floating-point value from
xmm1[63:0] to mem64.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVLPS xmm1, xmm2, mem64 C4 RXB.00001 X.src.0.00 12 /r
VMOVLPS mem64, xmm?1 C4 RXB.00001 X.1111.0.00 13 /r

Related Instructions

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVMSKPS, (V)MOVSS,
(V)MOVUPS

184 MOVLPS, VMOVLPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvwv | = 1111b (for memory destination encoding only).

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

NDnnnn

Nnnunnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(7))

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X| X[X[X|X|>|> > > > 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVLPS, VMOVLPS 185

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVMSKPD Extract Sign Mask
VMOVMSKPD Packed Double-Precision Floating-Point

Extracts the sign bits of packed double-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.

There are legacy and extended forms of the instruction:
MOVMSKPD

Extracts two mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the source are not affected.

MOVMSKPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Extracts two mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [1:0] of the destination and clears the remaining
bits. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Extracts four mask bits.

The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general pur-

pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

MOVMSKPD is an SSE2 instruction and VMOVMSKPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description
MOVMSKPD reg, xmm 66 OF 50 /r Move zero-extended sign bits of packed double-precision
values from xmm to a general-purpose register.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVMSKPD reg, xmm C4 RXB.00001 X.1111.0.01 50 /r
VMOVMSKPD reg, ymm C4 RXB.00001 X.1111.1.01 50 /r

Related Instructions
(VMOVMSKPS, (V)PMOVMSKB

186 MOVMSKPD, VMOVMSKPD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
] Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.vwwwv ! = 1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVMSKPD, VMOVMSKPD 187

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVMSKPS Extract Sign Mask
VMOVMSKPS Packed Single-Precision Floating-Point

Extracts the sign bits of packed single-precision floating-point values from an XMM register, zero-
extends the value, and writes it to the low-order bits of a general-purpose register.

There are legacy and extended forms of the instruction:
MOVMSKPS
Extracts four mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

MOVMSKPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding
Extracts four mask bits.

The source operand is an XMM register. The destination can be either a 64-bit or a 32-bit general pur-
pose register. Writes the extracted bits to positions [3:0] of the destination and clears the remaining
bits.

YMM Encoding

Extracts eight mask bits.

The source operand is a YMM register. The destination can be either a 64-bit or a 32-bit general pur-

pose register. Writes the extracted bits to positions [7:0] of the destination and clears the remaining
bits.

MOVMSKPS is an SSE1 instruction and VMOVMSKPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description
MOVMSKPS reg, xmm OF 50 /r Move zero-extended sign bits of packed single-precision
values from xmm to a general-purpose register.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVMSKPS reg, xmm C4 RXB.00001 X.1111.0.00 50 /r
VMOVMSKPS reg, ymm C4 RXB.00001 X.1111.1.00 50 /r

Related Instructions
(V)IMOVMSKPD, (V)PMOVMSKB

188 MOVMSKPS, VMOVMSKPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
] Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.vwwwv ! = 1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVMSKPS, VMOVMSKPS 189

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MOVNTDQ Move Non-Temporal
VMOVNTDQ Double Quadword

Moves double quadword values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The

processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For

further information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.

An attempted store to a non-aligned memory location results in a #GP exception.

There are legacy and extended forms of the instruction:

MOVNTDQ

Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.
VMOVNTDQ

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding
Moves two 128-bit values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTDQ is an SSE2 instruction and VMOVNTDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description
MOVNTDQ mem128, xmm 66 OF E7 /r Moves a 128-bit value from xmm to mem128, minimizing
cache pollution.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTDQ mem128, xmm C4 RXB.00001 X.1111.0.01 E7 /Ir
VMOVNTDQ mem256, ymm C4 RXB.00001 X.1111.1.01 E7 /r

Related Instructions
(V)IMOVNTDQA, (V)MOVNTPD, (V)MOVNTPS

190 MOVNTDQ, VMOVNTDQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

General protection, #GP

N nnn

N nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| B [X|O|X|X|X|X[|[> > P> 00

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVNTDQ, VMOVNTDQ 191

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MOVNTDQA Move Non-Temporal
VMOVNTDQA Double Quadword Aligned

Moves aligned double quadword values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The

processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For

further information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an MFENCE instruction to force strong memory ordering of MOVNTDQ with respect to
other stores.

An attempted store to a non-aligned memory location results in a #GP exception.

There are legacy and extended forms of the instruction:

MOVNTDQA

Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.
VMOVNTDQA

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves one 128-bit value.

The source operand is an XMM register. The destination is a 128-bit memory location.

YMM Encoding
Moves two 128-bit values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTDQA is an SSE4.1 instruction and VMOVNTDQA is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

MOVNTDQA mem128, xmm 66 OF 38 2A /r Moves an aligned 128-bit value from xmm to mem128,
minimizing cache pollution.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTDQA mem128, xmm C4 RXB.00010 X.1111.0.01 2A Ir
VMOVNTDQA mem256, ymm C4 RXB.00010 X.1111.1.01 2A Ir

Related Instructions
(V)IMOVNTDQ, (V)MOVNTPD, (V)MOVNTPS

192 MOVNTDQA, VMOVNTDQA Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.vwwwy ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
S S S | Memory operand not aligned on a 16-byte boundary.
General protection, #GP S S X | Write to a read-only data segment. '
A VEX256: Memory operand not 32-byte al!gned.
VEX128: Memory operand not 16-byte aligned.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVNTDQA, VMOVNTDQA 193

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVNTPD Move Non-Temporal
VMOVNTPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The

processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For

further information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.

An attempted store to a non-aligned memory location results in a #GP exception.

There are legacy and extended forms of the instruction:

MOVNTPD

Moves two values.

The source operand is an XMM register. The destination is a 128-bit memory location.
MOVNTPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves two values.

The source operand is an XMM register. The destination is a 128-bit memory location.

YMM Encoding
Moves four values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTPD is an SSE2 instruction and VMOVNTPD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description
MOVNTPD mem128, xmm 66 OF 2B /r Moves two packed double-precision floating-point values
from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTPD mem128, xmm C4 RXB.00001 X.1111.0.01 2B /Ir
VMOVNTPD mem256, ymm C4 RXB.00001 X.1111.1.01 2B Ir

Related Instructions
MOVNTDQ, MOVNTI, MOVNTPS, MOVNTQ

194 MOVNTPD, VMOVNTPD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

General protection, #GP

N nnn

N nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| B [X|O|X|X|X|X[|[> > P> 00

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVNTPD, VMOVNTPD 195

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVNTPS Move Non-Temporal
VMOVNTPS Packed Single-Precision Floating-Point

Moves packed single-precision floating-point values from a register to a memory location.

Indicates to the processor that the data is non-temporal, and is unlikely to be used again soon. The

processor treats the store as a write-combining (WC) memory write, which minimizes cache pollu-
tion. The method of minimization depends on the hardware implementation of the instruction. For

further information, see “Memory Optimization” in Volume 1.

The instruction is weakly-ordered with respect to other instructions that operate on memory. Software
should use an SFENCE or MFENCE instruction to force strong memory ordering of MOVNTDQ
with respect to other stores.

An attempted store to a non-aligned memory location results in a #GP exception.

There are legacy and extended forms of the instruction:

MOVNTPS

Moves four values.

The source operand is an XMM register. The destination is a 128-bit memory location.
MOVNTPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves four values.

The source operand is an XMM register. The destination is a 128-bit memory location.
YMM Encoding
Moves eight values.

The source operand is a YMM register. The destination is a 256-bit memory location.

MOVNTPS is an SSE1 instruction and VMOVNTPS is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description
MOVNTPS mem128, xmm OF 2B /r Moves four packed double-precision floating-point values
from xmm to mem128, minimizing cache pollution.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVNTPS mem128, xmm C4 RXB.00001 X.1111.0.00 2B /Ir
VMOVNTPS mem256, ymm C4 RXB.00001 X.1111.1.00 2B Ir

Related Instructions
(V)IMOVNTDQ, (V)MOVNTDQA, (V)MOVNTPD, (V)MOVNTQ

196 MOVNTPS, VMOVNTPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

Memory operand not aligned on a 16-byte boundary.

General protection, #GP

N nnn

N nnn

Write to a read-only data segment.

VEX256: Memory operand not 32-byte aligned.
VEX128: Memory operand not 16-byte aligned.

Null data segment used to reference memory.

Page fault, #PF

X[X| B [X|O|X|X|X|X[|[> > P> 00

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVNTPS, VMOVNTPS 197

AMDZ\
AMDG64 Technology

26568—Rev. 3.177—May 2013

MOVNTSD Move Non-Temporal Scalar
Double-Precision Floating-Point

Stores one double-precision floating-point value from an XMM register to a 64-bit memory location.
This instruction indicates to the processor that the data is non-temporal, and is unlikely to be used
again soon. The processor treats the store as a write-combining memory write, which minimizes cache

pollution.

The diagram below illustrates the operation of this instruction:

mem64

XMM register
63 0 127 6463 0

copy

MOVNTSD is an SSE4A instruction. Support for SSE4A instructions is indicated by CPUID
Fn8000 0001 ECX[SSE4A]= 1. Software must check the CPUID bit once per program or library
initialization before using the MOVNTSD instruction or inconsistent behavior may result.

Instruction Encoding

Mnemonic Opcode Description

Stores one double-precision floating-point XMM
register value into a 64 bit memory location. Treat as

MOVNTSD mem64, xmm F2 OF 2B /r
a non-temporal store.

Related Instructions
MOVNTDQ, MOVNTI, MOVNTPD, MOVNTPS, MOVNTQ, MOVNTSS

rFLAGS Affected

None

198 MOVNTSD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
X X X The SSEA4A instructions are not supported, as
indicated by CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (CR0.EM) was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.0SFXSR) was cleared to 0.
peyice notavailable, | - x X X | The task-switch bit (CRO.TS) was set o 1.
Stack, #SS X X X A memory address exceeded the stack segment limit

or was non-canonical.

A memory address exceeded a data segment limit or

X X X was non-canonical.
gggeral protection, X A null data segment was used to reference memory.
X The destination operand was in a non-writable
segment.
Page fault, #PF X X A page fault resulted from executing the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference MOVNTSD 199

AMDZ\
AMDG64 Technology

26568—Rev. 3.177—May 2013

MOVNTSS Move Non-Temporal Scalar
Single-Precision Floating-Point
Stores one single-precision floating-point value from an XMM register to a 32-bit memory location.

This instruction indicates to the processor that the data is non-temporal, and is unlikely to be used
again soon. The processor treats the store as a write-combining memory write, which minimizes cache

pollution.
The diagram below illustrates the operation of this instruction:

mem32

XMM register
31 0 127 31 0

COpy

Support for the MOVNTSS instruction is indicated by CPUID Fn8000 0001 ECX[SSE4A]=1.
Software must check the CPUID bit once per program or library initialization before using the
MOVNTSS instruction, or inconsistent behavior may result.

Instruction Encoding

Mnemonic Opcode Description

Stores one single-precision floating-point XMM
register value into a 32-bit memory location. Treat as

MOVNTSS mem32, xmm F3 0F 2B /r
a non-temporal store.

Related Instructions
MOVNTDQ, MOVNTI, MOVNTOPD, MOVNTPS, MOVNTQ, MOVNTSD

rFLAGS Affected

None

200 MOVNTSS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
Exceptions
Virtual
Exception Real | 8086 | Protected Cause of Exception
X X X The SSEA4A instructions are not supported, as
indicated by CPUID Fn8000_0001_ECX[SSE4A] = 0.
Invalid opcode, #UD X X X The emulate bit (CR0.EM) was set to 1.
X X X The operating-system FXSAVE/FXRSTOR support bit
(CR4.0SFXSR) was cleared to 0.
peyice notavailable, | - x X X | The task-switch bit (CRO.TS) was set o 1.
A memory address exceeded the stack segment limit
Stack, #58 X X X or was non-canonical.
X X X A memory address exceeded a data segment limit or
was non-canonical.
gggeral protection, X A null data segment was used to reference memory.
X The destination operand was in a non-writable
segment.
Page fault, #PF X X A page fault resulted from executing the instruction.
Alignment check, #AC X An unaligned memory reference was performed while

alignment checking was enabled.

Instruction Reference MOVNTSS 201

AMDZU

AMDG64 Technology

MOvQ
vVMOVvQ

26568—Rev. 3.177—May 2013

Move
Quadword

Moves 64-bit values. The source is either the low-order quadword of an XMM register or a 64-bit
memory location. The destination is either the low-order quadword of an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

There are legacy and extended forms of the instruction:
MovaQ
There are two encodings:

e The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. The 64-bit value is zero-extended to 128 bits.

e The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
vMovQ
The extended form of the instruction has three 128-bit encodings:

* The source operand is an XMM register. The destination is an XMM register. The 64-bit value is
zero-extended to 128 bits.

* The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit
value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, the 64-bit value is zero-extended to 128 bits.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVQ is an SSE2 instruction and VMOVQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic
MOVQ xmm1, xmm2/mem64

Opcode Description

F3 OF 7E /r Move a zero-extended 64-bit value from xmm2 or memé64
to xmm1.

66 OF D6 /r Move a 64-bit value from xmm2 to xmm1 or mem64.
Zero-extends for register destination.

MOVQ xmm1/memé64, xmm?2

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVQ xmm1, xmm2 C4 RXB.00001 X.1111.0.10 TE Ir
VMOVQ xmm1, mem64 C4 RXB.00001 X.1111.0.10 TE Ir
VMOVQ xmm1/mem64, xmm2 C4 RXB.00001 X.1111.0.01 D6 /r

202 MovQ, YMOVQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Related Instructions

AMDG64 Technology

(VMOVD, (V)MOVDQA, (V)MOVDQU

Exceptions

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

n|lnl>

0nln| > X

CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

Invalid opcode, #UD

XFEATURE_ENABLED_MASK]2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

D nn n

D nnl n

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

w

Instruction execution caused a page fault.

Alignment check, #AC

XIX|X|X|X| X[X|X|>|>|> > > nwv

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

movaQ, vMovQ 203

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVSD Move
VMOVSD Scalar Double-Precision Floating-Point

Moves scalar double-precision floating point values. The source is either a low-order quadword of an
XMM register or a 64-bit memory location. The destination is either a low-order quadword of an
XMM register or a 64-bit memory location.

There are legacy and extended forms of the instruction:
MOVSD

There are two encodings.

e The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. If the source operand is a register, bits [127:64] of the destination are not affected.
If the source operand is a 64-bit memory location, the upper 64 bits of the destination are cleared.

* The source operand is an XMM register. The destination is either an XMM register or a 64-bit
memory location. When the destination is a register, bits [127:64] of the destination are not
affected.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVSD

The extended form of the instruction has four 128-bit encodings. Two of the encodings are function-
ally equivalent.

e The source operand is a 64-bit memory location. The destination is an XMM register. The 64-bit
value is zero-extended to 128 bits.
* The source operand is an XMM register. The destination is a 64-bit memory location.

e Two functionally-equivalent encodings:
There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 64-bit value in bits [63:0] of the
second source register is written to bits [63:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVSD is an SSE2 instruction and VMOVSD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

This instruction must not be confused with the MOVSD (move string doubleword) instruction of the
general-purpose instruction set. Assemblers can distinguish the instructions by the number and type
of operands.

204 MOVSD, VMOVSD Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

MOVSD xmm1, xmm2/mem64 F2 OF 10 /r Moves a 64-bit value from xmm2 or mem64 to xmm1. Zero
extends to 128 bits when source operand is memory.

MOVSD xmm1/memé64, xmm?2 F2 OF 11 /r Moves a 64-bit value from xmm2 to xmm1 or memé64.

Encoding 1
Mnemonic VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVSD xmm1, mem64 c4 RXB.00001 XA111.X.11 10 /r
VMOVSD mem64, xmm1 c4 RXB.00001 XA111.X.11 11 Ir
VMOVSD xmm1, xmm2, xmma3 2 C4 RXB.00001 X.src.X.11 10 /r
VMOVSD xmm1, xmm2, xmm3 2 C4 RXB.00001 X.src.X.11 11 Ir

Note 1: The addressing mode differentiates between the two operand form (where one operand is a memory location) and
the three operand form (where all operands are held in registers).

Note 2: These two encodings are functionally equivalent.

Related Instructions
(V)IMOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVUPD

Exceptions
] Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S CRO.EM = 1.
S S CR4.0SFXSR = 0.

Invalid opcode, #UD CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASK][2:1] ! = 11b.

VEX.vvwv | = 1111b (for memory destination enoding only).

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

CRO.TS =1.

Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Write to a read-only data segment.

Null data segment used to reference memory.

Instruction execution caused a page fault.

Unaligned memory reference when alignment checking enabled.

Device not available, #NM
Stack, #SS

D nn
D nn

General protection, #GP

(0)]

Page fault, #PF
Alignment check, #AC S

X — AVX and SSE exception
A — AVX exception
S — SSE exception

XIX|X| X[X[X|X|X|> > > > 0nn

Instruction Reference MOVSD, VMOVSD 205

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVSHDUP Move High and Duplicate
VMOVSHDUP Single-Precision

Moves and duplicates odd-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:
MOVSHDUP

Moves and duplicates two odd-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the des-
tination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSHDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves and duplicates two odd-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of the des-
tination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves and duplicates four odd-indexed single-precision floating-point values.

The source operand is a YMM register or a 256-bit memory location. The destination is a YMM reg-
ister. Bits [255:224] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [191:160] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [127:96] of the source are duplicated and written to bits [127:96] and [95:64] of

the destination. Bits [63:32] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

MOVSHDUP is an SSE3 instruction and VMOVSHDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

MOVSHDUP xmm1, xmm2/mem128 F3 0F 16 /r Moves and duplicates two odd-indexed single-
precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVSHDUP xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 16 /r
VMOVSHDUP ymm1, ymm2/mem256 C4 RXB.00001 X1111.1.10 16 /r

206 MOVSHDUP, VMOVSHDUP Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Related Instructions

(VMOVDDUP, (V)MOVSLDUP

Exceptions

AMDG64 Technology

Exception

Mode

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM = 1.

n|lnl>

0nln| > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASK]2:1] ! = 11b.

VEX.vvvv | = 1111b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

nunnon

nunnon

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[P| 0 | X[X|X|X|X[>>> > OO

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVSHDUP, VMOVSHDUP 207

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVSLDUP Move Low and Duplicate
VMOVSLDUP Single-Precision

Moves and duplicates even-indexed single-precision floating-point values.
There are legacy and extended forms of the instruction:
MOVSLDUP

Moves and duplicates two even-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the desti-
nation. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVSLDUP

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding
Moves and duplicates two even-indexed single-precision floating-point values.

The source operand is an XMM register or a 128-bit memory location. The destination is an XMM
register. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of the desti-
nation. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the destina-
tion. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves and duplicates four even-indexed single-precision floating-point values.

The source operand is a YMM register or a 256-bit memory location. The destination is a YMM reg-
ister. Bits [223:192] of the source are duplicated and written to bits [255:224] and [223:192] of the
destination. Bits [159:128] of the source are duplicated and written to bits [191:160] and [159:128] of
the destination. Bits [95:64] of the source are duplicated and written to bits [127:96] and [95:64] of

the destination. Bits [31:0] of the source are duplicated and written to bits [63:32] and [31:0] of the
destination.

MOVSLDUP is an SSE3 instruction and VMOVSLDUP is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE3] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

MOVSLDUP xmm1, xmm2/mem128 F30F 12/r Moves and duplicates two even-indexed single-
precision floating-point values in xmm2 or mem128.
Writes to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVSLDUP xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.10 12 /r
VMOVSLDUP ymm1, ymm2/mem256 Cc4 RXB.00001 X.1111.1.10 12 /r

208 MOVSLDUP, VMOVSLDUP Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Related Instructions
(VMOVDDUP, (V) MOVSHDUP

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.vwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVSLDUP, VMOVSLDUP 209

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVSS Move
VMOVSS Scalar Single-Precision Floating-Point

Moves scalar single-precision floating point values. The source is either a low-order doubleword of
an XMM register or a 32-bit memory location. The destination is either a low-order doubleword of an
XMM register or a 32-bit memory location.

There are legacy and extended forms of the instruction:

MOVSS

There are three encodings.

* The source operand is an XMM register. The destination is an XMM register. Bits [127:32] of the
destination are not affected.

e The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit
value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is either an XMM register or a 32-bit
memory location. When the destination is a register, bits [127:32] of the destination are not
affected.

Bits [255:128] of the YMM register that corresponds to the source are not affected.

VMOVSS

The extended form of the instruction has four 128-bit encodings. Two of the encodings are function-
ally equivalent.

e The source operand is a 32-bit memory location. The destination is an XMM register. The 32-bit
value is zero-extended to 128 bits.

* The source operand is an XMM register. The destination is a 32-bit memory location.

e Two functionally-equivalent encodings:
There are two source XMM registers. The destination is an XMM register. Bits [127:64] of the first
source register are copied to bits [127:64] of the destination; the 32-bit value in bits [31:0] of the
second source register is written to bits [31:0] of the destination.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

MOVSS is an SSEI instruction and VMOVSS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MOVSS xmm1, xmm2 F30F 10 /r Moves a 32-bit value from xmm2 to xmm?1.

MOVSS xmm1, mem32 F30F 10 /r Moves a zero-extended 32-bit value from mem32 to xmm1.
MOVSS xmm2/mem32, xmm1 F30F 11 /r Moves a 32-bit value from xmm<1 to xmm2 or mem32.
Mnemonic Encoding’

VEX RXB.map_select W.vvvv.L.pp Opcode

210 MOVSS, VMOVSS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

VMOVSS xmm1, mem32
VMOVSS mem32, xmm1

VMOVSS xmm1, xmm2, xmm3 2

VMOVSS xmm1, xmm2, xmm3 2

Note 1: The addressing mode differentiates between the two operand form (where one operand is a memory location) and
the three operand form (where all operands are held in registers).

Note 2: These two encodings are functionally equivalent.

Related Instructions

AMDG64 Technology

C4 RXB.00001 X1111.X.10 10 /r
C4 RXB.00001 X1111.X.10 1M/
C4 RXB.00001 X.src.X.10 10 /r

C4 RXB.00001 X.src.X.10 11 /r

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,

(V)MOVUPS
Exceptions
Exception ReaIM\theProt Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A | VEX.vwwv ! = 1111b (for memory destination enoding only).
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception

A — AVX exception
S — SSE exception

Instruction Reference

MOVSS, VMOVSS 211

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVUPD Move Unaligned
VMOVUPD Packed Double-Precision Floating-Point

Moves packed double-precision floating-point values. Values can be moved from a register or mem-
ory location to a register; or from a register to a register or memory location.

A memory operand that is not aligned does not cause a general-protection exception.
There are legacy and extended forms of the instruction:
MOVUPD

Moves two double-precision floating-point values. There are encodings for each type of move.
* The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.
VMOVUPD

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves two double-precision floating-point values. There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves four double-precision floating-point values. There are encodings for each type of move.

e The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

e The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVUPD is an SSE2 instruction and VMOVUPD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

212 MOVUPD, VMOVUPD Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

MOVUPD xmm1, xmm2/mem128 66 OF 10 /r Moves two packed double-precision floating-point
values from xmm2 or mem128 to xmmf1.

MOVUPD xmm1/mem128, xmm?2 66 OF 11 /r Moves two packed double-precision floating-point
values from xmm1 or mem128 to xmm2.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVUPD xmm1, xmm2/mem128 C4 RXB.00001 X.1111.0.01 10 /r
VMOVUPD xmm1/mem128, xmm2 C4 RXB.00001 X.1111.0.01 11/
VMOVUPD ymm1, ymm2/mem256 C4 RXB.00001 X.1111.1.01 10 /r
VMOVUPD ymm1/mem256, ymm?2 C4 RXB.00001 X.1111.1.01 11/

Related Instructions
(V)MOVAPD, (V)MOVHPD, (V)MOVLPD, (V)MOVMSKPD, (V)MOVSD

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Alignment check, #AC S S X | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MOVUPD, VMOVUPD 213

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MOVUPS Move Unaligned
VMOVUPS Packed Single-Precision Floating-Point

Moves packed single-precision floating-point values. Values can be moved from a register or memory
location to a register; or from a register to a register or memory location.

A memory operand that is not aligned does not cause a general-protection exception.

There are legacy and extended forms of the instruction:
MOVUPS

Moves four single-precision floating-point values. There are encodings for each type of move.
e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VMOVUPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

Moves four single-precision floating-point values. There are encodings for each type of move.

e The source operand is either an XMM register or a 128-bit memory location. The destination
operand is an XMM register.

* The source operand is an XMM register. The destination operand is either an XMM register or a
128-bit memory location.

Bits [255:128] of the YMM register that corresponds to the destination are cleared.

YMM Encoding

Moves eight single-precision floating-point values. There are encodings for each type of move.

e The source operand is either a YMM register or a 256-bit memory location. The destination
operand is a YMM register.

* The source operand is a YMM register. The destination operand is either a YMM register or a
256-bit memory location.

MOVUPS is an SSE1 instruction and VMOVUPS is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] respec-
tively.

214 MOVUPS, VMOVUPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Instruction Encoding

Mnemonic
MOVUPS xmm1, xmm2/mem128

MOVUPS xmm1/mem128, xmm?2

Mnemonic

VMOVUPS xmm1, xmm2/mem128
VMOVUPS xmm1/mem128, xmm2
VMOVUPS ymm1, ymm2/mem256
VMOVUPS ymm1/mem256, ymm?2

Related Instructions

AMDG64 Technology

Opcode Description
OF 10 /r Moves four packed single-precision floating-point
values from xmm2 or unaligned mem128 to xmm1.
OF 11 /r Moves four packed single-precision floating-point
values from xmm1 or unaligned mem128 to xmm?2.
Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00001 X.1111.0.00 10 /r
C4 RXB.00001 X.1111.0.00 1M1 /r
C4 RXB.00001 X.1111.1.00 10 /r
C4 RXB.00001 X.1111.1.00 1M1 /r

(V)MOVAPS, (V)MOVHLPS, (V)MOVHPS, (V)MOVLHPS, (V)MOVLPS, (V)MOVMSKPS,

(V)MOVSS
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A | VEX.vwwwv ! =1111b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Alignment check, #AC S S X | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MOVUPS, VMOVUPS 215

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MPSADBW Multiple Sum of Absolute Differences
VMPSADBW

Calculates the sum of absolute differences of each member of four sequential groups of four unsigned
byte integers in the first source register and each of four unsigned byte integers in a second source
register, and writes the 16-bit integer sums to the destination.

Bit fields in an 8-bit immediate operand are used to calculate offsets that select sequences of bytes in
the two source registers. The binary value of each bit field is multiplied by 32 to produce a 32-bit oft-
set. Bit 2 of the immediate operand determines the offset for the first source register; 11 bytes begin-
ning at the offset position are used. Bits [1:0] of the immediate operand determine the offset for the
second source register; four bytes beginning at the offset position are used.

The selected bytes are repositioned in the source registers. Bytes [10:0] of the first source occupy bits
[87:0] of the first source register; bytes [3:0] of the second source occupy bits [31:0] of the second
source register.

Operation is iterative and repeats eight times. Each repetition increments the starting byte position in
the first source by one and calculates the sum of differences with the four integers of the second
source. Results are written to eight consecutive words in the destination, starting with the low word.
In the first iteration, bytes [0:4] of the second source are subtracted from bytes [0:4] of the first source
and the sum of the differences is written to bits [15:0] of the destination; in the second iteration, bytes
[0:4] of the second source are subtracted from bytes [1:5] of the first source and the sum of the differ-
ences is written to bits [31:16] of the destination. The process continues until bytes [0:4] of the second
source are subtracted from bytes [7:10] of the first source and the sum of the differences is written to
bits [127:112] of the destination.

There are legacy and extended forms of the instruction:
MPSADBW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VMPSADBW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

MPSADBW is an SSE4.1 instruction and VMPSADBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

216 MPSADBW, VMPSADBW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Instruction Encoding

Mnemonic

MPSADBW xmm1, xmm2/mem128, imm8

AMDG64 Technology

Opcode Description

66 OF 3A 42 /rib Sums absolute difference of groups of
four 8-bit integer in xmm1 and xmm?2
or mem128. Writes results to xmm1.
Starting source offsets are determined

by imm8 bit fields.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMPSADBW xmm1, xmm2, xmm3/mem128 C4 RXB.00011 X.src.0.01 42 Ir

Related Instructions

(V)PSADBW, (V)PABSB, (V)PABSD, (V)PABSW

Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MPSADBW, VMPSADBW 217

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MULPD Multiply
VMULPD Packed Double-Precision Floating-Point

Multiplies each packed double-precision floating-point value of the first source operand by the corre-
sponding packed double-precision floating-point value of the second source operand and writes the
product of each multiplication into the corresponding quadword of the destination.

There are legacy and extended forms of the instruction:
MULPD

Multiplies two double-precision floating-point values in the first source XMM register by the corre-
sponding double precision floating-point values in either a second XMM register or a 128-bit mem-
ory location. The first source register is also the destination. Bits [255:128] of the YMM register that
corresponds to the destination are not affected.

VMULPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Multiplies two double-precision floating-point values in the first source XMM register by the corre-

sponding double-precision floating-point values in either a second source XMM register or a 128-bit
memory location. The destination is a third XMM register. Bits [255:128] of the YMM register that

corresponds to the destination are cleared.

YMM Encoding

Multiplies four double-precision floating-point values in the first source YMM register by the corre-
sponding double precision floating-point values in either a second source YMM register or a 256-bit
memory location. The destination is a third YMM register.

MULPD is an SSE2 instruction and VMULPD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MULPD xmm1, xmm2/mem128 66 OF 59 /r Multiplies two packed double-precision floating-
point values in xmm<1 by corresponding values in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMULPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 59 /r
VMULPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 59 /r

Related Instructions
(V)MULPS, (V)MULSD, (V)MULSS

218 MULPD, VMULPD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M M M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatne pont exceptor whle crie > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULPD, VMULPD 219

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MULPS Multiply
VMULPS Packed Single-Precision Floating-Point

Multiplies each packed single-precision floating-point value of the first source operand by the corre-
sponding packed single-precision floating-point value of the second source operand and writes the
product of each multiplication into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
MULPS

Multiplies four single-precision floating-point values in the first source XMM register by the corre-
sponding single-precision floating-point values of either a second source XMM register or a 128-bit
memory location. The first source register is also the destination. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VMULPS

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

Multiplies four single-precision floating-point values in the first source XMM register by the corre-
sponding single-precision floating-point values of either a second source XMM register or a 128-bit
memory location. The destination is a third XMM register. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

YMM Encoding

Multiplies eight single-precision floating-point values in the first source YMM register by the corre-
sponding single-precision floating-point values of either a second source YMM register or a 256-bit
memory location. Writes the results to a third YMM register.

MULPS is an SSE2 instruction and VMULPS is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MULPS xmm1, xmm2/mem128 OF 59 /r Multiplies four packed single-precision floating-point values
in xmm<1 by corresponding values in xmm2 or mem128.
Writes the products to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VMULPS xmm1, xmm2, xmm3/mem128 c4 RXB.00001 X.src.0.00 59 /r
VMULPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 59 /r

Related Instructions
(VMULPD, (V)MULSD, (V)MULSS

220 MULPS, VMULPS Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology

MXCSR FIa_c_;s Affected

MM | FZ RC PM|{UM|OM|ZM [DM | IM [DAZ| PE | UE | OE | ZE | DE | IE
M M M M M

17 15 14 ‘ 13 12 1" 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Non-aligned memory operand while MXCSR.MM = 0.
X | Null data segment used to reference memory.
S S S Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF X | Instruction execution caused a page fault.
SIMD foatngrpoi, #xF | 5 | s | x [Snmaskes SIUD foatne pont exceptor whle crie > MEXCPT =T
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S | S | X |Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference MULPS, VMULPS 221

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
MULSD Multiply
VMULSD Scalar Double-Precision Floating-Point

Multiplies the double-precision floating-point value in the low-order quadword of the first source
operand by the double-precision floating-point value in the low-order quadword of the second source
operand and writes the product into the low-order quadword of the destination.

There are legacy and extended forms of the instruction:
MULSD

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The first source register is also the destination register. Bits [127:64]
of the destination and bits [255:128] of the corresponding YMM register are not affected.

VMULSD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 64-bit memory location. The destination is a third XMM register. Bits [127:64] of the first
source operand are copied to bits [127:64] of the destination. Bits [255:128] of the YMM register that
corresponds to the destination are cleared.

MULSD is an SSE2 instruction and VMULSD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

MULSD xmm1, xmm2/mem64 F2 OF 59 /r Multiplies low-order double-precision floating-point values
in xmm1 by corresponding values in xmm2 or mem64.
Writes the products to xmm?1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMULSD xmm1, xmm2, xmm3/mem64 C4 RXB.00001 X.src.X.11 59 /r

Related Instructions
(V)MULPD, (V)MULPS, (V)MULSS

MXCSR Flags Affected
MM | FZ RC PM | UM |OM|ZM [DM | IM |DAZ| PE | UE | OE | ZE | DE | IE

M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

222 MULSD, VMULSD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Somasses SIUD foatine-pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MULSD, VMULSD 223

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
MULSS Multiply Scalar Single-Precision Floating-Point
VMULSS

Multiplies the single-precision floating-point value in the low-order doubleword of the first source
operand by the single-precision floating-point value in the low-order doubleword of the second
source operand and writes the product into the low-order doubleword of the destination.

There are legacy and extended forms of the instruction:
MULSS

The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The first source register is also the destination. Bits [127:32] of the
destination register and bits [255:128] of the corresponding YMM register are not affected.

VMULSS

The extended form of the instruction has a 128-bit encoding only.
The first source operand is an XMM register and the second source operand is either an XMM regis-
ter or a 32-bit memory location. The destination is a third XMM register. Bits [127:32] of the first

source register are copied to bits [127:32] of the of the destination. Bits [255:128] of the YMM regis-
ter that corresponds to the destination are cleared.

MULSS is an SSE1 instruction and VMULSS is an AVX instruction. Support for these instructions is
indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

MULSS xmm1, xmm2/mem32 F3 OF 59 /r Multiplies a single-precision floating-point value in the low-
order doubleword of xmm1 by a corresponding value in
xmm?2 or mem32. Writes the product to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMULSS xmm1, xmm2, xmm3/mem32 C4 RXB.00001 X.src.X.10 59 /r

Related Instructions
(V)MULPD, (V)MULPS, (V)MULSD

MXCSR Flags Affected
MM | FZ RC PM | UM |OM | ZM DM | IM [DAZ| PE | UE | OE | ZE | DE IE
M M M M M
17 15 14 ‘ 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Note: M indicates a flag that may be modified (set or cleared). Blanks indicate flags that are not affected.

224 MULSS, VMULSS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
s s X Unmasked SIMD floating-point exception while CR4.0SXMMEXCPT = 0,
see SIMD Floating-Point Exceptions below for details.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.
SIMD foatngrpoi, #xF | 5 | s | x | Somasses SIUD foatine-pont exceptor whle CRAOSXMMEXCPT =1
SIMD Floating-Point Exceptions
Invalid operation, IE S S X | A source operand was an SNaN value.
’ S S X | Undefined operation.
Denormalized operand, DE | S S X | A source operand was a denormal value.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

MULSS, VMULSS 225

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
ORPD OR
VORPD Packed Double-Precision Floating-Point

Performs bitwise OR of two packed double-precision floating-point values in the first source operand
with the corresponding two packed double-precision floating-point values in the second source oper-
and and writes the results into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ORPD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VORPD

The extended form of the instruction has both 128-bit and 256-bit encodings:
XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ORPD is an SSE2 instruction and VORPD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

ORPD xmm1, xmm2/mem128 66 OF 56 /r Performs bitwise OR of two packed double-precision
floating-point values in xmm1 with corresponding values in
xmm?2 or mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VORPD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 56 /r
VORPD ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.01 56 /r

Related Instructions
(V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPS, (V)XORPD, (V)XORPS

MXCSR Flags Affected
None

226 ORPD, VORPD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0l nl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

D nn n

D unn n

Memory operand not 16-byte aligned and MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X X|X|XIX>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ORPD, VORPD 227

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
ORPS OR
VORPS Packed Single-Precision Floating-Point

Performs bitwise OR of the four packed single-precision floating-point values in the first source oper-
and with the corresponding four packed single-precision floating-point values in the second source
operand, and writes the result into the corresponding elements of the destination.

There are legacy and extended forms of the instruction:
ORPS

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VORPS

The extended form of the instruction has both 128-bit and 256-bit encodings:

XMM Encoding

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

YMM Encoding

The first source operand is a YMM register and the second source operand is either a YMM register
or a 256-bit memory location. The destination is a third YMM register.

ORPS is an SSE1 instruction and VORPS is an AVX instruction. Support for these instructions is
indicated by feature identifiers CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

ORPS xmm1, xmm2/mem128 OF 56 /r Performs bitwise OR of four packed double-precision floating-
point values in xmm<1 with corresponding values in xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VORPS xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.00 56 /r
VORPS ymm1, ymm2, ymm3/mem256 C4 RXB.00001 X.src.1.00 56 /r

Related Instructions
(V)ANDNPD, (V)ANDNPS, (V)ANDPD, (V)ANDPS, (V)ORPD, (V)XORPD, (V)XORPS

MXCSR Flags Affected
None

228 ORPS, VORPS Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0l nl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS = 1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

D nn n

D unn n

Memory operand not 16-byte aligned and MXCSR.MM = 0.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X X|X|XIX>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

ORPS, VORPS 229

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PABSB Packed Absolute Value
VPABSB Signed Byte

Computes the absolute value of 16 packed 8-bit signed integers in the source operand and writes 8-bit
unsigned results to the destination.

There are legacy and extended forms of the instruction:
PABSB

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPABSB

The extended form of the instruction has a 128-bit encoding only.

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSB is an SSSE3 instruction and VPABSB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000_ 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PABSB xmm1, xmm2/mem128 OF 38 1C /r Computes the absolute value of each packed 8-bit signed
integer value in xmm2/mem128 and writes the 8-bit unsigned
results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPABSB xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1C/r

Related Instructions
(V)PABSW, (V)PABSD

MXCSR Flags Affected

None

230 PABSB, VPABSB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wwvwv ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PABSB, VPABSB 231

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PABSD Packed Absolute Value
VPABSD Signed Doubleword

Computes the absolute value of two packed 32-bit signed integers in the source operand and writes
32-bit unsigned results to the destination.

There are legacy and extended forms of the instruction:
PABSD

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPABSD

The extended form of the instruction has a 128-bit encoding only.

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSD is an SSSE3 instruction and VPABSD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PABSD xmm1, xmm2/mem128 OF 38 1E /r Computes the absolute value of each packed 32-bit signed
integer value in xmm2/mem128 and writes the 32-bit
unsigned results to xmm<1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPABSD xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1E /r

Related Instructions
(V)PABSB, (V)PABSW

MXCSR Flags Affected

None

232 PABSD, VPABSD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wwvwv ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PABSD, VPABSD 233

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PABSW Packed Absolute Value
VPABSW Signed Word

Computes the absolute values of four packed 16-bit signed integers in the source operand and writes
16-bit unsigned results to the destination.

There are legacy and extended forms of the instruction:
PABSW

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPABSW

The extended form of the instruction has a 128-bit encoding only.

The source operand is an XMM register or a 128-bit memory location. The destination is another
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PABSW is an SSSE3 instruction and VPABSW is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000_ 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PABSW xmm1, xmm2/mem128 OF 38 1D /r Computes the absolute value of each packed 16-bit signed
integer value in xmm2/mem128 and writes the 16-bit
unsigned results to xmm<1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPABSW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 1D /r

Related Instructions
(V)PABSB, (V)PABSD

MXCSR Flags Affected

None

234 PABSW, VPABSW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X 0O [X|X|X|X[X|>>>>>0WOV

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PABSW, VPABSW 235

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PACKSSDW Pack with Signed Saturation
VPACKSSDW Doubleword to Word

Converts four 32-bit signed integers from the first source operand and four 32-bit signed integers
from the second source operand into eight 16-bit signed integers and packs the results into the desti-
nation.

Positive source value greater than 7FFFh are saturated to 7FFFh; negative source values less than
8000h are saturated to 8000h.

Converted values from the first source operand are packed into the low-order words of the destina-
tion; converted values from the second source operand are packed into the high-order words of the
destination.

There are legacy and extended forms of the instruction:
PACKSSDW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKSSDW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKSSDW is an SSE2 instruction and VPACKSSDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PACKSSDW xmm1, xmm2/mem128 66 OF 6B /r Converts 32-bit signed integers in xmm1 and xmm2
or mem128 into 16-bit signed integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPACKSSDW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 0.src1.0.01 6B /r

Related Instructions
(V)PACKSSWB, (V)PACKUSDW, (V)PACKUSWB

MXCSR Flags Affected

None

236 PACKSSDW, VPACKSSDW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PACKSSDW, VPACKSSDW 237

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PACKSSWB Pack with Signed Saturation
VPACKSSWB Word to Byte

Converts eight 16-bit signed integers from the first source operand and eight 16-bit signed integers
from the second source operand into sixteen 8-bit signed integers and packs the results into the desti-
nation.

Positive source values greater than 7Fh are saturated to 7Fh; negative source values less than 80h are
saturated to 80h.

Converted values from the first source operand are packed into the low-order bytes of the destination;
converted values from the second source operand are packed into the high-order bytes of the destina-
tion.

There are legacy and extended forms of the instruction:
PACKSSWB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKSSWB

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKSSWB is an SSE2 instruction and VPACKSSWB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PACKSSWB xmm1, xmm2/mem128 66 OF 63 /r Converts 16-bit signed integers in xmm1 and xmm?2
or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPACKSSWB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 63 /r

Related Instructions
(V)PACKSSDW, (V)PACKUSDW, (V)PACKUSWB

MXCSR Flags Affected
None

238 PACKSSWB, VPACKSSWB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PACKSSWB, VPACKSSWB 239

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PACKUSDW Pack with Unsigned Saturation
VPACKUSDW Doubleword to Word

Converts four 32-bit signed integers from the first source operand and four 32-bit signed integers
from the second source operand into eight 16-bit unsigned integers and packs the results into the des-
tination.

Source values greater than FFFFh are saturated to FFFFh; source values less than 0000h are saturated
to 0000h.

Packs converted values from the first source operand into the low-order words of the destination;
packs converted values from the second source operand into the high-order words of the destination.

There are legacy and extended forms of the instruction:
PACKUSDW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKUSDW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKUSDW is an SSE4.1 instruction and VPACKUSDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PACKUSDW xmm1, xmm2/mem128 66 OF 38 2B /r Converts 32-bit signed integers in xmm1 and xmm2
or mem128 into 16-bit unsigned integers with
saturation. Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPACKUSDW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 2B Ir

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSWB

MXCSR Flags Affected

None

240 PACKUSDW, VPACKUSDW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PACKUSDW, VPACKUSDW 241

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PACKUSWB Pack with Unsigned Saturation
VPACKUSWB Word to Byte

Converts eight 16-bit signed integers from the first source operand and eight 16-bit signed integers
from the second source operand into sixteen 8-bit unsigned integers and packs the results into the des-
tination.

When a source value is greater than 7Fh it is saturated to FFh; when source value is less than 00h, it is
saturated to 00h.

Packs converted values from the first source operand into the low-order bytes of the destination;
packs converted values from the second source operand into the high-order bytes of the destination.

There are legacy and extended forms of the instruction:
PACKUSWB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPACKUSWB

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PACKUSWSB is an SSE2 instruction and VPACKUSWB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PACKUSWB xmm1, xmm2/mem128 66 OF 67 /r Converts 16-bit signed integers in xmm1 and xmm?2
or mem128 into 8-bit signed integers with saturation.
Writes packed results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPACKUSWB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 67 Ir

Related Instructions
(V)PACKSSDW, (V)PACKSSWB, (V)PACKUSDW

MXCSR Flags Affected

None

242 PACKUSWB, VPACKUSWB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PACKUSWB, VPACKUSWB 243

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PADDB Packed Add
VPADDB Bytes

Adds 16 packed 8-bit integer values in the first source operand to corresponding values in the second
source operand and writes the integer sums to the corresponding bytes of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rfFLAGS is set), and only the low-order 8 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PADDB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDB

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDRB is an SSE2 instruction and VPADDB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PADDB xmm1, xmm2/mem128 66 OF FC /r Adds packed byte integer values in xmm1 and xmm2 or
mem128 Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FC/r

Related Instructions
(V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected
None

244 PADDB, VPADDB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PADDB, VPADDB 245

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PADDD Packed Add
VPADDD Doublewords

Adds four packed 32-bit integer value in the first source operand to corresponding values in the sec-
ond source operand and writes integer sums to the corresponding doublewords of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 32 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PADDD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDD is an SSE2 instruction and VPADDD is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PADDD xmm1, xmm2/mem128 66 OF FE /r Adds packed doubleword integer values in xmm1 and
xmm?2 or mem128 Writes the sums to xmm/1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FE /r

Related Instructions
(V)PADDB, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW
MXCSR Flags Affected

None

246 PADDD, VPADDD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PADDD, VPADDD 247

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PADDQ Packed Add
VPADDQ Quadwords

Adds two packed 64-bit integer values in the first source operand to corresponding values in the sec-
ond source operand and writes the integer sums to the corresponding quadwords of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 64 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:
PADDQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDQ

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDAQ is an SSE2 instruction and VPADDAQ is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PADDQ xmm1, xmm2/mem128 66 OF D4 /r Adds packed quadword integer values in xmm1 and
xmmZ2 or mem128 Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDQ xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 D4 Ir

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected

None

248 PADDQ, VPADDQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PADDQ, VPADDQ 249

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PADDSB Packed Add with Signed Saturation
VPADDSB Bytes

Adds 16 packed 8-bit signed integer values in the first source operand to the corresponding values in
the second source operand and writes the signed integer sums to corresponding bytes of the destina-
tion.

Positive sums greater than 7Fh are saturated to FFh; negative sums less than 80h are saturated to 80h.
There are legacy and extended forms of the instruction:
PADDSB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDSB

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDSB is an SSE2 instruction and VPADDSB is an AVX instruction. Support for these instructions
1s indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PADDSB xmm1, xmm2/mem128 66 OF EC /r Adds packed signed 8-bit integer values in xmm1 and
xmm2 or mem128 with signed saturation. Writes the
sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EC /r

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSW, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected
None

250 PADDSB, VPADDSB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PADDSB, VPADDSB 251

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PADDSW Packed Add with Signed Saturation
VPADDSW Words

Adds eight packed 16-bit signed integer value in the first source operand to the corresponding values
in the second source operand and writes the signed integer sums to the corresponding words of the
destination.

Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums less than 8000h are saturated
to 8000h.

There are legacy and extended forms of the instruction:

PADDSW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDSW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDSW is an SSE2 instruction and VPADDSW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PADDSW xmm1, xmm2/mem128 66 OF ED /r Adds packed signed 16-bit integer values in xmm1 and
xmm2 or mem128 with signed saturation. Writes the
sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 ED /r

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDUSB, (V)PADDUSW, (V)PADDW

MXCSR Flags Affected
None

252 PADDSW, VPADDSW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PADDSW, VPADDSW 253

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PADDUSB Packed Add with Unsigned Saturation
VPADDUSB Bytes

Adds 16 packed 8-bit unsigned integer values in the first source operand to the corresponding values
in the second source operand and writes the unsigned integer sums to the corresponding bytes of the
destination.

Sums greater than 7Fh are saturated to 7Fh; Sums less than 00h are saturated to 00h.
There are legacy and extended forms of the instruction:

PADDUSB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDUSB

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDUSB is an SSE2 instruction and VPADDUSB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PADDUSB xmm1, xmm2/mem128 66 OF DC /r Adds packed unsigned 8-bit integer values in xmm1
and xmm2 or mem128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDUSB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DC/r

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSW, (V)PADDW

rFLAGS Affected

None

MXCSR Flags Affected

None

254 PADDUSB, VPADDUSB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PADDUSB, VPADDUSB 255

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PADDUSW Packed Add with Unsigned Saturation
VPADDUSW Words

Adds eight packed 16-bit unsigned integer value in the first source operand to the corresponding val-
ues in the second source operand and writes the unsigned integer sums to the corresponding words of
the destination.

Sums greater than FFFFh are saturated to FFFFh; sums less than 0000h are saturated to 0000h.
There are legacy and extended forms of the instruction:
PADDUSW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDUSW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDUSW is an SSE2 instruction and VPADDUSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PADDUSW xmm1, xmm2/mem128 66 OF DD /r Adds packed unsigned 16-bit integer values in xmm1
and xmm2 or mem128 with unsigned saturation.
Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDUSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DD /r

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDW

rFLAGS Affected

None

MXCSR Flags Affected
None

256 PADDUSW, VPADDUSW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PADDUSW, VPADDUSW 257

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PADDW Packed Add
VPADDW Words

Adds eight packed 16-bit integer value in the first source operand to the corresponding values in the
second source operand and writes the integer sums to the corresponding word of the destination.

This instruction operates on both signed and unsigned integers. When a result overflows, the carry is
ignored (neither the overflow nor carry bit in rFLAGS is set), and only the low-order 16 bits of each
result are written to the destination.

There are legacy and extended forms of the instruction:

PADDW
The first source operand is an XMM register. The second source operand is either another XMM reg-

ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPADDW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PADDW is an SSE2 instruction and VPADDW is an AVX instruction. Support for these instructions
1s indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PADDW xmm1, xmmZ2/mem128 66 OF FD /r Adds packed 16-bit integer values in xmm1 and xmm2
or mem128. Writes the sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPADDW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 FD /r

Related Instructions
(V)PADDB, (V)PADDD, (V)PADDQ, (V)PADDSB, (V)PADDSW, (V)PADDUSB, (V)PADDUSW

RFlags Affected
None

MXCSR Flags Affected
None

258 PADDW, VPADDW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PADDW, VPADDW 259

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PALIGNR Packed Align Right
VPALIGNR

Concatenates [sourcel:source2] in a temporary 256-bit location and right-shifts the concatenated
value the number of bytes specified by the unsigned immediate operand. Writes the least-significant
16 bytes of the shifted result to the destination.

The binary value of the immediate operand determines the byte shift value. On each shift the most-
significant byte is set to zero; when the byte shift is greater than 31 bytes, the destination is zeroed.

There are two forms of the instruction.
PALIGNR

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPALIGNR

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PALIGNR is an SSSE3 instruction and VPALIGNR is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PALIGNR xmm1, xmm2/mem128, imm8 66 OF 3A OF /r ib Right-shifts xmm1:xmm2/mem128 imm8
bytes. Writes shifted result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPALIGNR xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 OF /rib

Related Instructions

None

rFLAGS Affected

None

MXCSR Flags Affected

None

260 PALIGNR, VPALIGNR Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PALIGNR, VPALIGNR 261

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PAND Packed AND
VPAND

Performs a bitwise AND of the packed values in the first and second source operands and writes the
result to the destination.

There are legacy and extended forms of the instruction:
PAND

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPAND

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PAND is an SSE2 instruction and VPAND is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PAND xmm1, xmm2/mem128 66 OF DB /r Performs bitwise AND of values in xmm1 and xmm2 or
mem128. Writes the result to xmm1.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPAND xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DB /r

Related Instructions
(V)PANDN, (V)POR, (V)PXOR

rFLAGS Affected
None

MXCSR Flags Affected
None

262 PAND, VPAND Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PAND, VPAND 263

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PANDN Packed AND NOT
VPANDN

Generates the ones’ complement of the value in the first source operand and performs a bitwise AND
of the complement and the value in the second source operand. Writes the result to the destination.

There are legacy and extended forms of the instruction:

PANDN

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPANDN

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PANDN is an SSE2 instruction and VPANDN is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PANDN xmm1, xmm2/mem128 66 OF DF /r Generates ones’ complement of xmm1, then performs
bitwise AND with value in xmm2 or mem128. Writes the
result to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPANDN xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DF /r

Related Instructions
(V)PAND, (V)POR, (V)PXOR

rFLAGS Affected

None

MXCSR Flags Affected

None

264 PANDN, VPANDN Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PANDN, VPANDN 265

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PAVGB Packed Average
VPAVGB Unsigned Bytes

Computes the rounded averages of 16 packed unsigned 8-bit integer values in the first source operand
and the corresponding values of the second source operand. Writes each average to the corresponding
byte of the destination.

An average is computed by adding pairs of operands, adding 1 to a 9-bit temporary sum, and right-
shifting the temporary sum by one bit position.

There are legacy and extended forms of the instruction:
PAVGB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPAVGB

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PAVGB is an SSE2 instruction and VPAVGB is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description
PAVGB xmm1, xmm2/mem128 66 OF EO /r Averages pairs of packed 8-bit unsigned integer values
in xmm1 and xmm2 or mem128. Writes the averages to
xmmf1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPAVGB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EO /r

Related Instructions
PAVGW

rFLAGS Affected

None

MXCSR Flags Affected
None

266 PAVGB, VPAVGB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PAVGB, VPAVGB 267

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PAVGW Packed Average
VPAVGW Unsigned Words

Computes the rounded average of packed unsigned 16-bit integer values in the first source operand
and the corresponding values of the second source operand. Writes each average to the corresponding
word of the destination.

An average is computed by adding pairs of operands, adding 1 to a 17-bit temporary sum, and right-
shifting the temporary sum by one bit position.

There are legacy and extended forms of the instruction:
PAVGW

The first source operand is an XMM register and the second source operand is another XMM register
or 128-bit memory location. The destination is the same XMM register as the first source operand; the
upper 128-bits of the corresponding YMM register are not affected.

VPAVGW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PAVGW is an SSE2 instruction and VPAVGW is an AVX instruction. Support for these instructions is
indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PAVGW xmm1, xmm2/mem128 66 OF E3 /r Averages pairs of packed 16-bit unsigned integer values
in xmm1 and xmm2 or mem128. Writes the averages to

xmmf1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPAVGW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 E3 /r

Related Instructions
(V)PAVGB

rFLAGS Affected

None

MXCSR Flags Affected
None

268 PAVGW, VPAVGW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PAVGW, VPAVGW 269

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PBLENDVB Variable Blend
VPBLENDVB Packed Bytes

Copies packed bytes from either of two sources to a destination, as specified by a mask operand.

The mask is defined by the msb of each byte of the mask operand. The position of a mask bit corre-
sponds to the position of the most significant bit of a copied value.

* When a mask bit = 0, the specified element of the first source is copied to the corresponding
position in the destination.

e When a mask bit = 1, the specified element of the second source is copied to the corresponding
position in the destination.

There are legacy and extended forms of the instruction:
PBLENDVB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected. The mask operand is the
implicit register XMMO.

VPBLENDVB

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared. The mask operand is a fourth XMM
register selected byte bits [7:4] of an immediate byte.

PBLENDVB is an SSE4.1 instruction and VPBLENDVB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PBLENDVB xmm1, xmm2/mem128 66 OF 38 10 /r Selects byte values from xmm1 or xmm2/mem128,
depending on the value of corresponding mask bits
in XMMO. Writes the selected values to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPBLENDVB xmm1, xmm2, xmm3/mem128, xmm4 C4 RXB.00011 0.5rc.0.01 4C Iris4

Related Instructions
(V) BLENDVPD, (V)BLENDVPS

rFLAGS Affected

None

270 PBLENDVB, VPBLENDVB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013 AMDG64 Technology
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
’ A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXW=1.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PBLENDVB, VPBLENDVB 271

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PBLENDW Blend
VPBLENDW Packed Words

Copies packed words from either of two sources to a destination, as specified by an immediate 8-bit
mask operand.

Each mask bit corresponds to a source word value, in ascending order. Mask bit [0] corresponds to
source bits [15:0], mask bit [7] corresponds to source bits [127:112].

* When a mask bit = 0, the specified element of the first source is copied to the corresponding
position in the destination.

e When a mask bit = 1, the specified element of the second source is copied to the corresponding
position in the destination.

There are legacy and extended forms of the instruction:
PBLENDW
The first source operand is an XMM register. The second source operand is either another XMM reg-

ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPBLENDW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PBLENDW is an SSE4.1 instruction and VPBLENDW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively respectively.

Instruction Encoding

Mnemonic Opcode Description

PBLENDW xmm1, xmm2/mem128, imm8 66 OF 3AOE /rib Selects word values from xmm1 or
xmm2/mem128, as specified by imm8.
Writes the selected values to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPBLENDW xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 OE /r /ib

Related Instructions
(V)BLENDPD
rFLAGS Affected

None

272 PBLENDW, VPBLENDW Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PBLENDW, VPBLENDW 273

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PCLMULQDQ Carry-less Multiply
VPCLMULQDQ Quadwords

Performs a carry-less multiplication of a selected quadword element of the first source operand by a
selected quadword element of the second source operand and writes the product to the destination.

Carry-less multiplication, also known as binary polynomial multiplication, is the mathematical opera-
tion of computing the product of two operands without generating or propagating carries. It is an
essential component of cryptographic processing, and typically requires a large number of cycles.

The instruction provides an efficient means of performing the operation and is particularly useful in
implementing the Galois counter mode used in the Advanced Encryption Standard (AES). See
Appendix A on page 825 for additional information.

Bits 4 and 0 of an 8-bit immediate byte operand specify which quadword of each source operand to
multiply, as follows.

Mnemonic Imm[0] | Imm[4] | Quadword Operands Selected
(V)PCLMULLQLQDQ 0 0 SRC1[63:0], SRC2[63:0]
(V)PCLMULHQLQDQ 1 0 SRC1[127:64], SRC2[63:0]
(V)PCLMULLQHQDQ 0 1 SRC1[63:0], SRC2[127:64]
(V)PCLMULHQHQDQ 1 1 SRC1[127:64], SRC2[127:64]

Alias mnemonics are provided for the various immediate byte combinations.
There are legacy and extended forms of the instruction:

PCLMULQDQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCLMULQDQ

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCLMULQDQ is a CLMUL instruction and VPCLMULQDQ is both a CLMUL instruction and an
AVX instruction. Support for these instructions is indicated by
CPUID Fn0000 00001 ECX[PCLMULQDQ] and Fn0000 00001 ECX[AVX] respectively.

274 PCLMULQDQ, VPCLMULQDQ Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

PCLMULQDQ xmm1, xmm2/mem128, imm8 66 OF 3A 44 /rib Performs carry-less multiplication of a
selected quadword element of xmm1 by a
selected quadword element of xmm2 or
mem128. Elements are selected by bits 4
and 0 of imm8. Writes the product to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCLMULQDQ xmm1, xmm2, xmm3/mem128, imm8 C4 RXB.00011 X.src.0.01 44 Irib

Related Instructions
(V)PMULDQ, (V)PMULUDQ

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
Invalid opcode, #UD S S S |CR4.0SFXSR =0.
A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S S | Memory operand not 16-byte aligned and MXCSR.MM = 0.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCLMULQDQ, VPCLMULQDQ 275

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PCMPEQB Packed Compare Equal
VPCMPEQB Bytes

Compares 16 packed byte values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding byte of the destination.

When values are equal, the result is FFh; when values are not equal, the result is 00h.
There are legacy and extended forms of the instruction:
PCMPEQB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQB

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQB is an SSE2 instruction and VPCMPEQB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PCMPEQB xmm1, xmm2/mem128 66 OF 74 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPEQB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 74 Ir

Related Instructions
(V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

276 PCMPEQB, VPCMPEQB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PCMPEQB, VPCMPEQB 277

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PCMPEQD Packed Compare Equal
VPCMPEQD Doublewords

Compares four packed doubleword values in the first source operand to corresponding values in the
second source operand and writes a comparison result to the corresponding doubleword of the desti-
nation.

When values are equal, the result is FFFFFFFFh; when values are not equal, the result is 00000000h.
There are legacy and extended forms of the instruction:
PCMPEQD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQD is an SSE2 instruction and VPCMPEQD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PCMPEQD xmm1, xmm2/mem128 66 OF 76 /r Compares packed doublewords in xmm1 to packed
doublewords in xmm2 or mem128. Writes results to

xmm1.
Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPEQD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 76 /Ir

Related Instructions
(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

278 PCMPEQD, VPCMPEQD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PCMPEQD, VPCMPEQD 279

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PCMPEQQ Packed Compare Equal
VPCMPEQQ Quadwords

Compares two packed quadword values in the first source operand to corresponding values in the sec-
ond source operand and writes a comparison result to the corresponding quadword of the destination.

When values are equal, the result is FFFFFFFFFFFFFFFFh; when values are not equal, the result is
0000000000000000h.

There are legacy and extended forms of the instruction:
PCMPEQQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQQ

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQQ is an SSE4.1 instruction and VPCMPEQQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PCMPEQQ xmm1, xmm2/mem128 66 OF 38 29 /r Compares packed quadwords in xmm1 to packed
quadwords in xmm2 or mem128. Writes results to

xmmf1.
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPEQQ xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 29 Ir

Related Instructions
(V)PCMPEQB, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

280 PCMPEQQ, VPCMPEQQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PCMPEQQ, VPCMPEQQ 281

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PCMPEQW Packed Compare Equal
VPCMPEQW Words

Compares four packed word values in the first source operand to corresponding values in the second
source operand and writes a comparison result to the corresponding word of the destination.

When values are equal, the result is FFFFh; when values are not equal, the result is 0000h.
There are legacy and extended forms of the instruction:
PCMPEQW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPEQW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPEQW is an SSE2 instruction and VPCMPEQW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PCMPEQW xmm1, xmm2/mem128 66 OF 75 /r Compares packed words in xmm1 to packed words in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPEQW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 75 /r

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPGTB, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

282 PCMPEQW, VPCMPEQW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PCMPEQW, VPCMPEQW 283

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PCMPESTRI Packed Compare
VPCMPESTRI Explicit Length Strings Return Index

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes an index to the ECX reg-
ister.

Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values. Each operand has associated with it a
separate integer value specifying the length of the string.

The absolute value of the data in the EAX/RAX register represents the length of the character string
in the first source operand; the absolute value of the data in the EDX/RDX register represents the
length of the character string in the second source operand.

If the absolute value of the data in either register is greater than the maximum string length that fits in
128 bits, the length is set to the maximum: 8, for 16-bit characters, or 16, for 8-bit characters.

The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.

The index of either the most significant or least significant set bit of the post-processed comparison
summary bit vector is returned in ECX. If no bits are set in the post-processed comparison summary
bit vector, ECX is set to 16 for source operand strings composed of 8-bit characters or 8 for 16-bit
character strings.

See Section 1.4, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.

The rFLAGS are set to indicate the following conditions:

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.

PF cleared.

AF cleared.

ZF Set if the specified length of the second string is less than the maximum; otherwise
cleared.

SF Set if the specified length of the first string is less than the maximum; otherwise
cleared.

OF Equal to the value of the Isb of the post-processed comparison summary bit vector.

There are legacy and extended forms of the instruction:
PCMPESTRI

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. A result index is written to the ECX register.

VPCMPESTRI
The extended form of the instruction has a 128-bit encoding only.

284 PCMPESTRI, VPCMPESTRI Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. A result index is written to the ECX register.

PCMPESTRI is an SSE4.2 instruction and VPCMPESTRI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE42] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PCMPESTRI xmm1, xmm2/mem128, imm8 66 OF 3A 61 /rib Compares packed string data in xmm1 and
xmm?2 or mem128. Writes a result index to
the ECX register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPESTRI xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 61/rib

Related Instructions
(V)PCMPESTRM, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected
ID [VIP|VIF| AC| VM| RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF

M M M 0 0 M
21 1 20 | 19 | 18 | 17 | 16 | 14 | 13 |12 1 110 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.
Undefined flags are U.

MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_ MASK|[2:1]! = 11b.
A | VEX.vwwwy ! =1111b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.

Instruction Reference PCMPESTRI, VPCMPESTRI 285

AMDZU

AMDG64 Technology

26568—Rev. 3.177—May 2013

Exceptions
Mode
Exception Cause of Exception
P Real| Virt |Prot P
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP y X g 9 mi !
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

286

PCMPESTRI, VPCMPESTRI

Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMD64 Technology
PCMPESTRM Packed Compare
VPCMPESTRM Explicit Length Strings Return Mask

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes a mask value to the
YMMO0/XMMO register.

Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values. Each operand has associated with it a
separate integer value specifying the length of the string.

The absolute value of the data in the EAX/RAX register represents the length of the character string
in the first source operand; the absolute value of the data in the EDX/RDX register represents the
length of the character string in the second source operand.

If the absolute value of the data in either register is greater than the maximum string length that fits in
128 bits, the length is set to the maximum: 8, for 16-bit characters, or 16, for 8-bit characters.

The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.

Depending on the output option selected, the post-processed comparison summary bit vector is either
zero-extended to 128 bits or expanded into a byte/word-mask and then written to XMMO.

See Section 1.4, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.

The rFLAGS are set to indicate the following conditions:

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.

PF cleared.

AF cleared.

ZF Set if the specified length of the second string is less than the maximum; otherwise
cleared.

SF Set if the specified length of the first string is less than the maximum; otherwise
cleared.

OF Equal to the value of the Isb of the post-processed summary bit vector.

There are legacy and extended forms of the instruction:
PCMPESTRM

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The mask result is written to the XMMO register.

VPCMPESTRM
The extended form of the instruction has a 128-bit encoding only.

Instruction Reference PCMPESTRM, VPCMPESTRM 287

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The mask result is written to the XMMO register. Bits [255:128] of
the YMMO register are cleared.

PCMPESTRM is an SSE4.2 instruction and VPCMPESTRM is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE42] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PCMPESTRMxmm1, xmm2/mem128, imm8 66 OF 3A 60 /rib Compares packed string data in xmm1 and
xmm?2 or mem128. Writes a mask value to
the XMMO register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPESTRM xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 60 /rib

Related Instructions
(V)PCMPESTRI, (V)PCMPISTRI, (V)PCMPISTRM

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF
M M| MI] O 0 | M
21 | 20 | 19 | 18 | 17 | 16 | 14 | 13 |12 1 10 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag set or cleared to 0 is M (modified). Unaffected flags are blank.
Undefined flags are U.

MXCSR Flags Affected
None
Exceptions
] Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A |XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.wwvwv ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.

288 PCMPESTRM, VPCMPESTRM Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
Mode
Exception Cause of Exception
P Real| Virt |Prot P
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP y X g 9 mi !
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PCMPESTRM, VPCMPESTRM 289

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PCMPGTB Packed Compare Greater Than
VPCMPGTB Signed Bytes

Compares 16 packed signed byte values in the first source operand to corresponding values in the sec-
ond source operand and writes a comparison result to the corresponding byte of the destination.

When a value in the first operand is greater than a value in the second source operand, the result is

FFh; when a value in the first operand is less than or equal to a value in the second operand, the result
is 00h.

There are legacy and extended forms of the instruction:
PCMPGTB

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTB

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTRB is an SSE2 instruction and VPCMPGTB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PCMPGTB xmm1, xmm2/mem128 66 OF 64 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 66 /r

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTD, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

290 PCMPGTB, VPCMPGTB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PCMPGTB, VPCMPGTB 291

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PCMPGTD Packed Compare Greater Than
VPCMPGTD Signed Doublewords

Compares four packed signed doubleword values in the first source operand to corresponding values
in the second source operand and writes a comparison result to the corresponding doubleword of the
destination.

When a value in the first operand is greater than a value in the second operand, the result is
FFFFFFFFh; when a value in the first operand is less than or equal to a value in the second operand,
the result is 00000000h.

There are legacy and extended forms of the instruction:
PCMPGTD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTD
The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTD is an SSE2 instruction and VPCMPGTD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PCMPGTD xmm1, xmm2/mem128 66 OF 66 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 66 /r

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

292 PCMPGTD, VPCMPGTD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PCMPGTD, VPCMPGTD 293

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PCMPGTQ Packed Compare Greater Than
VPCMPGTQ Signed Quadwords

Compares two packed signed quadword values in the first source operand to corresponding values in
the second source operand and writes a comparison result to the corresponding quadword of the desti-
nation.

When a value in the first operand is greater than a value in the second operand, the result is
FFFFFFFFFFFFFFFFh; when a value in the first operand is less than or equal to a value in the second
operand, the result is 0000000000000000h.

There are legacy and extended forms of the instruction:
PCMPGTQ

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTQ

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTQ is an SSE4.2 instruction and VPCMPGTQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE42] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PCMPGTQ xmm1, xmm2/mem128 66 OF 38 37 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTQ xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 371Ir

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTW

rFLAGS Affected

None

MXCSR Flags Affected

None

294 PCMPGTQ, VPCMPGTQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PCMPGTQ, VPCMPGTQ 295

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PCMPGTW Packed Compare Greater Than Signed Words
VPCMPGTW

Compares two packed signed word values in the first operand to corresponding values in the second
source operand and writes a comparison result to the corresponding word of the destination.

When a value in the first operand is greater than a value in the second operand, the result is FFFFh;

when a value in the first operand is less than or equal to a value in the second operand, the result is
0000h.

There are legacy and extended forms of the instruction:
PCMPGTW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPCMPGTW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PCMPGTW is an SSE2 instruction and VPCMPGTW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PCMPGTW xmm1, xmm2/mem128 66 OF 65 /r Compares packed bytes in xmm1 to packed bytes in
xmm2 or mem128. Writes results to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPGTW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 65 /r

Related Instructions
(V)PCMPEQB, (V)PCMPEQD, (V)PCMPEQW, (V)PCMPGTB, (V)PCMPGTD

rFLAGS Affected

None

MXCSR Flags Affected

None

296 PCMPGTW, VPCMPGTW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PCMPGTW, VPCMPGTW 297

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PCMPISTRI Packed Compare
VPCMPISTRI Implicit Length Strings Return Index

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes an index to the ECX reg-
ister.

Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values.

Source operand strings shorter than the maximum that can be packed into a 128-bit value are termi-
nated by a null character (value of 0). The characters prior to the null character constitute the string. If
the first (lowest indexed) character is null, the string length is 0.

The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.

The index of either the most significant or least significant set bit of the post-processed comparison
summary bit vector is returned in ECX. If no bits are set in the post-processed comparison summary
bit vector, ECX is set to 16 for source operand strings composed of 8-bit characters or 8 for 16-bit
character strings.

See Section 1.4, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.

The rFLAGS are set to indicate the following conditions:

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.

AF cleared.

ZF Set if any byte (word) in the second operand is null; otherwise cleared.
SF Set if any byte (word) in the first operand is null; otherwise cleared

OF Equal to the value of the Isb of the post-processed summary bit vector.

There are legacy and extended forms of the instruction:
PCMPISTRI

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. A result index is written to the ECX register.

VPCMPISTRI

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. A result index is written to the ECX register.

PCMPISTRI is an SSE4.2 instruction and VPCMPISTRI is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE42] and Fn0000 00001 ECX[AVX]
respectively.

298 PCMPISTRI, VPCMPISTRI Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

PCMPISTRI xmm1, xmm2/mem128, imm8 66 OF 3A 63 /rib Compares packed string data in xmm1 and
xmm2 or mem128.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPISTRI xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 63 /rib

Related Instructions
(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRM

rFLAGS Affected
ID [VIP|VIF| AC | VM | RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF

M M M 0 0 M
21 120 |19 |18 |17 |16 | 14 | 13 | 12 | 11 | 10 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.
Undefined flags are U.

MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPISTRI, VPCMPISTRI 299

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PCMPISTRM Packed Compare Implicit Length
VPCMPISTRM Strings Return Mask

Compares character string data in the first and second source operands. Comparison operations are
carried out as specified by values encoded in the immediate operand. Writes a mask value to the
YMMO0/XMMO register

Source operands are formatted as a packed characters in one of two supported widths: 8 or 16 bits.
Characters may be treated as either signed or unsigned values.

Source operand strings shorter than the maximum that can be packed into a 128-bit value are termi-
nated by a null character (value of 0). The characters prior to the null character constitute the string. If
the first (lowest indexed) character is null, the string length is 0.

The comparison operations between the two operand strings are summarized in an intermediate
result—a comparison summary bit vector that is post-processed to produce the final output. Data
fields within the immediate byte specify the source data format, comparison type, comparison sum-
mary bit vector post-processing, and output option selection.

Depending on the output option selected, the post-processed comparison summary bit vector is either
zero-extended to 128 bits or expanded into a byte/word-mask and then written to XMMO.

See Section 1.4, “String Compare Instructions” for information about source string data format, com-
parison operations, comparison summary bit vector generation, post-processing, and output selection
options.

The rFLAGS are set to indicate the following conditions:

Flag Condition

CF Cleared if the comparison summary bit vector is zero; otherwise set.
PF cleared.

AF cleared.

ZF Set if any byte (word) in the second operand is null; otherwise cleared.
SF Set if any byte (word) in the first operand is null; otherwise cleared.
OF Equal to the value of the Isb of the post-processed summary bit vector.

There are legacy and extended forms of the instruction:
PCMPISTRM

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The mask result is written to the XMMO register.

VPCMPISTRM

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The mask result is written to the XMMO register. Bits [255:128] of
the YMMO register are cleared.

PCMPISTRM is an SSE4.2 instruction and VPCMPISTRM is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE42] and Fn0000 00001 ECX[AVX]
respectively.

300 PCMPISTRM, VPCMPISTRM Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

PCMPISTRM xmm1, xmm2/mem128, inm8 66 OF 3A 62 /rib Compares packed string data in xmm1 and
xmm2 or mem128. Writes a result or mask
to the XMMO register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPCMPISTRM xmm1, xmm2/mem128, imm8 C4 RXB.00011 X.1111.0.01 62 /rib

Related Instructions
(V)PCMPESTRI, (V)PCMPESTRM, (V)PCMPISTRI

rFLAGS Affected

ID [VIP|VIF| AC | VM | RF | NT IOPL OF |[DF | IF | TF | SF | ZF | AF | PF | CF
M M| M| 0 0 | M
21 1 20 | 19 | 18 | 17 | 16 | 14 | 13 |12 1 [10 | 9 8 7 6 4 2 0

Note: Bits 31:22, 15, 5, 3, and 1 are reserved. A flag that is set or cleared is M (modified). Unaffected flags are blank.
Undefined flags are U.

MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PCMPISTRM, VPCMPISTRM 301

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PEXTRB Extract
VPEXTRB Packed Byte

Extracts a byte from a source register and writes it to an 8-bit memory location or to the low-order
byte of a general-purpose register, with zero-extension to 32 or 64 bits. Bits [3:0] of an immediate
byte operand select the byte to be extracted:

Value of imm8 [3:0] Source Bits Extracted
0000 [7:0]
0001 [15:8]
0010 [23:16]
0011 [31:24]
0100 [39:32]
0101 [47:40]
0110 [55:48]
0111 [63:56]
1000 [71:64]
1001 [79:72]
1010 [87:80]
1011 [95:88]
1100 [103:96]
1101 [111:104]
1110 [119:112]
1111 [127:120]

There are legacy and extended forms of the instruction:
PEXTRB

The source operand is an XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.

VPEXTRB

The extended form of the instruction has a 128-bit encoding only.

The source operand is an XMM register and the destination is either an 8-bit memory location or the
low-order byte of a general-purpose register. When the destination is a general-purpose register, the
extracted byte is zero-extended to 32 or 64 bits.

PEXTRB is an SSE4.1 instruction and VPEXTRB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

302 PEXTRB, VPEXTRB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Instruction Encoding

Mnemonic
PEXTRB reg/m8, xmm, imm8

Mnemonic

VPEXTRB reg/mem8, xmm, imm8

Related Instructions

AMDG64 Technology

Opcode Description
66 OF 3A 14 /rib Extracts an 8-bit value specified by imm8 from xmm

and writes it to m8 or the low-order byte of a general-
purpose register, with zero-extension.

Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
C4 RXB.00011 X.1111.0.01 14 /rib

(V)PEXTRD, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.vwwwy ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PEXTRB, VPEXTRB 303

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PEXTRD Extract
VPEXTRD Packed Doubleword

Extracts a doubleword from a source register and writes it to an 32-bit memory location or a 32-bit
general-purpose register. Bits [1:0] of an immediate byte operand select the doubleword to be
extracted:

Value of imm8 [1:0] Source Bits Extracted
00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

There are legacy and extended forms of the instruction:

PEXTRD

The encoding is the same as PEXTRQ, with REX.W = 0.

The source operand is an XMM register and the destination is either an 32-bit memory location or a
32-bit general-purpose register.

VPEXTRD

The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPEXTRQ, with VEX.W = 0.

The source operand is an XMM register and the destination is either an 32-bit memory location or a
32-bit general-purpose register.

PEXTRD is an SSE4.1 instruction and VPEXTRD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PEXTRD reg32/mem32, xmm, imm8 66 (WO0) OF 3A 16 /r ib Extracts a 32-bit value specified by imm8 from
xmm and writes it to mem32 or reg32.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPEXTRD reg32/mem32, xmm, imm8 C4 RXB.00011 0.1111.0.01 16 /rib

Related Instructions
(V)PEXTRB, (V)PEXTRW, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

304 PEXTRD, VPEXTRD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

rFLAGS Affected

None

MXCSR Flags Affected

AMDG64 Technology

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
’ A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.vwwwy ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
S S X | Memory address exceeding data segment limit or non-canonical.
General protection, #GP S S X | Write to a read-only data segment.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PEXTRD, VPEXTRD 305

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PEXTRQ Extract
VPEXTRQ Packed Quadword

Extracts a quadword from a source register and writes it to an 64-bit memory location or to a 64-bit
general-purpose register. Bit [0] of an immediate byte operand selects the quadword to be extracted:

Value of imm8 [0] Source Bits Extracted
0 [63:0]
1 [127:64]
There are legacy and extended forms of the instruction:

PEXTRQ
The encoding is the same as PEXTRD, with REX.W = 1.

The source operand is an XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.

VPEXTRQ
The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPEXTRD, with VEX.W = 1.

The source operand is an XMM register and the destination is either an 64-bit memory location or a
64-bit general-purpose register.

PEXTRQ is an SSE4.1 instruction and VPEXTRQ is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PEXTRQ reg64/mem64, xmm, imm8 66 (W1) OF 3A 16 /r ib Extracts a 64-bit value specified by imm8 from
xmm and writes it to mem64 or reg64.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPEXTRQ reg64/mem64, xmm, imm8 C4 RXB.00011 1.1111.0.01 16 /rib

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected
None

MXCSR Flags Affected
None

306 PEXTRQ, VPEXTRQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

N nnn

NDnnnn

Write to a read-only data segment.

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X| X[X[X|X|>|> > > > 00w

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PEXTRQ, VPEXTRQ 307

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PEXTRW Extract Packed Word
VPEXTRW

Extracts a word from a source register and writes it to a 16-bit memory location or to the low-order
word of a general-purpose register, with zero-extension to 32 or 64 bits. Bits [3:0] of an immediate
byte operand select the word to be extracted:

Value of imm8 [2:0] Source Bits Extracted
000 [15:0]
001 [31:16]
010 [47:32
011 [63:48]
100 [79:64]
101 [95:80]
110 [111:96]
111 [127:112]

There are legacy and extended forms of the instruction:
PEXTRW

The legacy form of the instruction has SSE2 and SSE4.1 encodings.

The source operand is an XMM register and the destination is the low-order word of a general-pur-
pose register. The extracted word is zero-extended to 32 or 64 bits.

The source operand is an XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.

VPEXTRW

The extended form of the instruction has two 128-bit encodings that correspond to the two legacy
encodings.

The source operand is an XMM register and the destination is the low-order word of a general-pur-
pose register. The extracted word is zero-extended to 32 or 64 bits.

The source operand is an XMM register and the destination is either an 16-bit memory location or the
low-order word of a general-purpose register. When the destination is a general-purpose register, the
extracted word is zero-extended to 32 or 64 bits.

PEXTRW is either an SSE2 or an SSE4.1 instruction. VPEXTRW is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000 00001 EDX[SSE2], Fn0000 00001 ECX[SSE41]
and Fn0000 00001 ECX[AVX] respectively.

308 PEXTRW, VPEXTRW Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

PEXTRW reg, xmm, imm8 66 OF C5/rib Extracts a 16-bit value specified by imm8 from xmm
and writes it to the low-order byte of a general-
purpose register, with zero-extension.

PEXTRW reg/m16, xmm, imm8 66 OF 3A 15 /rib Extracts a 16-bit value specified by imm8 from xmm
and writes it to m716 or the low-order byte of a
general-purpose register, with zero-extension.

Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPEXTRW reg, xmm, imm8 C4 RXB.00001 X.1111.0.01 C5/rib
VPEXTRW reg/mem16, xmm, imm8 C4 RXB.00011 X.1111.0.01 15/rib

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PINSRB, (V)PINSRD, (V)PINSRW, (V)PINSRQ

rFLAGS Affected

None

MXCSR Flags Affected

None

Exceptions

Mode
Exception Cause of Exception
P Real| Virt |Prot P

X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S CRO.EM = 1.
S S CR4.0SFXSR = 0.

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
XFEATURE_ENABLED_MASKJ[2:1] ! = 11b.

VEX.vvwv ! = 1111b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

CRO.TS =1.

Memory address exceeding stack segment limit or non-canonical.
Memory address exceeding data segment limit or non-canonical.
Write to a read-only data segment.

Null data segment used to reference memory.

Instruction execution caused a page fault.

Unaligned memory reference when alignment checking enabled.

Invalid opcode, #UD

Device not available, #NM
Stack, #SS

nNnnunnn
nNnnnnn

General protection, #GP

w

Page fault, #PF
Alignment check, #AC S

X — AVX and SSE exception
A — AVX exception
S — SSE exception

XX X[X[X|X| X[X[>>I> > >0

Instruction Reference PEXTRW, VPEXTRW 309

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PHADDD Packed Horizontal Add
VPHADDD Doubleword

Adds adjacent pairs of 32-bit signed integers in two source operands and packs the sums into a desti-
nation. If a sum overflows, the carry is ignored (neither the overflow nor carry bit in rTFLAGS is set)
and only the low-order 32 bits of the sum are written in the destination.

There are legacy and extended forms of the instruction:
PHADDD

The first source register is also the destination register.

Adds the 32-bit signed integer values in bits [63:32] and bits [31:0] of the first source XMM register
and packs the sum into bits [31:0] of the destination; adds the 32-bit signed integer values in bits
[127:96] and bits [95:64] of the first source register and packs the sum into bits [63:32] of the destina-
tion. Adds the corresponding values in the second source XMM register or a 128-bit memory location
and packs the sums into bits [95:64] and [127:96] of the destination. Bits [255:128] of the YMM reg-
ister that corresponds to the destination not affected.

VPHADDD

The extended form of the instruction has a 128-bit encoding only.

Adds the 32-bit signed integer values in bits [63:32] and bits [31:0] of the first source XMM register
and packs the sum into bits [31:0] of the destination XMM register; adds the 32-bit signed integer val-
ues in bits [127:96] and bits [95:64] of the first source register and packs the sum into bits [63:32] of
the destination. Adds the corresponding values in the second source XMM register or a 128-bit mem-
ory location and packs the sums into bits [95:64] and [127:96] of the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PHADDD is an SSSE3 instruction and VPHADDD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PHADDD xmm1, xmm2/mem128 66 OF 38 02 /r Adds adjacent pairs of signed integers in xmm1 and
xmm?2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPHADDD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 02/r

Related Instructions
(V)PHADDW, (V)PHADDSW

rFLAGS Affected

None

310 PHADDD, VPHADDD Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHADDD, VPHADDD 311

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PHADDSW Packed Horizontal Add with Saturation
VPHADDSW Word

Adds adjacent pairs of 16-bit signed integers in two source operands, with saturation, and packs the
sums into a destination.

Positive sums greater than 7FFFh are saturated to 7FFFh; negative sums less than 8000h are saturated
to 8000h.

There are legacy and extended forms of the instruction:
PHADDSW

The first source register is also the destination.

Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with bits [31:16] and [15:0] and packs each saturated 16-bit sum into the low quadword of the desti-
nation sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the
second source XMM register or a 128-bit memory location and packs each saturated 16-bit sum into
the high quadword of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register
that corresponds to the destination are not affected.

VPHADDSW

The extended form of the instruction has a 128-bit encoding only.

Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with bits [31:16] and [15:0] and packs each saturated 16-bit sum into the low quadword of the desti-
nation sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the
second source XMM register or a 128-bit memory location and packs each saturated 16-bit sum into
the high quadword of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register
that corresponds to the destination are cleared.

PHADDSW is an SSSE3 instruction and VPHADDSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PHADDSW xmm1, xmm2/mem128 66 OF 38 03 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128, with saturation. Writes packed
sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPHADDSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 03 /r

Related Instructions
(V)PHADDD, (V)PHADDW

312 PHADDSW, VPHADDSW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Mode
Exception Cause of Exception
P Reall Virt |Prot P
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PHADDSW, VPHADDSW 313

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PHADDW Packed Horizontal Add
VPHADDW Word

Adds adjacent pairs of 16-bit signed integers in two source operands and packs the sums into a desti-
nation. If a sum overflows, the carry is ignored (neither the overflow nor carry bit in rTFLAGS is set)
and only the low-order 32 bits of the sum are written in the destination.

There are legacy and extended forms of the instruction:
PHADDW

The first source register is also the destination.

Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with bits [31:16] and [15:0] and packs each 16-bit sum into the low quadword of the destination
sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the second
source XMM register or a 128-bit memory location and packs each 16-bit sum into the high quad-
word of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register that corre-
sponds to the destination are not affected.

VPHADDW

The extended form of the instruction has a 128-bit encoding only.

Adds four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with bits [31:16] and [15:0] and packs each 16-bit sum into the low quadword of the destination
sequentially, starting with bits [15:0]. Adds the corresponding adjacent pairs of values in the second
source XMM register or a 128-bit memory location and packs each 16-bit sum into the high quad-
word of the destination, starting with bits [79:64]. Bits [255:128] of the YMM register that corre-
sponds to the destination are cleared.

PHADDSW is an SSSE3 instruction and VPHADDSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECXJ[AVX]
respectively

Instruction Encoding

Mnemonic Opcode Description

PHADDW xmm1, xmm2/mem128 66 OF 38 01 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPHADDW xmm<1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 01/r

Related Instructions
(V)PHADDD, (V)PHADDSW

rFLAGS Affected

None

314 PHADDW, VPHADDW Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHADDW, VPHADDW 315

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PHMINPOSUW Horizontal Minimum and Position
VPHMINPOSUW

Finds the minimum unsigned 16-bit value in the source operand and copies it to the low order word
element of the destination. Writes the source position index of the value to bits [18:16] of the destina-
tion and clears bits[127:19] of the destination.

There are legacy and extended forms of the instruction:
PHMINPOSUW

The source operand is an XMM register or 128-bit memory location. The destination is an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPHMINPOSUW

The extended form of the instruction has a 128-bit encoding only.

The source operand is an XMM register or 128-bit memory location. The destination is an XMM reg-
ister. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PHMINPOSUW is an SSE4.1 instruction and VPHMINPOSUW is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PHMINPOSUW xmm1, xmm2/mem128 66 OF 38 41 /r Finds the minimum unsigned word element in
xmm2 or mem128, copies it to xmm1[15:0]; writes
its position index to xmm1[18:16], and clears
xmm1[127:19].

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPHMINPOSUW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 41 Ir

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

316 PHMINPOSUW, VPHMINPOSUW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X 0O [X|X|X|X[X|>>>>>0WOV

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PHMINPOSUW, VPHMINPOSUW 317

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PHSUBD Packed Horizontal Subtract
VPHSUBD Doubleword

Subtracts adjacent pairs of 32-bit signed integers in two source operands and packs the differences
into a destination. The higher-order doubleword of each pair is subtracted from the lower-order dou-
bleword.

There are legacy and extended forms of the instruction:
PHSUBD

The first source register is also the destination.

Subtracts the 32-bit signed integer value in bits [63:32] of the first source XMM register from the
value in bits [31:0] of the first source XMM register and packs the difference into bits [31:0] of the
destination; subtracts the 32-bit signed integer value in bits [127:96] from the value in bits [95:64]
and packs the difference into bits [63:32] of the destination. Subtracts the corresponding values in the
second source XMM register or a 128-bit memory location and packs the differences into bits [95:64]
and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds to the destina-
tion are not affected.

VPHSUBD

The extended form of the instruction has a 128-bit encoding only.

Subtracts the 32-bit signed integer value in bits [63:32] of the first source XMM register from the
value in bits [31:0] of the first source XMM register and packs the difference into bits [31:0] of the
destination XMM register; subtracts the 32-bit signed integer values in bits [127:96] from the value in
bits [95:64] and packs the difference into bits [63:32] of the destination. Subtracts the corresponding
values in the second source XMM register or a 128-bit memory location and packs the differences
into bits [95:64] and [127:96] of the destination. Bits [255:128] of the YMM register that corresponds
to the destination are cleared.

PHSUBD is an SSSE3 instruction and VPHSUBD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PHSUBD xmm1, xmm2/mem128 66 OF 38 06 /r Adds adjacent pairs of signed integers in xmm1 and
xmm?2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPHSUBD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 06 /r

Related Instructions
(V)PHSUBW, (V)PHSUBSW

318 PHSUBD, VPHSUBD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Mode
Exception Cause of Exception
P Reall Virt |Prot P
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PHSUBD, VPHSUBD 319

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PHSUBSW Packed Horizontal Subtract with Saturation
VPHSUBSW Word

Subtracts adjacent pairs of 16-bit signed integers in two source operands, with saturation, and packs
the differences into a destination. The higher-order word of each pair is subtracted from the lower-
order word.

Positive differences greater than 7FFFh are saturated to 7FFFh; negative differences less than 8000h
are saturated to 8000h.

There are legacy and extended forms of the instruction:
PHSUBSW

The first source register is also the destination.

Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four saturated 16-bit differ-
ences into bits [63:0] of the destination, starting with bits [15:0]. Subtracts the four corresponding
adjacent pairs of values in the second source XMM register or a 128-bit memory location and packs
four saturated 16-bit differences into bits [127:64] of the destination, starting with bits [79:64]. Bits
[255:128] of the YMM register that corresponds to the destination are cleared.

VPHSUBSW

The extended form of the instruction has a 128-bit encoding only.

Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four saturated 16-bit differ-
ences into bits [63:0] of the destination XMM register, starting with bits [15:0]. Subtracts the four
corresponding adjacent pairs of values in the second source XMM register or a 128-bit memory loca-
tion and packs four saturated 16-bit differences into bits [127:64] of the destination, starting with bits
[79:64]. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PHSUBSW is an SSSE3 instruction and VPHSUBSW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PHSUBSW xmm1, xmm2/mem128 66 OF 38 07 /r Subtracts adjacent pairs of signed integers in xmm1
and xmm2 or mem128, with saturation. Writes packed
differences to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPHSUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 o7 /r

Related Instructions
(V)PHSUBD, (V)PHSUBW

320 PHSUBSW, VPHSUBSW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Mode
Exception Cause of Exception
P Reall Virt |Prot P
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PHSUBSW, VPHSUBSW 321

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PHSUBW Packed Horizontal Subtract
VPHSUBW Word

Subtracts adjacent pairs of 16-bit signed integers in two source operands and packs the differences
into a destination. The higher-order word of each pair is subtracted from the lower-order word.

There are legacy and extended forms of the instruction:
PHSUBW

The first source register is also the destination register.

Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four 16-bit differences into bits
[63:0] of the destination, starting with bits [15:0]. Subtracts the four corresponding adjacent pairs of

values in the second source XMM register or a 128-bit memory location and packs four 16-bit differ-
ences into bits [127:64] of the destination, starting with bits [79:64]. Bits [255:128] of the YMM reg-
ister that corresponds to the destination are cleared.

VPHSUBW

The extended form of the instruction has a 128-bit encoding only.

Subtracts four adjacent pairs of 16-bit signed integer values in the first source XMM register, starting
with the value in bits [15:0] minus the value in bits [31:16], and packs four 16-bit differences into bits
[63:0] of the destination XMM register, starting with bits [15:0]. Subtracts the four corresponding
adjacent pairs of values in the second source XMM register or a 128-bit memory location and packs
four 16-bit differences into bits [127:64] of the destination, starting with bits [79:64]. Bits [255:128]
of the YMM register that corresponds to the destination are cleared.

PHSUBW is an SSSE3 instruction and VPHSUBW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSSE3] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PHSUBW xmm1, xmm2/mem128 66 OF 38 05 /r Adds adjacent pairs of signed integers in xmm1 and
xmm2 or mem128. Writes packed sums to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPHSUBW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 05/r

Related Instructions
(V)PHSUBD, (V)PHSUBW

rFLAGS Affected

None

322 PHSUBW, VPHSUBW Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PHSUBW, VPHSUBW 323

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PINSRB Packed Insert
VPINSRB Byte

Inserts a byte from an 8-bit memory location or the low-order byte of a 32-bit general-purpose regis-
ter into a destination register. Bits [3:0] of an immediate byte operand select the location where the
byte is to be inserted:

Value of imm8 [3:0] Insertion Location
0000 [7:0]
0001 [15:8]
0010 [23:16]
0011 [31:24]
0100 [39:32]
0101 [47:40]
0110 [55:48]
0111 [63:56]
1000 [71:64]
1001 [79:72]
1010 [87:80]
1011 [95:88]
1100 [103:96]
1101 [111:104]
1110 [119:112]
1111 [127:120]

There are legacy and extended forms of the instruction:
PINSRB

The source operand is either an 8-bit memory location or the low-order byte of a 32-bit general-pur-
pose register and the destination an XMM register. The other bytes of the destination are not affected.
Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPINSRB

The extended form of the instruction has a 128-bit encoding only.

There are two source operands. The first source operand is either an 8-bit memory location or the
low-order byte of a 32-bit general-purpose register and the second source operand is an XMM regis-
ter. The destination is a second XMM register. All the bytes of the second source other than the byte
that corresponds to the location of the inserted byte are copied to the destination. Bits [255:128] of the
YMM register that corresponds to destination are cleared.

PINSRB is an SSE4.1 instruction and VPINSRB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respectively.

324 PINSRB, VPINSRB Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Instruction Encoding

Mnemonic Opcode Description

PINSRB xmm, reg32/mem8, imm8 66 OF 3A 20 /rib Inserts an 8-bit value selected by imm8 from the
low-order byte of reg32 or from mem8 into xmm.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRB xmm, reg/mem8, xmm, imm8 C4 RXB.00011 X.1111.0.01 20 /rib

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRD, (V)PINSRQ, (V)PINSRW

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Mode
Exception Cause of Exception
P Real Virt |Prot P
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR = 0.
Invalid opcode. #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
P ’ A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.
A |VEX.wwwv ! =1111b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRB, VPINSRB 325

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PINSRD Packed Insert
VPINSRD Doubleword

Inserts a doubleword from a 32-bit memory location or a 32-bit general-purpose register into a desti-
nation register. Bits [1:0] of an immediate byte operand select the location where the doubleword is to
be inserted:

Value of imm8 [1:0] Insertion Location
00 [31:0]
01 [63:32]
10 [95:64]
11 [127:96]

There are legacy and extended forms of the instruction:
PINSRD

The encoding is the same as PINSRQ, with REX.W = 0.

The source operand is either a 32-bit memory location or a 32-bit general-purpose register and the
destination an XMM register. The other doublewords of the destination are not affected. Bits
[255:128] of the YMM register that corresponds to the destination are not affected.

VPINSRD

The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPINSRQ, with VEX.W = 0.

There are two source operands. The first source operand is either a 32-bit memory location or a 32-bit
general-purpose register and the second source operand is an XMM register. The destination is a sec-
ond XMM register. All the doublewords of the second source other than the doubleword that corre-
sponds to the location of the inserted doubleword are copied to the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PINSRD is an SSE4.1 instruction and VPINSRD is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PINSRD xmm, reg32/mem32, imm8 66 (W0) OF 3A 22 /rib Inserts a 32-bit value selected by imm8 from
reg32 or mem32 into xmm.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRD xmm, reg32/mem32, xmm, imm8 Cc4 RXB.00011 0.1111.0.01 22 rib

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRQ, (V)PINSRW

326 PINSRD, VPINSRD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

rFLAGS Affected

None

MXCSR Flags Affected

AMDG64 Technology

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception

X X X | Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.

S S S |CRO.EM=1.

S S S |CR4.0SFXSR =0.

Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
’ A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.

A |VEX.vwwwy ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X | Lock prefix (FOh) preceding opcode.

Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PINSRD, VPINSRD 327

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PINSRQ Packed Insert
VPINSRQ Quadword

Inserts a quadword from a 64-bit memory location or a 64-bit general-purpose register into a destina-
tion register. Bit [0] of an immediate byte operand selects the location where the doubleword is to be
inserted:

Value of immS8 [0] Insertion Location
0 [63:0]
1 [127:64]

There are legacy and extended forms of the instruction:
PINSRQ

The encoding is the same as PINSRD, with REX.W = 1.

The source operand is either a 64-bit memory location or a 64-bit general-purpose register and the
destination an XMM register. The other quadwords of the destination are not affected. Bits [255:128]
of the YMM register that corresponds to the destination are not affected.

VPINSRQ

The extended form of the instruction has a 128-bit encoding only.
The encoding is the same as VPINSRD, with VEX.W = 1.

There are two source operands. The first source operand is either a 64-bit memory location or a 64-bit
general-purpose register and the second source operand is an XMM register. The destination is a sec-
ond XMM register. All the quadwords of the second source other than the quadword that corresponds
to the location of the inserted quadword are copied to the destination. Bits [255:128] of the YMM reg-
ister that corresponds to the destination XMM registers are cleared.

PINSRQ is an SSE4.1 instruction and VPINSRQ is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PINSRQ xmm, reg64/mem64, imm8 66 (W1) OF 3A 22 /rib Inserts a 64-bit value selected by imm8 from
reg64 or mem64 into xmm.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRQ xmm, reg64/mem64, xmm, imm8 C4 RXB.00011 1.1111.0.01 22 /rib

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRW

328 PINSRQ, VPINSRQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

rFLAGS Affected

None

MXCSR Flags Affected

AMDG64 Technology

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception

X X X | Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.

S S S |CRO.EM=1.

S S S |CR4.0SFXSR =0.

Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
’ A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.

A |VEX.vwwwy ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X | Lock prefix (FOh) preceding opcode.

Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PINSRQ, VPINSRQ 329

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PINSRW Packed Insert Word
VPINSRW

Inserts a word from a 16-bit memory location or the low-order word of a 32-bit general-purpose reg-
ister into a destination register. Bits [2:0] of an immediate byte operand select the location where the
byte is to be inserted:

Value of imm8 [2:0] Insertion Location
000 [15:0]
001 [31:16]
010 [47:32
011 [63:48]
100 [79:64]
101 [95:80]
110 [111:96]
111 [127:112]

There are legacy and extended forms of the instruction:
PINSRW

The source operand is either a 16-bit memory location or the low-order word of a 32-bit general-pur-
pose register and the destination an XMM register. The other words of the destination are not
affected. Bits [255:128] of the YMM register that corresponds to the destination are not affected.

VPINSRW

The extended form of the instruction has a 128-bit encoding only.

There are two source operands. The first source operand is either a 16-bit memory location or the
low-order word of a 32-bit general-purpose register and the second source operand is an XMM regis-
ter. The destination is an XMM register. All the words of the second source other than the word that
corresponds to the location of the inserted word are copied to the destination. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PINSRW is an SSE1 instruction and VPINSRW is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PINSRW xmm, reg32/mem16, imm8 66 OF C4 /rib Inserts a 16-bit value selected by imm8 from the
low-order word of reg32 or from mem16 into xmm.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPINSRW xmm, reg32/mem16, xmm, imm8 C4 RXB.00001 X.1111.0.01 C4/rib

330 PINSRW, VPINSRW Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

Related Instructions
(V)PEXTRB, (V)PEXTRD, (V)PEXTRQ, (V)PEXTRW, (V)PINSRB, (V)PINSRD, (V)PINSRQ

rFLAGS Affected

None

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception

X X X | Instruction not supported, as indicated by CPUID feature identifier.

A A AVX instructions are only recognized in protected mode.

S S S |CRO.EM=1.

S S S |CR4.0SFXSR =0.

Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
’ A | XFEATURE_ENABLED_MASK][2:1] ! = 11b.

A | VEX.vwwwy ! =1111b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.

S S X | Lock prefix (FOh) preceding opcode.

Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PINSRW, VPINSRW 331

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMADDUBSW Packed Multiply and Add
VPMADDUBSW Unsigned Byte to Signed Word

Multiplies and adds eight sets of two packed 8-bit unsigned values from the first source register and
two packed 8-bit signed values from the second source register, with signed saturation; writes eight
16-bit sums to the destination.

Source registers 1 and 2 consist of bytes [a0 al a2 ...] and [bO bl b2 ...] and the destination register

consists of words [w0 w1l w2 ...]. Operation is summarized as follows.

* The product of the values in bits [7:0] of the source registers (a0b0) is added to the product of the
values in bits [15:8] of the source registers (albl). The saturated sum w0 = (a0Ob0 + albl) is
written to bits [15:0] of the destination.

* The product of the values in bits [23:16] of the source registers (a2b2) is added to the product of the
values in bits [31:24] of the source registers (a3b3). The saturated sum wl = (a2b2 + a3b3) is
written to bits [31:16] of the destination.

* The product of the values in bits [39:32] of the source registers (a4b4) is added to the product of the
values in bits [47:40] of the source registers (a5b5). The saturated sum w2 = (a4b4 + a5b5) is
written to bits [47:32] of the destination.

* The product of the values in bits [55:48] of the source registers (a6b6) is added to the product of the
values in bits [63:56] of the source registers (a7b7). The saturated sum w3 = (a6b6 + a7b7) is
written to bits [63:48] of the destination.

* The product of the values in bits [71:64] of the source registers (a8b8) is added to the product of the
values in bits [79:72] of the source registers (a9b9). The saturated sum w4 = (a8b8 + a9b9) is
written to bits [79:64] of the destination.

» The product of the values in bits [87:80] of the source registers (al0b10) is added to the product of
the values in bits [95:88] of the source registers (al1b11). The saturated sum
w5 = (alOb10 + allbll) is written to bits [95:80] of the destination.

* The product of the values in bits [103:96] of the source registers (al2b12) is added to the product
of the values in bits [111:104] of the source registers (al3b13). The saturated sum
wb6 = (al2b12 + al3bl13) is written to bits [111:96] of the destination.

* The product of the values in bits [119:112] of the source registers (al4b14) is added to the product
of the values in bits [127:120] of the source registers (al5b15). The saturated sum
w7 = (al4bl4 + al5b15) is written to bits [127:112] of the destination.

There are legacy and extended forms of the instruction:
PMADDUBSW

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMADDUBSW

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

332 PMADDUBSW, VPMADDUBSW Instruction Reference

AMDZU
26568—Rev. 3.177—May 2013 AMDG64 Technology

PMADDUBSW is an SSSE3 instruction and VPMADDUBSW is an AVX instruction. Support for
these instructions is indicated by CPUID Fn0000 00001 ECX[SSSE3] and
Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PMADDUBSW xmm1, xmm2/mem128 66 OF 38 04 /r Multiplies packed 8-bit unsigned values in xmm1 and
packed 8-bit signed values xmm2 / mem128, adds
the products, and writes saturated sums to xmm?1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMADDUBSW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 04 /r

Related Instructions
(V)PMADDWD

rFLAGS Affected
None

MXCSR Flags Affected

None
Exceptions
. Mode .
Exception Reall Virt |Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A |CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A |XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1.
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMADDUBSW, VPMADDUBSW 333

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMADDWD Packed Multiply and Add
VPMADDWD Word to Doubleword

Multiplies and adds four sets of four packed 16-bit signed values from two source registers; writes
four 32-bit sums to the destination.

Source registers 1 and 2 consist of words [a0 al a2 ...] and [b0 b1 b2 ...] and the destination register

consists of doublewords [w0 w1 w2 ...]. Operation is summarized as follows.

* The product of the values in bits [15:0] of the source registers (a0b0) is added to the product of the
values in bits [31:16] of the source registers (albl). The sum d0 = (a0b0 + albl) is written to bits
[31:0] of the destination.

e The product of the values in bits [47:33] of the source registers (a2b2) is added to the product of the
values in bits [63:48] of the source registers (a3b3). The sum d1 = (a2b2 + a3b3) is written to bits
[63:32] of the destination.

* The product of the values in bits [79:64] of the source registers (a4b4) is added to the product of the
values in bits [95:80] of the source registers (a5b5). The sum d2 = (a4b4 + a5b5) is written to bits
[95:64] of the destination.

* The product of the values in bits [111:96] of the source registers (a6b6) is added to the product of
the values in bits [127:112] of the source registers (a7b7). The sum d3 = (abb6 + a7b7) is written to
bits [127:96] of the destination.

When all four of the signed 16-bit source operands in a set have the value 8000h, the 32-bit overflow

wraps around to 8000_0000h. There are no other overflow cases.

There are legacy and extended forms of the instruction:

PMADDWD

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source register is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMADDWD

The extended form of the instruction has a 128-bit encoding only.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The destination is a third XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMADDWD is an SSE2 instruction and VPMADDWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMADDWD xmm1, xmm2/mem128 66 OF F5/r Multiplies packed 16-bit signed values in xmm1 and
xmm2 or mem128, adds the products, and writes the
sums to xmm1.

334 PMADDWD, VPMADDWD Instruction Reference

AMDZU

26568—Rev. 3.17—May 2013 AMDG64 Technology
Mnemonic Encoding

VEX RXB.map_select W.vvvv.L.pp Opcode
VPMADDWD xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 F5 /r

Related Instructions
(V)PMADDUBSW, (V)PMULHUW, (V)PMULHW, (V)PMULLW, (V)PMULUDQ

rFLAGS Affected
None
MXCSR Flags Affected
None
Exceptions
Mode
Exception Cause of Exception
P Real| Virt |Prot P
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|2:1]! = 11b.
A |VEXL=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
s s s Memory operand not 16-byte aligned when alignment checking enabled
Alignment check, #AC and MXCSR.MM = 1
A | Memory operand not 16-byte aligned when alignment checking enabled.
Page fault, #PF S X | Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference PMADDWD, VPMADDWD 335

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMAXSB Packed Maximum
VPMAXSB Signed Bytes

Compares each packed 8-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMAXSB

Compares16 pairs of 8-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXSB

The extended form of the instruction has a 128-bit encoding only.
Compares 16 pairs of 8-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXSB is an SSE4.1 instruction and VPMAXSB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMAXSB xmm1, xmm2/mem128 66 OF 38 3C /r Compares 16 pairs of packed 8-bit values in xmm1 and
xmm2 or mem128 and writes the greater values to the
corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMAXSB xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3C/r

Related Instructions
(V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

336 PMAXSB, VPMAXSB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N nunn

N vwunn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMAXSB, VPMAXSB 337

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMAXSD Packed Maximum
VPMAXSD Signed Doublewords

Compares each packed 32-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMAXSD

Compares four pairs of packed 32-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXSD

The extended form of the instruction has a 128-bit encoding only.
Compares four pairs of packed 32-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXSD is an SSE4.1 instruction and VPMAXSD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMAXSD xmm1, xmm2/mem128 66 OF 38 3D /r Compares four pairs of packed 32-bit values in xmm1
and xmm2 or mem128 and writes the greater values to
the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMAXSD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3D /r

Related Instructions
(V)PMAXSB, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

338 PMAXSD, VPMAXSD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMAXSD, VPMAXSD 339

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMAXSW Packed Maximum
VPMAXSW Signed Words

Compares each packed 16-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMAXSW

Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXSW

The extended form of the instruction has a 128-bit encoding only.
Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXSW is an SSE2 instruction and VPMAXSW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMAXSW xmm1, xmm2/mem128 66 OF EE /r Compares eight pairs of packed 16-bit values in xmm1
and xmm2 or mem128 and writes the greater values to
the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMAXSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EE /Ir

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXUB, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

340 PMAXSW, VPMAXSW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N nunn

N vwunn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMAXSW, VPMAXSW 341

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMAXUB Packed Maximum
VPMAXUB Unsigned Bytes

Compares each packed 8-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMAXUB

Compares 16 pairs of 8-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXUB

The extended form of the instruction has a 128-bit encoding only.
Compares 16 pairs of 8-bit unsigned integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXUB is an SSE2 instruction and VPMAXUB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMAXUB xmm1, xmm2/mem128 66 OF DE /r Compares 16 pairs of packed unsigned 8-bit values in
xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMAXUB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DE /r

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUD, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

342 PMAXUB, VPMAXUB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMAXUB, VPMAXUB 343

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMAXUD Packed Maximum
VPMAXUD Unsigned Doublewords

Compares each packed 32-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMAXUD

Compares four pairs of packed 32-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXUD

The extended form of the instruction has a 128-bit encoding only.
Compares four pairs of packed 32-bit unsigned integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXUD is an SSE4.1 instruction and VPMAXUD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMAXUD xmm1, xmm2/mem128 66 OF 38 3F /r Compares four pairs of packed unsigned 32-bit values
in xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMAXUD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3F Ir

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUW

rFLAGS Affected

None

MXCSR Flags Affected

None

344 PMAXUD, VPMAXUD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMAXUD, VPMAXUD 345

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMAXUW Packed Maximum
VPMAXUW Unsigned Words

Compares each packed 16-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically greater value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMAXUW

Compares eight pairs of packed 16-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMAXUW

The extended form of the instruction has a 128-bit encoding only.
Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMAXUW is an SSE4.1 instruction and VPMAXUW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMAXUW xmm1, xmm2/mem128 66 OF 38 3E /r Compares eight pairs of packed unsigned 16-bit values
in xmm1 and xmm2 or mem128 and writes the greater
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMAXUW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3E /r

Related Instructions
(V)PMAXSB, (V)PMAXSD, (V)PMAXSW, (V)PMAXUB, (V)PMAXUD

rFLAGS Affected

None

MXCSR Flags Affected

None

346 PMAXUW, VPMAXUW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMAXUW, VPMAXUW 347

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMINSB Packed Minimum
VPMINSB Signed Bytes

Compares each packed 8-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMINSB

Compares 16 pairs of 8-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINSB

The extended form of the instruction has a 128-bit encoding only.
Compares 16 pairs of 8-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINSB is an SSE4.1 instruction and VPMINSB is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMINSB xmm1, xmm2/mem128 66 OF 38 38 /r Compares 16 pairs of packed 8-bit values in xmm1 and
xmm?2 or mem128 and writes the lesser values to the
corresponding positions in xmm1

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMINSB xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 381/r

Related Instructions
(V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

348 PMINSB, VPMINSB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMINSB, VPMINSB 349

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMINSD Packed Minimum
VPMINSD Signed Doublewords

Compares each packed 32-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMINSD

Compares four pairs of packed 32-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINSD

The extended form of the instruction has a 128-bit encoding only.
Compares four pairs of packed 32-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINSD is an SSE4.1 instruction and VPMINSD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMINSD xmm1, xmm2/mem128 66 OF 38 39 /r Compares four pairs of packed 32-bit values in xmm1
and xmm2 or mem128 and writes the lesser values to
the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMINSD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 39/r

Related Instructions
(V)PMINSB, (V)PMINSW, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

350 PMINSD, VPMINSD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMINSD, VPMINSD 351

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMINSW Packed Minimum Signed Words
VPMINSW

Compares each packed 16-bit signed integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMINSW

Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINSW

The extended form of the instruction has a 128-bit encoding only.
Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINSW is an SSE2 instruction and VPMINSW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMINSW xmm1, xmm2/mem128 66 OF EA /r Compares eight pairs of packed 16-bit values in xmm1
and xmm2 or mem128 and writes the lesser values to the
corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMINSW xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 EAr

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINUB, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

352 PMINSW, VPMINSW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMINSW, VPMINSW 353

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMINUB Packed Minimum
VPMINUB Unsigned Bytes

Compares each packed 8-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMINUB

Compares 16 pairs of 8-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINUB

The extended form of the instruction has a 128-bit encoding only.
Compares 16 pairs of 8-bit unsigned integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINUB is an SSE2 instruction and VPMINUB is an AVX instruction. Support for these instructions
is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX] respectively.

Instruction Encoding

Mnemonic Opcode Description

PMINUB xmm1, xmm2/mem128 66 OF DA /r Compares 16 pairs of packed unsigned 8-bit values in
xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMINUB xmm1, xmm2, xmm3/mem128 C4 RXB.00001 X.src.0.01 DA /r

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUD, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

354 PMINUB, VPMINUB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMINUB, VPMINUB 355

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMINUD Packed Minimum
VPMINUD Unsigned Doublewords

Compares each packed 32-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMINUD

Compares four pairs of packed 32-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINUD

The extended form of the instruction has a 128-bit encoding only.
Compares four pairs of packed 32-bit unsigned integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINUD is an SSE4.1 instruction and VPMINUD is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMINUD xmm1, xmm2/mem128 66 OF 38 3B /r Compares four pairs of packed unsigned 32-bit values
in xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm?1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMINUD xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3B /r

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUW

rFLAGS Affected

None

MXCSR Flags Affected

None

356 PMINUD, VPMINUD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

General protection, #GP

N unn

N wunn

Memory address exceeding data segment limit or non-canonical.

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMINUD, VPMINUD 357

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PMINUW Packed Minimum Unsigned Words
VPMINUW

Compares each packed 16-bit unsigned integer value of the first source operand to the corresponding
value of the second source operand and writes the numerically lesser value into the corresponding
location of the destination.

There are legacy and extended forms of the instruction:
PMINUW

Compares eight pairs of packed 16-bit unsigned integer values.

The first source operand is an XMM register. The second source operand is either another XMM reg-
ister or a 128-bit memory location. The first source operand is also the destination. Bits [255:128] of
the YMM register that corresponds to the destination are not affected.

VPMINUW

The extended form of the instruction has a 128-bit encoding only.
Compares eight pairs of packed 16-bit signed integer values.

The first source operand is an XMM register and the second source operand is either another XMM
register or a 128-bit memory location. The destination is an XMM register. Bits [255:128] of the
YMM register that corresponds to the destination are cleared.

PMINUW is an SSE4.1 instruction and VPMINUW is an AVX instruction. Support for these instruc-
tions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX] respec-
tively.

Instruction Encoding

Mnemonic Opcode Description

PMINUW xmm1, xmm2/mem128 66 OF 38 3A /r Compares eight pairs of packed unsigned 16-bit values
in xmm1 and xmm2 or mem128 and writes the lesser
values to the corresponding positions in xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMINUW xmm1, xmm2, xmm3/mem128 C4 RXB.00010 X.src.0.01 3Ar

Related Instructions
(V)PMINSB, (V)PMINSD, (V)PMINSW, (V)PMINUB, (V)PMINUD

rFLAGS Affected

None

MXCSR Flags Affected

None

358 PMINUW, VPMINUW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.L =1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N nunn

N vwunn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Alignment check, #AC

Memory operand not 16-byte aligned when alignment checking enabled
and MXCSR.MM = 1.

Memory operand not 16-byte aligned when alignment checking enabled.

Page fault, #PF

X[Z| O | X[X[X|X|X|>>> >0 n

Instruction execution caused a page fault.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMINUW, VPMINUW 359

AMDZU

AMD64 Technology 26568—Rev. 3.17—May 2013
PMOVMSKB Packed Move Mask
VPMOVMSKB Byte

Copies the values of the most-significant bits of each byte element of the source operand to create a
16-bit mask value, zero-extends the value, and writes it to the destination.

There are legacy and extended forms of the instruction:
PMOVMSKB

The source operand is an XMM register. The destination is a 32-bit general purpose register. The
mask is zero-extended to fill the destination register, the mask occupies bits [15:0].

VPMOVMSKB

The source operand is an XMM register. The destination is a 64-bit general purpose register. The
mask is zero-extended to fill the destination register, the mask occupies bits [15:0]. VEX. W is
ignored.

PMOVMSKB is an SSE2 instruction and VPMOVMSKB is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 EDX[SSE2] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVMSKB reg32, xmm1 66 OF D7 /r Moves a zero-extended mask consisting of the most-
significant bit of each byte in xmm1 to a 32-bit general-
purpose register.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VMOVMSKB reg64, xmm1 C4 RXB.00001 X.1111.0.01 D7 /Ir

Related Instructions
(VIMOVMSKPD, (V)MOVMSKPS

rFLAGS Affected

None

MXCSR Flags Affected

None

360 PMOVMSKB, VPMOVMSKB Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM=1.
S S S |CR4.0SFXSR =0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK][2:1]! = 11b.
A | VEX.vvvy field ! = 1111b.
A | VEX.L field = 1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
X X X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMOVMSKB, VPMOVMSKB 361

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PMOVSXBD Packed Move with Sign-Extension
VPMOVSXBD Byte to Doubleword

Sign-extends each of four packed 8-bit signed integers, in either the four low bytes of a source regis-
ter or a 32-bit memory location, to 32 bits and writes four packed doubleword signed integers to the
destination.

There are legacy and extended forms of the instruction:
PMOVSXBD

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXBD

The extended form of the instruction has a 128-bit encoding only.

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXBD is an SSE4.1 instruction and VPMOVSXBD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVSXBD xmm1, xmm2/mem32 66 OF 38 21 /r Sign-extends four packed signed 8-bit
integers in the four low bytes of xmm2 or
mem32 and writes four packed signed
32-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMOVSXBD xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 21 1/r

Related Instructions
(V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

rFLAGS Affected

None

MXCSR Flags Affected
None

362 PMOVSXBD, VPMOVSXBD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X|X| X[X[|>Z>>I>> 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMOVSXBD, VPMOVSXBD 363

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PMOVSXBQ Packed Move with Sign Extension
VPMOVSXBQ Byte to Quadword

Sign-extends each of two packed 8-bit signed integers, in either the two low bytes of a source register
or a 16-bit memory location, to 64 bits and writes two packed quadword signed integers to the desti-
nation.

There are legacy and extended forms of the instruction:
PMOVSXBQ

The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXBQ

The extended form of the instruction has a 128-bit encoding only.

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXBAQ is an SSE4.1 instruction and VPMOVSXBQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVSXBQ xmm1, xmm2/mem16 66 OF 38 22 /r Sign-extends two packed signed 8-bit
integers in the two low bytes of xmm2
or mem16 and writes two packed
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMOVSXBQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 22 /r

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

rFLAGS Affected

None

MXCSR Flags Affected
None

364 PMOVSXBQ, VPMOVSXBQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X|X| X[X[|>Z>>I>> 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMOVSXBQ, VPMOVSXBQ 365

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMOVSXBW Packed Move with Sign Extension
VPMOVSXBW Byte to Word

Sign-extends each of eight packed 8-bit signed integers, in either the eight low bytes of a source reg-
ister or a 64-bit memory location, to 16 bits and writes eight packed word signed integers to the desti-
nation.

There are legacy and extended forms of the instruction:

PMOVSXBW

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXBW

The extended form of the instruction has a 128-bit encoding only.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXBW is an SSE4.1 instruction and VPMOVSXBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVSXBW xmm1, xmm2/mem128 66 OF 38 20 /r Sign-extends eight packed signed 8-bit
integers in the eight low bytes of xmm2 or
mem128 and writes eight packed signed
16-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMOVSXBW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 20 /r

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXDQ, (V)PMOVSXWD, (V)PMOVSXW

rFLAGS Affected

None

MXCSR Flags Affected

None

366 PMOVSXBW, VPMOVSXBW Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X|X| X[X[|>Z>>I>> 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMOVSXBW, VPMOVSXBW 367

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PMOVSXDQ Packed Move with Sign-Extension
VPMOVSXDQ Doubleword to Quadword

Sign-extends each of two packed 32-bit signed integers, in either the two low doublewords of a
source register or a 64-bit memory location, to 64 bits and writes two packed quadword signed inte-
gers to the destination.

There are legacy and extended forms of the instruction:
PMOVSXDQ

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXDQ

The extended form of the instruction has a 128-bit encoding only.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXDQ is an SSE4.1 instruction and VPMOVSXDQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]

respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVSXDQ xmm1, xmm2/mem64 66 OF 38 25/r Sign-extends two packed signed 32-bit
integers in the two low doublewords of
xmm2 or mem64 and writes two packed

signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMOVSXDQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 25/r

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXWD, (V)PMOVSXWQ

rFLAGS Affected

None

MXCSR Flags Affected

None

368 PMOVSXDQ, VPMOVSXDQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X|X| X[X[|>Z>>I>> 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMOVSXDQ, VPMOVSXDQ 369

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PMOVSXWD Packed Move with Sign-Extension
VPMOVSXWD Word to Doubleword

Sign-extends each of four packed 16-bit signed integers, in either the four low words of a source reg-
ister or a 64-bit memory location, to 32 bits and writes four packed doubleword signed integers to the
destination.

There are legacy and extended forms of the instruction:
PMOVSXWD

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXWD

The extended form of the instruction has a 128-bit encoding only.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXWD is an SSE4.1 instruction and VPMOVSXWD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVSXWD xmm1, xmm2/mem64 66 OF 38 23 /r Sign-extends four packed signed 16-bit
integers in the four low words of xmm2 or
mem64 and writes four packed signed 32-bit
integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMOVSXWD xmm1, xmm2/mem64 C4 RXB.00010 X.1111.0.01 23 /r

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWQ

rFLAGS Affected

None

MXCSR Flags Affected
None

370 PMOVSXWD, VPMOVSXWD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X|X| X[X[|>Z>>I>> 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMOVSXWD, VPMOVSXWD 371

AMDZU

AMDG64 Technology 26568—Rev. 3.177—May 2013
PMOVSXWQ Packed Move with Sign-Extension
VPMOVSXWQ Word to Quadword

Sign-extends each of two packed 16-bit signed integers, in either the two low words of a source regis-
ter or a 32-bit memory location, to 64 bits and writes two packed quadword signed integers to the des-
tination.

There are legacy and extended forms of the instruction:
PMOVSXWQ

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVSXWQ

The extended form of the instruction has a 128-bit encoding only.

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVSXWQ is an SSE4.1 instruction and VPMOVSXWQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVSXWQ xmm1, xmm2/mem32 66 OF 38 24 /r Sign-extends two packed signed 16-bit
integers in the two low words of xmm?2 or
mem32 and writes two packed signed
64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMOVSXWQ xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.01 24 Ir

Related Instructions
(V)PMOVSXBD, (V)PMOVSXBQ, (V)PMOVSXBW, (V)PMOVSXDQ, (V)PMOVSXWD

rFLAGS Affected

None

MXCSR Flags Affected
None

372 PMOVSXWQ, VPMOVSXWQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

Exceptions

AMDG64 Technology

Mode

Exception

Real

Virt

Prot

Cause of Exception

Instruction not supported, as indicated by CPUID feature identifier.

AVX instructions are only recognized in protected mode.

CRO.EM =1.

0w onl >

0l nl > X

CR4.0SFXSR = 0.

Invalid opcode, #UD

CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].

XFEATURE_ENABLED_MASKJ2:1] ! = 11b.

VEX.vvvv | = 1111b.

VEX.L=1.

REX, F2, F3, or 66 prefix preceding VEX prefix.

Lock prefix (FOh) preceding opcode.

Device not available, #NM

CRO.TS =1.

Stack, #SS

Memory address exceeding stack segment limit or non-canonical.

N unn

N v unn

Memory address exceeding data segment limit or non-canonical.

General protection, #GP

Null data segment used to reference memory.

Page fault, #PF

(0)]

Instruction execution caused a page fault.

Alignment check, #AC

X[X|X|X|X| X[X[|>Z>>I>> 00

Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMOVSXWQ, VPMOVSXWQ 373

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMOVZXBD Packed Move with Zero-Extension
VPMOVZXBD Byte to Doubleword

Zero-extends each of four packed 8-bit unsigned integers, in either the four low bytes of a source reg-
ister or a 32-bit memory location, to 32 bits and writes four packed doubleword positive-signed inte-
gers to the destination.

There are legacy and extended forms of the instruction:
PMOVZXBD

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVZXBD

The extended form of the instruction has a 128-bit encoding only.

The source operand is either an XMM register or a 32-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXBD is an SSE4.1 instruction and VPMOVZXBD is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVZXBD xmm1, xmm2/mem32 66 OF 38 31 /r Zero-extends four packed unsigned 8-bit
integers in the four low bytes of xmm2 or
mem32 and writes four packed positive-
signed 32-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMOVZXBD xmm1, xmm2/mem32 C4 RXB.00010 X.1111.0.01 311/r

Related Instructions
(V)PMOVZXBQ, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

rFLAGS Affected

None

MXCSR Flags Affected
None

374 PMOVZXBD, VPMOVZXBD Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMOVZXBD, VPMOVZXBD 375

AMDZU

AMDG64 Technology 26568—Rev. 3.17—May 2013
PMOVZXBQ Packed Move Byte to Quadword
VPMOVZXBQ with Zero-Extension

Zero-extends each of two packed 8-bit unsigned integers, in either the two low bytes of a source reg-
ister or a 16-bit memory location, to 64 bits and writes two packed quadword positive-signed integers
to the destination.

There are legacy and extended forms of the instruction:
PMOVZXBQ

The source operand is either an XMM register or a 16-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVZXBQ

The extended form of the instruction has a 128-bit encoding only.

The source operand is either an XMM register or a 128-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXBQ is an SSE4.1 instruction and VPMOVZXBQ is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVZXBQ xmm1, xmm2/mem16 66 OF 38 32 /r Zero-extends two packed unsigned 8-bit
integers in the two low bytes of xmm2 or
mem16 and writes two packed positive-
signed 64-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMOVZXBQ xmm1, xmm2/mem16 C4 RXB.00010 X.1111.0.01 32 /r

Related Instructions
(V)PMOVZXBD, (V)PMOVZXBW, (V)PMOVZXDQ, (V)PMOVZXWD, (V)PMOVZXW

rFLAGS Affected

None

MXCSR Flags Affected

None

376 PMOVZXBQ, VPMOVZXBQ Instruction Reference

AMDZU

26568—Rev. 3.177—May 2013

AMDG64 Technology

Exceptions
. Mode .
Exception Reall Virt [Prot Cause of Exception
X X X | Instruction not supported, as indicated by CPUID feature identifier.
A A AVX instructions are only recognized in protected mode.
S S S |CRO.EM =1.
S S S |CR4.0SFXSR = 0.
Invalid opcode, #UD A | CR4.0SXSAVE = 0, indicated by CPUID Fn0000_0001_ECX[OSXSAVE].
A | XFEATURE_ENABLED_MASK|[2:1]! = 11b.
A |VEX.L=1.
A |REX, F2, F3, or 66 prefix preceding VEX prefix.
S S X | Lock prefix (FOh) preceding opcode.
Device not available, #NM S S X |CRO.TS =1.
Stack, #SS S S X | Memory address exceeding stack segment limit or non-canonical.
General protection, #GP S S X | Memory address exceeding data segment limit or non-canonical.
X | Null data segment used to reference memory.
Page fault, #PF S X | Instruction execution caused a page fault.
Alignment check, #AC S X | Unaligned memory reference when alignment checking enabled.

X — AVX and SSE exception
A — AVX exception
S — SSE exception

Instruction Reference

PMOVZXBQ, VPMOVZXBQ 377

AMDZU
AMDG64 Technology 26568—Rev. 3.177—May 2013

PMOVZXBW Packed Move Byte to Word with Zero-Extension
VPMOVZXBW

Zero-extends each of eight packed 8-bit unsigned integers, in either the eight low bytes of a source
register or a 64-bit memory location, to 16 bits and writes eight packed word positive-signed integers
to the destination.

There are legacy and extended forms of the instruction:
PMOVZXBW

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are not
affected.

VPMOVZXBW

The extended form of the instruction has a 128-bit encoding only.

The source operand is either an XMM register or a 64-bit memory location. The destination is an
XMM register. Bits [255:128] of the YMM register that corresponds to the destination are cleared.

PMOVZXBW is an SSE4.1 instruction and VPMOVZXBW is an AVX instruction. Support for these
instructions is indicated by CPUID Fn0000 00001 ECX[SSE41] and Fn0000 00001 ECX[AVX]
respectively.

Instruction Encoding

Mnemonic Opcode Description

PMOVZXBW xmm1, xmm2/mem128 66 OF 38 30 /r Zero-extends eight packed unsigned 8-bit
integers in the eight low bytes of xmm2 or
mem128 and writes eight packed positive-
signed 16-bit integers to xmm1.

Mnemonic Encoding
VEX RXB.map_select W.vvvv.L.pp Opcode
VPMOVZXBW xmm1, xmm2/mem128 C4 RXB.00010 X.1111.0.0