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40 Chapter 2. Second Order Equations

2

Problem Set 2.1, page 79

1 Find a cosine and a sine that solved2y/dt2 = −9y. This is a second order equation
so we expecttwo constantsC andD (from integrating twice) :

Simple harmonic motion y(t) = C cos ωt+D sin ωt. What isω ?

If the system starts from rest (this meansdy/dt = 0 at t = 0), which constantC or D
will be zero ?

Solution Lettingy(t) = C cos(ωt) +D sin(ωt) :

d2y

dt2
+ 9y = −ω2C cos(ωt) + 9C cos(ωt)− ω2 sin(ωt) + 9 sin(ωt) = 0

ω = 3

Differentiatingy(t) and equating to zero at timet = 0 gives us :

y ′(t) = −Cω sin(ωt) +Dω cos(ωt) = 0

At t = 0 : Dω = 0 → D = 0

2 In Problem 1, whichC andD will give the starting valuesy(0) = 0 andy′(0) = 1?

Solution y(0) = C cos(ω0) +D sin(ω0) = 0 givesC = 0

Differentiatingy(t) and equating to1 at timet = 0 gives us :

y ′(0) = Dω = 1 and D =
1

ω
=

1

3

3 Draw Figure 2.3 to show simple harmonic motiony = A cos (ωt − α) with phases
α = π/3 andα = −π/2.

Solution Notice thatA is the maximum heightymax. At t = 0 we seey = A cos(−α) =
A cosα.

4 Suppose the circle in Figure 2.4 has radius3 and circular frequencyf = 60 Hertz.
If the moving point starts at the angle−45◦, find itsx-coordinateA cos (ωt− α). The
phase lag isα = 45◦. When does the point first hit thex axis ?

Solution f = ω/2π = 60 Hertz is equivalent toω = 120π radians per second.
With magnitudeA = 3 andα = −45 ◦ = −π/4 radians,A cos(ωt − α) becomes
3 cos(120πt+ π/4). The point going around the circle hits thex-axis when that angle
is a multiple ofπ. The first hit occurs at120πt + π/4 = π and120 t = 3/4 and
t = 3/480 = 1/160.

5 If you drive at60 miles per hour on a circular track with radiusR = 3 miles, what is
the timeT for one complete circuit ? Your circular frequency isf = and your
angular frequency isω = (with what units ?). The period isT .

Solution The distance around a circle of radiusR = 3 miles is2πR = 6π miles.
The timeT for a complete circuit at60 miles per hour isT = 6π/60 = π/10 hours.
From T = 1/f = 2π/ω the circular frequency isf = 10/π cycles per hour and
ω = 2πf = 2π/T = 20 radians per hour.
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6 The total energyE in the oscillating spring-mass system is

E = kinetic energy in mass+ potential energy in spring=
m

2

(
dy

dt

)2

+
k

2
y2.

ComputeE wheny = C cos ωt+D sin ωt. The energy is constant !

Solution y = C cosωt + D sinωt has dy/dt = −ωC sinωt + ωD cosωt.

The total energy isE = 1
2mω2(C2 sin2 ωt− 2CD sinωt cosωt+D2 cos2 ωt)

+ 1
2k(C

2 cos2 ωt+ 2CD sinωt cosωt+D2 sin2 ωt).

Whenω =
√
k/m andmω2 = k, usesin2 ωt+ cos2 ωt = 1 to find

E =
1

2
k
(
C2 +D2

)
(sin2 ωt+ cos2 ωt) =

1

2
k(C2 +D2) = constant.

7 Another way to show that the total energyE is constant :

Multiply my′′ + ky = 0 by y′. Then integratemy ′y ′′ and kyy ′.

Solution (my ′′ + ky) y ′ = 0 is the same asddt(
1
2my ′2 + 1

2ky
2) = 0.

This says thatE = 1
2my ′2 + 1

2ky
2 is constant.

8 A forced oscillationhas another term in the equation andA cosωt in the solution :

d2y

dt2
+ 4y = F cos ωt has y = C cos 2t+D sin 2t+A cos ωt.

(a) Substitutey into the equation to see howC andD disappear (they giveyn). Find
the forced amplitudeA in the particular solutionyp = A cos ωt.

(b) In caseω = 2 (forcing frequency= natural frequency), what answer does your
formula give forA? The solution formula fory breaks down in this case.

Solution (a) The frequencyω = 2 gives the null solutionsy = C cos 2t +D sin 2t :
y ′′

n + 4yn = 0.

The choice ofA gives a particular solutionyp = A cosωt. Substitute thisyp :
y ′′
p + 4yp = (−ω2 + 4)A cosωt = F cosωt and A = F

4−ω2
.

(b) ω = 2 leads toA = ∞ and that solutionyp breaks down :resonance. (The correct
yp will include a factort)

9 Following Problem8, write down the complete solutionyn + yp to the equation

m
d2y

dt2
+ ky = F cos ωt with ω 6= ωn =

√
k/m (no resonance).

The answery has free constantsC andD to matchy(0) andy′(0) (A is fixedbyF ).

Solution y = yn + yp = C cos

(√
k
m t

)
+D sin

(√
k
m t

)
+ A

k−mω2 cosωt.

10 Suppose Newton’s LawF = ma has the forceF in thesamedirection asa :
my ′′ = + ky including y ′′ = 4y.

Find two possible choices ofs in the exponential solutionsy = est. The solution is not
sinusoidal ands is real and the oscillations are gone. Nowy is unstable.

Solution The exponents inyn = Cet
√

k/m+De−t
√

k/m are now real. Those numbers
±
√
k/m come from substitutingy = est into the differential equation :

my ′′ − ky = (ms2 − k)est = 0 when s =
√
k/m and s = −

√
k/m.
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11 Here is afourth order equation : d4y/dt4 = 16y. Find four values ofs that give
exponential solutionsy = est. You could expect four initial conditions ony :
y(0) is given along with what three other conditions ?

Solution Substitutey = est in the differential equation to finds4 = 16. This has four
solutions :s = 2,−2, 2i,−2i. The constants iny = c1e

2t + c2e
−2t + c3e

2it + c4e
−2it

are determined by the initial valuesy(0), y ′(0), y ′′(0), y ′′′(0).

12 To find a particular solution toy ′′ + 9y = ect, I would look for a multiple
yp(t) = Y ect of the forcing function. What is that numberY ? When does your
formula giveY = ∞ ? (Resonance needs a new formula forY .)

Solution Substituteyp = Y ect to find (c2 + 9)Y ect = ect andY = 1/(c2 + 9). This
is called the “exponential response function” in Section 2.4. The resonant caseY = ∞
occurrs whenc2 + 9 = 0 or c = ±3i. Then a new formula fory(t) involvestect as
well asect.

13 In a particular solutiony = Aeiωt to y′′ + 9y = eiωt, what is the amplitudeA?
The formula blows up when the forcing frequencyω = what natural frequency?

Solution Substituteyp = Aeiωt to find i2ω2Aeiωt + 9Aeiωt = eiωt. With i2 = −1
this givesA = 1/(9 − ω2). This blows up when9 − ω2 = 0 at the natural frequency
ωn = 3.

14 If y(0) > 0 andy′(0) < 0, doesα fall betweenπ/2 andπ or between3π/2 and2π ?
If you plot the vector from(0, 0) to (y(0), y ′(0)/ω), its angle isα.

Solution If y(0) > 0 andy ′(0) < 0 thenα falls between3π/2 and2π. This occurs
because the vector from(0, 0) to (y(0), y ′(0)/ω) is in the fourth quadrant.

15 Find a point on the sine curve in Figure 2.1 wherey > 0 but v = y′ < 0 and also
a = y′′ < 0. The curve is sloping down and bending down.

Find a point wherey < 0 buty′ > 0 andy′′ > 0. The point is below thex-axis but the
curve is slopingUP and bendingUP.

Solution For π
2 < t < π (90 ◦ to 180 ◦), y(t) = sin t > 0 but y ′(t) < 0 and

y ′′(t) < 0.

Note that for3π2 < t < 2π, y(t) < 0 buty ′(t) > 0 andy ′′(t) > 0. The point is below
thex-axis but the bold sine curve is sloping upwards and bending upwards.

16 (a) Solvey′′ + 100y = 0 starting fromy(0) = 1 andy′(0) = 10. (This is yn.)

(b) Solvey′′ + 100y = cosωt with y(0) = 0 andy′(0) = 0. (This can beyp.)

Solution (a) Substitutey = ect

y ′′ + 100y = 0

c2ect + 100ect = 0

c2 = −100

c = ±10i

y = ce10it + de−10it

This can be rewritten in terms of sines and cosines of10t. Introducing the initial con-
ditions we have :
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y(t) = A cos(10t) +B sin(10t)

y(0) = A = 1

y ′(0) = 10B = 10 → B = 1

y(t) = sin(10t) + cos(10t)

(b) As in equation (11) we assume the particular solution is

y(t) =
1

100− ω2
cos(ωt)

Adding in the null solution and substituting in the initial conditions gives :

y(t) = B sin(10t) +A cos(10t) +
1

100− ω2
cos(ωt)

y(0) = B sin(0) +A cos(0) +
1

100− ω2
cos(0) = 0

A =
1

ω2 − 100

y ′(0) = 10B cos(0)− 10A sin(0)− ω

100− ω2
sin(0)

= 10B = 0 → B = 0

Therefore the solution is:

y(t) =
1

100− ω2
(cos(ωt)− cos(10t))

17 Find a particular solutionyp = R cos(ωt − α) to y′′ + 100y = cosωt − sinωt.

Solution

Right side : cosωt− sinωt =
√
2 cos

(
ωt+

π

4

)

Diff. Eqn : −ω2R cos(ωt− α) + 100R cos(ωt− α) =
√
2 cos

(
ωt+

π

4

)

(100− ω2)R cos(ωt− α) =
√
2 cos

(
ωt+

π

4

)

Then α = −π

4
and R =

√
2

100− ω2

18 Simple harmonic motion also comes from a linear pendulum (like a grandfather
clock). At time t, the height isA cos ωt. What is the frequencyω if the pendulum
comes back to the start after1 second ? The period does not depend on the amplitude
(a large clock or a small metronome or the movement in a watch can all haveT = 1).

Solution The equation describing Simple Harmonic Motion is :

x(t) = A cos(ωt− φ)

If the period isT = 1 second, the frequency isf = 1 Hertz orω = 2π radians per
second.
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19 If the phase lag isα, what is the time lag in graphingcos(ωt− α)?

Solution
cos(ωt− α) = cos

(
ω
(
t− α

ω

))

Therefore the time lag isα/ω.

20 What is the responsey(t) to a delayed impulse ifmy ′′ + ky = δ(t− T )?

Solution Similar to equation (15) we have

yp(t) =
sin(ωn(t− T ))

mωn

The conditions at timeT are:

yp(T ) = 0 and y ′

p(T ) =
1

m

Note thatyp starts from timet = T . We haveyp = 0.

21 (Good challenge) Show thaty =
t∫
0

g(t− s)f(s) ds has my ′′ + ky = f(t).

1 Why is y ′ =
t∫
0

g ′(t− s)f(s) ds+ g(0)f(t) ? Notice the twot’s in y.

Solution 1 The variablet appears twice in the formula fory, so the derivativedy/dt
hastwo terms (called the Leibniz rule). One term is the value ofg(t − s)f(s) at the
upper limit s = t; this is from the Fundamental Theorem of Calculus. Sincet also
appears in the quantityg(t− s)f(s), its derivativeg ′(t− s)f(s) also appears iny ′.
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2 Usingg(0) = 0, explain whyy ′′ =
t∫
0

g ′′(t− s)f(s) ds+ g ′(0)f(t).

Solution 2 Sinceg(0) = 0, part 1 producedy ′ =
t∫
0

g ′(t − s)f(s)ds. Using the

Leibniz rule again (now ony ′), we get the two terms iny ′′.

3 Now useg ′(0) = 1/m andmg ′′ + kg = 0 to confirmmy ′′ + ky = f(t).

Solution 3 my ′′+ky = m

(
t∫
0

g ′′(t− s)f(s) ds+ g ′(0)f(t)

)
+k

(
t∫
0

g(t− s)f(s) ds

)
=

m(1/m)f(t). The integrals cancelled becausemg ′′ + kg = 0.
22 With f = 1 (direct current hasω = 0) verify thatmy ′′ + ky = 1 for thisy :

Step response y(t) =

t∫

0

sinωn(t− s)

mωn
1 ds = yp + yn equals

1

k
− 1

k
cosωnt.

Solution This y(t) certainly solvesmy ′′ + ky = 1. Comment: That formula for
y(t) fits with the usual

∫
g(t − s)f(s) ds whenf = 1 and the impulse response is

g(t) = (sinωnt)/mωn in equation (15). And always thisstep response should be the
integral of the impulse response. The natural frequency isωn = k/m :

y(t) =

t∫

0

sin(ωn(t− s))

mωn
ds = − cos(ωn(t− s))

mω2
n

]t

0

=
1

k
− cos(ωnt)

k
.

Notice that without damping resistance, the step response oscillates forever—not
approaching the steady statey∞ = 1/k.

23 (Recommended) For the equationd2y/dt2 = 0 find the null solution. Then for
d2g/dt2 = δ(t) find the fundamental solution (start the null solution withg(0) = 0
andg ′(0) = 1). Fory ′′ = f(t) find the particular solution using formula (16).

Solution
d2y

dt2
= 0 gives yn = A+Bt.

We get the fundamental solutiong(t) = t for t ≥ 0 by starting the null solution with
g(0) = 0 andg ′(0) = 1. Theng(t) = t andg(t− s) = t− s. This gives the particular
solution ford2y/dt2 = f(t) using formula (16) :

y(t) =

∫ t

0

(t− s)f(s) ds.

24 For the equationd2y/dt2 = eiωt find a particular solutiony = Y (ω)eiωt. ThenY (ω)
is the frequency response. Note the “resonance” whenω = 0 with the null solution
yn = 1.

Solution Substitutey = Y eiωt :

−Y (ω)ω2eiωt = eiωt

Y (ω) = −1/ω2

yp(t)p = eiωt/ω2
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The null solution toy ′′ = 0 is y(t)n = At+B.

WhenA = 0 andB = 1, we getyn = 1. This causes resonance atω = 0, the solution
formulayp = eiωt/ω2 breaks down.

25 Find a particular solutionY eiωt to my ′′ − ky = eiωt. The equation has−ky
instead ofky. What is the frequency responseY (ω)? For whichω is Y infinite ?

Solution Substitutey(t) = Y eiωt in my ′′ − ky = eiωt

Then − Y mω2eiωt − kY eiωt = eiωt

−Ymω2 − Y k = 1

Y (ω) =
1

k +mω2

Y is infinite forω = i
√

k
m . No resonance at real frequenciesω, because the equation

has−ky instead ofky.

Problem Set 2.2, page 87

1 Mark the numberss1 = 2+i ands2 = 1−2i as points in the complex plane. (The plane
has a real axis and an imaginary axis.) Then mark the sums1 + s2 and the difference
s1 − s2.

Solution The sum iss1 + s2 = 3− i. The difference iss1 − s2 = 1 + 3i.

2 Multiply s1 = 2 + i timess2 = 1− 2i. Check absolute values :|s1||s2| = |s1s2|.
Solution The product(2 + i)(1 − 2i) is 2 + i − 4i − 2i2 = 4 − 3i. The absolute
values of2 + i and1− 2i are

√
22 + 12 =

√
5. The product4− 3i has absolute value√

42 + 32 = 5, agreeing with(
√
5)(

√
5).

3 Find the real and imaginary parts of1/(2 + i). Multiply by (2− i)/(2− i) :

1

2 + i

2− i

2− i
=

2− i

|2 + i|2 = ?

Solution 1

2 + i

2− i

2− i
=

2− i

5
In general

1

z
=

z

|z|2 becausezz = |z|2.

4 Triple angles Multiply equation (2.10) by anothereiθ = cos θ + i sin θ to find
formulas forcos 3θ andsin 3θ.

Solution Equation (10) is(cos θ + i sin θ)2 = cos 2θ + i sin 2θ. Multiply by another
cos θ + i sin θ :

(cos θ + i sin θ)3 = cos θ cos 2θ + i sin θ cos 2θ + i cos θ sin 2θ − sin θ sin 2θ

= cos(θ + 2θ) + i sin(θ + 2θ) by sum formulas

= cos 3θ + i sin 3θ

Real part cos 3θ = cos3 θ − 3 cos θ sin2 θ Imaginary part sin 3θ = 3 cos2 θ sin θ −
sin3θ.
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5 Addition formulas Multiply eiθ = cos θ+i sin θ timeseiφ = cos φ+i sin φ to get
ei(θ+φ). Its real part iscos (θ + φ) = cos θ cos φ− sin θ sin φ. What is its imaginary
partsin (θ + φ) ?

Solution The imaginary part of(cos θ+ i sin θ)(cosφ+ i sinφ) is the coeffieient ofi :

sin θ cosφ+ cos θ sinφ must equalsin(θ + φ).
6 Find the real part and the imaginary part of each cube root of1. Show directly that the

three roots add to zero, as equation (2.11) predicts.

Solution The cube roots of1 are at angles0, 2π/3, 4π/3 (or 0 ◦, 120 ◦, 240 ◦). They
are equally spaced on the unit circle (absolute value1). The three roots are1 and

e2πi/3 = cos 2π
3 + i sin 2π

3 = −1
2
+ i

√
3

2

e4πi/3 = cos 4π
3 + i sin 4π

3 = −1
2
− i

√
3

2

The sum1− 1
2 + i

√
3
2 − 1

2 − i
√
3
2 equalszero. Always :n roots of2n = 1 add to zero.

7 The three cube roots of1 arez andz2 and1, whenz = e2πi/3. What are the three
cube roots of8 and the three cube roots ofi? (The angle fori is 90◦ or π/2, so
the angle for one of its cube roots will be . The roots are spaced by120◦.)

Solution The three cube roots of8 are2 and2e2πi/3 = −1 +
√
3i and2e4πi/3 =

−1−
√
3i. (They also add to zero.)

The three cube roots ofi = eπi/2 areeπi/6 ande5πi/6 ande9πi/6 still add to zero.
8 (a) The numberi is equal toeπi/2. Then its ith power ii comes out equal to

a real number, using the fact that(es)t = est. What is that real numberii ?

(b) eiπ/2 is also equal toe5πi/2. Increasing the angle by2π does not
changeeiθ — it comes around a full circle and back toi. Thenii has another real
value(e5πi/2)i = e−5π/2. What are all the possible values ofii ?

Solution (a) Theith power ofi = eπi/2 is ii = (eπi/2)i = e−π/2 by the ordinary rule
for exponents. Surprising thatii is a real number.

(b) i also equalse5πi/2 since5π
2 is a full rotation fromπ

2 . Soii also equals(e5πi/2)i =
e−5π/2—and infinitely many other possibilitiese−(2π+1)π/2 for every whole number
n. We are on a “Riemann surface” with an infinity of layers.

9 The numberss = 3 + i and s = 3 − i are complex conjugates. Find their sum
s + s = −B and their product(s)(s) = C. Then show thats2 + Bs + C = 0
and alsos2 + Bs + C = 0. Those numberss ands are the two roots of the quadratic
equationx2 +Bx+ C = 0.

Solution −B = s+ s = (3 + i) + (3− i) = 6. C = (s)(s) = (3 + i)(3− i) = 10.

Thens ands are the two roots ofx2 − Bx + C = x2 − 6x + 10 = 0. The usual
quadratic formula gives6±

√
36−40
2 = 6±2i

2 = 3± i.
10 The numberss = a + iω ands = a − iω are complex conjugates. Find their sum

s+ s = −B and their product(s)(s) = C. Then show thats2 +Bs+C = 0. The two
solutions ofx2 +Bx+ C = 0 ares ands.

Solution −B = (a+ iω) + (a− iω) = 2a C = (a+ iω)(a− iω) = a2 + iω2.

Then the roots ofx2 − 2ax+ a2 + ω2 = 0 arex = 2a±
√
−4ω2

2 = a± iω.
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11 (a) Find the numbers(1 + i)4 and(1 + i)8.

(b) Find the polar formreiθ of (1 + i
√
3)/(

√
3 + i).

Solution (a) (1 + i)4 = (
√
2eiπ/4)4 = (

√
2)4eiπ = −4

(1 + i)8 = square of(1 + i)4 = (square of−4) = 16.

(b) (1 + i
√
3)(

√
3 + i) =

√
3 + 3i+ i−

√
3 = 4i. Dividing by (2)(2) = 4 this is

(cos θ + i sin θ)(sin θ + i cos θ) = i(cos2 θ + sin2 θ) = i.

The unexpected part issin θ + i cos θ = cos(π2 − θ) + i sin(π2 − θ) = ei(π/2−θ).

Then the product ofeiθ andei(π/2−θ) is eiπ/2 which equalsi as above.

12 The numberz = e2πi/n solveszn = 1. The numberZ = e2πi/2n solvesZ2n = 1.
How isz related toZ ? (This plays a big part in the Fast Fourier Transform.)

Solution If Z = e2πi/2n thenZ2 = e2πi/n = z. The square of the2n th root is the
n th root. The angle forZ is half the angle forz.

The Fast Fourier Transform connects the transform at level2n to the transform at level
n (and on down ton/2 andn/4 and eventually to1, if these numbers are powers of2).

13 (a) If you knoweiθ ande−iθ, how can you findsin θ ?

(b) Find all anglesθ with eiθ = −1, and all anglesφ with eiφ = i.

Solution (a) sin θ = 1
2i [(cos θ + i sin θ)− (cos θ − i sin θ)] = 1

2i
(eiθ − e−iθ).

(b) The angles witheiθ = −1 areθ = π + (any multiple of 2π) = (2n + 1)π.

The angles witheiφ = 1 areφ = any multiple of 2π = 2nπ.

14 Locate all these points on one complex plane :

(a) 2 + i (b) (2 + i)2 (c)
1

2 + i
(d) |2 + i|

Solution 2 + i is in quadrant1. (2 + i)2 is in quadrant2. 1
2+i is in quadrant4.

|2 + i| =
√
5 is on the positive real axis.

15 Find the absolute valuesr = |z| of these four numbers. Ifθ is the angle for6+8i, what
are the angles for these four numbers?

(a) 6− 8i (b) (6 − 8i)2 (c)
1

6− 8i
(d) 8i+ 6

Solution The absolute values are10 and100 and 1
10 and10.

The angles are2π − θ (or just−θ), 2π − 2θ (or just−2θ), θ, andθ.

16 What are the real and imaginary parts ofea+ iπ andea+ iω ?

Solution ea+iπ = eaeiπ = −e−a(real) ea+iω = ea cosω + iea sinω

17 (a) If |s| = 2 and|z| = 3, what are the absolute values ofsz ands/z ?

(b) Find upper and lower bounds inL ≤ |s+ z| ≤ U . When does|s+ z| = U ?

Solution (a) |sz| = |s| |z| = 6 |s/z| = |s|/|z| = 2/3.

(b) The best bounds areL = 1 andU = 5 : 1 ≤ |s+ z| ≤ 5.

That bound5 is reached whens andz have thesame angleθ.
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18 (a) Where is the product(sin θ + i cos θ)(cos θ + i sin θ) in the complex plane ?

(b) Find the absolute value|S| and the polar angleφ for S = sin θ + i cos θ.

This is my favorite problem, becauseS combinescos θ and sin θ in a new way.
To findφ, you could plotS or add angles in the multiplication of part (a).

Solution (sin θ+i cos θ)(cos θ+i sin θ) = sin θ cos θ+i(sin2 θ+cos2 θ)−cos θ sin θ =
i. The product is imaginary. The angles must add to90 ◦.

Sincecos θ + i sin θ is at angleθ and the producti is at angleπ/2, the first factor
sin θ + i cos θ must beeiφ at angleφ = π

2
− θ. The absolute value is1. See also

Problem 2.2.11.

19 Draw the spiralse(1− i)t ande(2− 2i)t. Do those follow the same curves ? Do they
go clockwise or anticlockwise ? When the first one reaches thenegativex-axis, what is
the timeT ? What point has the second one reached at that time ?

Solution The spirale(1−i)t = ete−it starts at1 whent = 0. As t increases, it goes
outward (absolute valueet) and clockwise (the angle is−t). It reaches the negativeX
axis whent = π. The second spirale(2−2i)t is the same curvebut traveled twice as
fast. Its angle−2t reaches−π (theX-axis) at timet = π/2.

20 The solution tod2y/dt2 = −y is y = cos t if the initial conditions arey(0) =
andy′(0) = . The solution isy = sin t wheny(0) = andy′(0) =

. Write each of those solutions in the formc1 eit + c2 e
−it, to see that real

solutions can come from complexc1 andc2.

Solution y = cos t hasy(0) = 1 and y ′(0) = 0. y = sin t hasy(0) = 0 and
y ′(0) = 1. Those solutions arecos t = (eit + e−it)/2 andsin t = (eit − e−it)/2i.

The complete solution toy ′′ = −y is y = C1 cos t + C2 sin t. The same complete
solution is C1(e

it + e−it)/2 + C2(e
it − e−it)/2i = c1e

it + c2e
−it with

c1 = (C1 + C2)/2 andc2 = (C1 − C2)/2i.

21 Supposey(t) = e−t eit solvesy′′ + By′ + Cy = 0. What areB andC ? If this
equation is solved byy = e3it, what areB andC ?

Solution If y = est solvesy ′′ + By ′ + Cy = 0 then substitutingest shows that
s2 + Bs+ C = 0. This problem hass = −1 + i. Then the other root is the conjugate
s = −1 − i (always assumingB andC are real numbers). The sum−2 is −B. The
product(s)(s) = 2 isC. So the underlying equation isy ′′ + 2y ′ + 2y = 0.

22 From the multiplicationeiA e−iB = ei(A−B), find the “subtraction formulas”
for cos (A−B) andsin (A−B).

Solution Start with the fact thateiAe−iB = ei(A−B). Use Euler’s formula:
(cosA+ i sinA)(cosB − i sinB) = cos(A−B) + i sin(A−B).

Compare real parts:cosA cosB + sinA sinB = cos(A−B).

Compare imaginary parts:sinA cosB − cosA sinB = sin(A−B).

23 (a) If r andR are the absolute values ofs andS, show thatrR is the absolute value of
sS. (Hint : Polar form !)

(b) If s andS are the complex conjugates ofs andS, show thatsS is the complex
conjugate ofsS. (Polar form !)
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Solution (a) Given: s = reiθ and S = Reiφ for some anglesθ and φ. Then
sS = rRei(θ+φ). The absolute value ofsS is rR = (absolute value ofs)
(absolute value ofS).

(b) Now s = re−iθ andS = Re−iφ. Multiply to get sS = rRe−i(θ+φ). This is the
complex conjugate ofsS = rRei(θ+φ) in part (a).

24 Suppose a complex numbers solves a real equations3 + As2 + Bs + C = 0
(with A, B, C real). Why does the complex conjugates also solve this equation ?
“Complex solutions to real equations come in conjugate pairss and s.”

Solution The complex conjugate ofs3+As2+Bs+C = 0 is s3+As2+Bs+C = 0.

We took the conjugate of every term using the fact thatA,B,C are real. (The conju-
gates ofs2 ands3 ares2 ands3 by Problem 23).

For quadratic equationsx2 + Bx + C = 0, the formula(−B ±
√
B2 − 4C)/2 is

producingcomplex conjugates from± whenB2 − 4C is negative.

25 (a) If two complex numbers add tos+S = 6 and multiply tosS = 10, what ares and
S ? (They are complex conjugates.)

(b) If two numbers add tos + S = 6 and multiply tosS = −16, what ares and
S ? (Now they are real.)

Solution (a) s andS must have the same real part3. They each have magnitude
√
10.

Sos andS are3 + i and3− i.

(b) If s+S = 6 andsS = −16 thens andS are the roots ofx2 − 6x− 16 = 0. Factor
into (x− 8)(x+2) = 0 to see thats andS are8 and−2. (Not complex conjugates! In
this exampleB2 − 4AC = 36 + 64 = 100 and the quadratic has real roots8 and−2.)

26 If two numberss andS add tos + S = −B and multiply tosS = C, show thats and
S solve the quadratic equations2 +Bs+ C = 0.

Solution Just check that(x − s)(x − S) = x2 + Bx + C. The left side is
x2 − (s+ S)x+ sS. Thens+ S agrees with−B andsS matchesC.

27 Find three solutions tos3 = −8i and plot the three points in the complex plane. What
is the sum of the three solutions ?

Solution The three solutions have the same absolute value2. Their angles are sepa-
rated by120 ◦ = 2π/3 radians= 4π/6 radians. The first angle isθ = −30 ◦ = −π/6
radians (so that3θ = −90 ◦ = −π/2 radians matches−i).

The answers are2e−πi/6, 2e3πi/6, 2e7πi/6. They add to0.

28 (a) For which complex numberss = a + iω doesest approach0 as t → ∞ ?
Those numberss fill which “half–plane” in the complex plane ?

(b) For which complex numberss = a + iω doessn approach0 as n → ∞ ?
Those numberss fill which part of the complex plane ? Not a half-plane !

Solution (a) If s = a + iω, the absolute value ofest is eat. This approaches0 if a is
negative. The numberss = a+ iω with negativea fill the left half-plane.

(b) This part asks about the powerssn instead ofest. Powers ofs approach zero if
|s| < 1. This is the same asa2 + ω2 < 1. These complex numbers fill theinside of
the unit circle.
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Problem Set 2.3, page 101

1 Substitutey = est and solve the characteristic equation fors :

(a)2y ′′ + 8y ′ + 6y = 0 (b) y ′′′′ − 2y ′′ + y = 0.

Solution (a) 2s2 + 8s + 6 factors into2(s + 3)(s + 1) so the roots ares = −3 and
s = −1. The null solutions arey = e−3t andy = e−t (and any combination).

(b) s4 − 2s2 + 1 factors into(s2 − 1)2 which is (s − 1)2(s + 1)2. The roots are
s = 1, 1,−1,−1. The null solutions arey = c1e

t + c2te
t + c3e

−t + c4te
−t. (The

factort enters for double roots.)
2 Substitutey = est and solve the characteristic equation fors = a+ iω :

(a)y ′′ + 2y ′ + 5y = 0 (b) y ′′′′ + 2y ′′ + y = 0

Solution (a) s2 + 2s + 5 = 0 givess = (−2 ±
√
4− 20)/2 = −1 ± 2i = a + iω.

Theny = e−t cos 2t andy = e−t sin 2t solve the (null) equation.

(b) s4 + 2s2 + 1 = 0 factors into(s2 + 1)(s2 + 1) = 0. The roots arei, i,−i,−i.
The solutions arey = c1e

it + c2te
it + c3e

−it + c4te
−it. They can also be written as

y = C1 cos t+ C2t cos t+ C3 sin t+ C4t sin t.
3 Which second order equation is solved byy = c1e

−2t + c2e
−4t ? Ory = te5t ?

Solution If s = −2 ands = 4 are the exponents, the characteristic equation must be
s2 + 6s+ 8 = 0 coming fromy ′′ + 6y ′ + 8y = 0.

If y = te5t is a solution, then5 is adouble root. The characteristic equation must be
(s− 5)2 = s2 − 10s+ 25 = 0 coming fromy ′′ − 10y ′ + 25y = 0.

4 Which second order equation has solutionsy = c1e
−2t cos 3t+ c2e

−2t sin 3t?

Solution Those sine/cosine solutions combine to givee−2te3it ande−2te−3it. Then
s = −2 ± 3i. The sum is−4 and4, the product is22 + 32 = 13.

The equation must bey ′′ − 4y ′ + 13y = 0.

5 Which numbersB give (under) (critical) (over) damping in4y ′′ +By ′ + 16y = 0?

Solution The roots of4s2 + Bs + 16 are s = (−B ±
√
B2 − 162)/2. We have

underdamping forB2 > 162 (real roots); critical damping forB2 = 162 (double root);
overdamping forB2 < 162 (complex roots).

6 If you want oscillation frommy ′′ + by ′ + ky = 0, thenb must stay below .

Solution Oscillations mean underdamping. We needb2 < 4km.

Problems 7–16 are about the equationAs2 + Bs + C = 0 and the rootss1, s2.

7 The rootss1 ands2 satisfys1 + s2 = −2p = −B/2A ands1s2 = ω2
n = C/A. Show

this two ways :

(a) Start fromAs2 +Bs+C = A(s− s1)(s− s2). Multiply to sees1s2 ands1 + s2.

(b) Start froms1 = −p+ iωd, s2 = −p− iωd

Solution (a) MatchAs2+Bs+C toA(s−s1)(s−s2) = As2−A(s1+s2)s+As1s2.
Then−B = A(s1 + s2) andC = As1s2. Error in problem : s1 + s2 equals−B/A
and not−B/2A.

(b) s1 + s2 = (−p+ iωd) + (−p− iωd) = −2p = −B/A. Thenp = B/2A.
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8 Finds andy at the bottom point of the graph ofy = As2 +Bs+C. At that minimum
points = smin andy = ymin, the slope isdy/ds = 0.

Solution The minimum ofAs2 + Bs + C is located by derivative= 2As + B = 0.
Thens = −B/2A (which isp). The value ofAs2 +Bs+ C at that minimum point is
A(B2/4A2)− (B2/2A) + C = −(B2/4A) + C = (4AC −B2)/4A.

Notice: IfB2 < 4AC the minimum is> 0. ThenAs2 +Bs+ C 6= 0 for reals.

9 The parabolas in Figure 2.10 show how the graph ofy = As2 + Bs + C is raised
by increasingB. Using Problem 8, show that the bottom point of the graph moves left
(change insmin) and down (change inymin) whenB is increased by∆B.

Solution For the graph ofy = As2+Bs+C, the bottom point isy = (4AC−B2)/4A
ats = −B/2A. WhenB is increased,s moves left andy moves down. (The convention
is A > 0.)

10 (recommended) Draw a picture to show the paths ofs1 ands2 whens2 +Bs+ 1 = 0
and the damping increases fromB = 0 to B = ∞. At B = 0, the roots are on the

axis. AsB increases, the roots travel on a circle (why ?). AtB = 2, the
roots meet on the real axis. ForB > 2 the roots separate to approach0 and−∞.
Why is their products1s2 always equal to1?

Solution The roots ofs2 +Bs+ 1 will move asB increases from0 to ∞. At B = 0,
the roots ofs2 + 1 = 0 areimaginary: s = ±i. AsB increases, the roots are complex
conjugates always multiplying tos1s2 = 1. They are on theunit circle . WhenB
reaches2, the roots ofs2 + 2s + 1 = (s + 1)2 meet ats = −1. (Each root traveled a
quarter-circle, from±i to −1.) For largerB and overdampingB2 > 4AC = 4(1)(1),
the rootss1s2 arereal. One root moves from−1 towards = 0, the other moves from
−1 toward−∞. At all times s1s2 = C/A = 1/1.

11 (this too if possible) Draw the paths ofs1 ands2 whens2+2s+k = 0 and the stiffness
increases fromk = 0 to k = ∞. When k = 0, the roots are .
At k = 1, the roots meet ats = . For k → ∞ the two roots travel up/down
on a in the complex plane.Why is their sums1 + s2 always equal to− 2?

Solution This problem changesk in s2+2s+ k = 0. So thesums1+ s2 stays at−2,
theproduct s1s2 = k/1 increases from0 to ∞.

Whenk = 0, the roots−2 and0 are real. Whenk = 1, the roots are−1 and−1
(repeated). Whenk → ∞, thenB2 − 4AC = 4 − 4k is negative and the roots
s = −1 ± iω arecomplex conjugates. They lie on the vertical linex = Res = −1
in the complex plane.

12 If a polynomialP (s) has a double root ats = s1, then(s − s1) is a double factor and
P (s) = (s − s1)

2Q(s). CertainlyP = 0 at s = s1. Show that alsodP/ds = 0
ats = s1. Use the product rule to finddP/ds.

Solution P = (s − s1)
2Q(s) has a double roots = s1, together with the roots of

Q(s). The derivative is
dP

ds
= (s− s1)

2 dQ

ds
+ 2(s− s1)Q(s). This is zero ats = s1.

13 Show thaty′′ = 2ay′ − (a2 + ω2)y leads tos = a± iω. Solvey ′′ − 2y ′ + 10y = 0.

Solution Substitutey = est in the differential equation. Cancelest from every term to
leaves2 = 2as− (a2 + ω2).
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The roots area± iω, their sum is2a, their product isa2 + ω2.

Fory ′′ − 2y ′ + 10y = 0 (negative damping!) the sum iss1 + s2 = 2 and the product
is 10. The roots ares = 1 ± 3i. The solutiony(t) is c1e(1+3i)t + c2e

(1−3i)t.

14 The undampednatural frequencyis ωn =
√
k/m. The two roots ofms2 + k = 0 are

s = ± iωn (pure imaginary). Withp = b/2m, the roots ofms2 + bs + k = 0 are
s1, s2 = −p ±

√
p2 − ω2

n. The coefficientp = b/2m has the units of1/time.

Solves2 + 0.1s+ 1 = 0 ands2 + 10s+ 1 = 0 with numbers correct to two decimals.

Solution s2 +0.1s+1 = 0 givess = (−0.1±
√
0.01− 4)/2 = (−0.1± i

√
3.99)/2.

How to approximate that square root?
The square root of4 − x is close to2 − 1

4x. Computing(2 − 1
4x)

2 = 4 − x + x2/16

we see the small errorx2/16. Our problem has4 − x = 3.99 andx = 1/100. So the
square root is close to2 − 1

400 . The roots ares ≈
(
−0.1± i

(
2− 1

400

))
/2. In other

wordss = −0.05 + i(1− 0.00125).
Fors2 +10s+1 = 0, the roots ares = (−10±

√
(100− 4)/2 = −5±

√
25− 1. The

square root of25 − x is close to5 − 1
10x, because squaring the approximation gives

25 − x + (x2/100). Our example hasx = 1 ands ≈ −5± (5 − 1
10 ), which gives the

two approximate rootss = − 1
10 and−10 + 1

10 .

These add to−10 (correct) and multiply to.99 (almost correct).

15 With large overdampingp >> ωn, the square root
√
p2 − ω2

n is close to
p − ω2

n/2p. Show that the roots ofms2 + bs + k are s1 ≈ −ω2
n/2p = (small)

ands2 ≈ −2p = −b/m (large).

Solution Use that approximate square rootp− ω2
n/2p in the quadratic formula :

s = −p±
√
p2 − ω2

n ≈ −p±
(
p− ω2

n

2p

)
. Then s = −ω2

n

2p
and − 2p+

ω2
n

2p
.

Whenp is large andωn is small, a small root is near−ω2
n/2p and a large root is near

−2p. (Their product is the correctω2
n, their sum is close to the correct−2p.)

16 With small underdampingp << ωn, the square root ofp2 − ω2
n is approximately

iωn − ip2/2ωn. Square that to come close top2 − ω2
n. Then the frequency for small

underdamping is reduced toωd ≈ ωn − p2/2ωn.

Solution Now p is muchsmaller thanωn. So the rootss = −p ±
√
p2 − ω2

n are
complex. The damped frequencyωd =

√
ω2
n − p2 is close toωn and the correction

term is−p2/2ωn from the approximationωn−p2/2ωn to the square root. (Square that
approximation to seeω2

n − p2 + (p4/4ω2
n).

17 Here is an8th order equation with eight choices for solutionsy = est :
d8y

dt8
= y becomes s8est = est and s8 = 1 : Eight roots in Figure 2.6.

Find two solutionsest that don’t oscillate (s is real). Find two solutions that only
oscillate (s is imaginary). Find two that spiral in to zero and two that spiral out.

Solution The equations8 = 1 has8 roots. Two of them ares = 1 ands = −1 (real :
no oscillation). Two ares = i ands = −i (imaginary : pure oscillation). Two are
s = e2πi/8 ands = e−2πi/8 (positive real partscos π

4 : (oscillating growth, spiral out).
Two ares = e3πi/4 ands = e−3πi/4 (negative real parts : oscillating decay, spiral in).
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18 An
dny

dtn
+ · · ·+A1

dy

dt
+ A0y = 0 leads toAns

n + · · · + A1s + A0 = 0.

The n rootss1, . . . , sn producen solutionsy(t) = est (if those roots are distinct).
Write downn equations for the constantsc1 to cn in y = c1e

s1t + · · · + cne
snt by

matching then initial conditions fory(0), y ′(0), . . ., Dn−1y(0).

Solution Then roots given solutionsy = est (when the rootss are all different).
There aren constants iny = c1e

s1t + · · · + cne
snt. These constants are found by

matching then initial conditionsy(0), y ′(0), . . . Take derivatives ofy and sett = 0 :

c1 + c2 + · · ·+ cn = y(0)

c1s1 + c2s2 + · · ·+ cnsn = y ′(0)

c1s
2
1 + c2s

2
2 + · · ·+ cns

2
n = y ′′(0)

· · · = · · ·
Then by n matrixA in those equations is the transpose of aVandermonde matrix :

A =




1 1 · · · 1
s1 s2 · · · sn

s21 s22 · · · s2n
· · · · · ·




19 Find two solutions tod2015y/dt2015=dy/dt. Describe all solutions tos2015=s.

Solution With y = est we finds2015 = s. One solution hass = 1 andy = et. The
other2014 solutions haves2014 = 1 (s = 1 is double! Second solutiony = tet.)
The2014 values ofs are equally spaced around the unit circle, separated by the angle
2π/2014.

20 The solution toy ′′ = 1 starting fromy(0) = y ′(0) = 0 is y(t) = t2/2. The
fundamental solution tog ′′ = δ(t) is g(t) = t by Example 5. Does the integral∫
g(t− s)f(s)ds =

∫
(t− s)ds from 0 to t give the correct solutiony = t2/2?

Solution The main formula for a particular solution is correct :

yp(t) =

t∫

0

g(t− s)f(s) ds =

t∫

0

(t− s) ds = − (t− s)2

2

]t

s=0

=
t2

2
.

21 The solution toy ′′ + y = 1 starting fromy(0) = y ′(0) = 0 is y = 1 − cos t. The
solution tog ′′ + g = δ(t) is g(t) = sin t by equation (13) withω = 1 andA = 1.
Show that1− cos t agrees with the integral

∫
g(t− s)f(s)ds =

∫
sin(t− s)ds.

Solution The formula for a particular solution is again correct :

yp(t) =

t∫

0

g(t− s)f(s) ds =

t∫

0

sin(t− s) ds = cos (t− s)]
t
s=0 = 1− cos t.

Theny ′′

p + yp = 1.

22 The step functionH(t) = 1 for t ≥ 0 is the integral of the delta function.So the step
responser(t) is the integral of the impulse response.This fact must also come from
our basic solution formula :
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Ar ′′ +Br ′ + Cr = 1 with r(0) = r ′(0) = 0 has r(t) =

t∫

0

g(t − s) 1 ds

Changet− s to τ and changeds to−dτ to confirm thatr(t) =
t∫
0

g(τ)dτ .

Section 2.5 will find two good formulas for the step responser(t).

Solution For any equationAr ′′ + Br ′ + Cr = 1 with f(t) = 1, yp comes from the
integral formula :

yp =

t∫

0

g(t−s)f(s) ds =

t∫

0

g(t−s) ds. Change tot−s = τ and −ds = dτ and

−
0∫

t

g(τ)dτ = +

t∫

0

g(τ)dτ = step response

Problem Set 2.4, page 114
Problems 1-4 use the exponential responseyp = ect/P (c) to solveP (D)y = ect.

1 Solve these constant coefficient equations with exponential driving force :

(a)y ′′

p + 3y ′

p + 5yp = et (b) 2y ′′

p + 4yp = eit (c) y′′′′ = et

Solution (a) Substitutey = Y et to findY :

Y et + 3Y et + 5Y et = et gives 9Y = 1 and Y = 1/9 : y = et/9

(b) Substitutey = Y eit : 2i2Y eit + 4Y eit = eit : 2Y = 1 : y = eit/2

(c) Substitutey = Y et to findY = 1 andy = et.

2 These equationsP (D)y = ect use the symbolD for d/dt. Solve foryp(t) :

(a) (D2 + 1)yp(t) = 10e−3t (b) (D2 + 2D + 1)yp(t) = eiωt

(c) (D4 +D2 + 1)yp(t) = eiωt

Solution (a) Substitutey = Y e−3t to find9Y + Y = 10 : Y = 1 andy = e−3t.

(b) Substitutey = Y eiωt to find ((iω)2 + 2iω + 1)Y = 1 andY = 1/(1− ω2 + 2iω).

(c) Substitutey = Y eiωt to find((iω)4 + (iω)2 +1)Y = 1 andY = 1/(1−ω2 +ω4).

3 How couldyp = ect/P (c) solvey ′′ + y = eteit and theny ′′ + y = et cos t ?

Solution First,y ′′+y = e(1+i)t hasc = 1+i andy = Y ect = e(1+i)t/((1+i)2+1) =
eteit/(1 + 2i). Thereal part of thaty solves the equation driven byet cos t :

y = Re

[
et(cos t+ i sin t)

(
1− 2i

12 + 22

)]
=

1

5
et(cos t+ 2 sin t).
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4 (a) What are the rootss1 to s3 and the null solutions toy′′′n − yn = 0 ?

(b) Find particular solutions toy′′′p − yp = eit and toy′′′p − yp = et − eiωt.

Solution (a)y = est leads tos3 − 1 = 0. The three rootss = 1, s = e2πi/3 = − 1
2 +

1
2

√
3, s = e−2πi/3 = − 1

2− 1
2

√
3 give three null solutionsyn = et, e−t/2 cos

√
3
2 t, e−t/2 sin

√
3
2 t.

(b) The particular solution withf = eit is yp = eit/(i3 − 1).

The particular solution withf = et−eiωt looks likey = et/(13−1)−eiωt((iω)3−1).
But the first part has13 − 1 = 0 and resonance : thenet/(13 − 1) changes by equation
(19) to tet/3 : (The differential equation hasy ′′′ − y = (D3 − 1)y = P (D)y and is
P ′(D) = 3D2 andP ′(c) = 3 becauseet hasc = 1.)

Problems 5-6 involve repeated rootss in yn and resonanceP (c) = 0 in yp.
5 Which value ofC gives resonance iny ′′+Cy = eiωt ? Why do we never get resonance

in y ′′ + 5y ′ + Cy = eiωt ?

Solution y ′′+Cy = eiωt has resonance wheneiωt solves the null equation, so(iω)2+
C = 0 andC = ω2. For thisC the particular solution must change fromyp = eiωt/0
to yp = teiωt/2iω (because the derivative ofP (D) = D2 + C is P ′(D) = 2D and
thenP ′(iω) = 2iω).

We never get resonance withP (D) = D2+5D+C becauseP (iω) = (iω)2+5iω+C
is never zero andy = eiωt is never a null solution.

6 Suppose the third order equationP (D)yn = 0 has solutionsy = c1e
t + c2e

2t + c3e
3t.

What are the null solutions to the sixth order equationP (D)P (D)yn = 0 ?

Solution The three roots ofP (s) must bes = 1, 2, 3. The sixth order equation
P (D)P (D)y = 0 has those asdouble rootsof P (s)2. So the null solutions are

y = c1e
t + c2te

t + c3e
2t + c4te

2t + c5e
3t + c6te

3t

7 Complete this table with equations fors1 ands2 andyn andyp :
Undamped free
Undamped forced
Damped free
Damped forced

my ′′ + ky = 0
my ′′ + ky = eiωt

my ′′ + by ′ + ky = 0
my ′′ + by ′ + ky = ect

yn = c1e
iωnt + c2e

−iωnt

yp = eiωt/m(ω2
n − ω2)

yn = c1e
s1t + c2e

s2t

yp = ect/(mc2 + bc + k)

Heres1 ands2 are−b/2m±
√
b2 − 4mk/2m.

8 Complete the same table when the coefficients are1 and2Zωn andω2
n with Z < 1.

Undamped free
Undamped forced
Underdamped free
Underdamped forced

y ′′ + ω2
ny = 0

y ′′ + ω2
ny = eiωt

y ′′ + 2Zωny
′ + ω2

ny = 0

y ′′ + 2Zωny
′ + ω2

ny = ect

yn = c1e
iωnt + c2e

−iωnt

yp = eiωt/m(ω2
n − ω2)

yn = c1e
s1t + c2e

s2t

yp = ect/(c2 + 2Zωnc + ω2
n)

Those use equations (20) in 2.3 and (32-33) in 2.4.
9 What equationsy ′′ +By ′ + Cy = f have these solutions ? Hint: FindB andC from

the exponentss in yn : s1 + s2 = −B ands1s2 = C. Findf by substitutingyp.

(a)y = c1 cos 2t+ c2 sin 2t+ cos 3t y ′′ + 4y = −5 cos 3t

(b)y = c1e
−t cos 4t+c2e

−t sin 4t+cos 5t y ′′ + 2y ′ + 17y = −8 cos 5t − 10 sin 5t

(c) y = c1e
−t + c2te

−t + eiωt y ′′ + 2y ′ + y = [(iω)2 + 2iω + 1]eiωt.
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10 If yp = te−6t cos 7t solves a second order equationAy ′′ + By ′ + Cy = f ,
what does that tell you aboutA, B, C, andf ?

Solution This particularyp is showingresonancefrom the factort. (If this wasyn,
we would be seeing a double root ofAs2 + Bs + C = 0.) The root iss = −6 + 7i
from the other factors ofyp.

So I believe that

As2 +Bs+ C = A(s+ 6− 7i)(s+ 6 + 7i) = A(s2 + 12s+ 36 + 49)

f = Fe−6t(A cos 7t+B sin 7t)

11 (a) Find the steady oscillationyp(t) that solvesy ′′ + 4y ′ + 3y = 5 cosωt.

(b) Find the amplitudeA of yp(t) and its phase lagα.

(c) Which frequencyω gives maximum amplitude (maximum gain) ?

Solution (a)yp hassinωt as well ascosωt. Use equations (22-23) foryp = M cosωt+
N sinωt :

D = (3− ω2)2 + 16ω2 M =
3− ω2

D
N =

4ω

D

(b) From equation (26) and the page 112 table :

Amplitude= G = 1√
D

and the angleα has tangent= N
M = 4ω

3−ω2 .

(c) The maximum gainG and the minimum ofD = (3−ω2)2+16ω2 will occur when
dD

dω
= −4ω(3− ω2) + 32ω = 0 and 3− ω2 = 8 and ω = ±

√
5.

This “practical resonance frequency” is computed at the endof section 2.5.

12 Solvey ′′ + y = sinωt starting fromy(0) = 0 andy ′(0) = 0. Find the limit ofy(t) as
ω approaches1, and the problem approaches resonance.

Solution The solution isy = yn + yp = c1 cos t + c2 sin t + Y sinωt. Substituting
into the equation gives−ω2Y sinωt+ Y sinωt = sinωt andY = 1

1−ω2 .

y(0) = 0 givesc1 = 0. And y ′(0) = c2 + ωY = 0 givesc2 = −ωY :

y(t) =
−ω

1− ω2
sin t+

1

1− ω2
sinωt =

sinωt− ω sin t

1− ω2
.

Asω goes to1, this goes to0/0. Then the l’Hopital Rule finds the ratio ofω-derivatives
atω = 1 :

t cosωt− sin t

−2ω
−→ t cos t− sin t

−2
= Resonant solution

13 Does critical damping and a double roots = 1 in y ′′ +2y ′ + y = ect produce an extra
factort in the null solutionyn or in the particularyp (proportional toect) ? What isyn
with constantsc1, c2 ? What isyp = Y ect ?

Solution Critical damping is shown in the double roots = −1,−1 in s2 +2s+1 = 0
and in thenull solutions yn = c1e

−t + c2te
−t. (Resonance would come whenc is

also−1 in the right hand side.) The solutionyp = Y ect hasy ′′ + 2y ′ + y = ect and
(c2Y + 2cY + Y ) = 1 andY = 1/(c2 + 2c+ 1).
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14 If c = iω in Problem13, the solutionyp to y ′′+2y ′+y = eiωt is . That fraction
Y is the transfer function atiω. What are the magnitude and phase inY = Ge−iα ?

Solution Setc = iω in the solution to Problem 13:
yp + Y ect = eiωt/(i2ω2 + 2iω + 1) = Ge−iαeiωt.

ThenG = 1/(1 − ω2 + 2iω) has magnitude|G| = 1/
√
(1 − ω2)2 + 4ω2 = 1/

√
D.

The phase angle hastanα = 2ω
1−ω2 .

By rescaling both t and y, we can reachA = C = 1. Then ωn = 1 and
B = 2Z. The model problem isy ′′ + 2Zy ′ + y = f(t).

15 What are the roots ofs2 + 2Zs + 1 = 0 ? Find two roots forZ = 0, 1
2 , 1, 2

and identify each type of damping. The natural frequency is nowωn = 1.

Solution The roots ares = −Z ±
√
Z2 − 1. (All factors2 will cancel.)

Z = 0 : s = ±i No damping
Z = 1

2 : s = (−1±
√
3i)/2 Underdamping

Z = 1 : s = −1,−1 Critical damping
Z = 2 : s = −2±

√
3 Overdamping

16 Find two solutions toy ′′ + 2Zy ′ + y = 0 for everyZ exceptZ = 1 and−1. Which
solutiong(t) starts fromg(0) = 0 andg ′(0) = 1 ? What is different aboutZ = 1 ?

Solution If Z2 6= 1 the solutions arey = c1e
s1t + c2e

s2t. Theimpulse responseg(t)
on page 97 comes froms = −Z ± r :

g(t) =
es1t − es2t

s1 − s2
= e−Zt(ert − e−rt)/2r with r =

√
Z2 − 1 in formula (2.3.12).

If Z = 1 (critical) thens1 = s2 andr = 0 andg(t) changes tote−t (formula 2.3.15).
17 The equationmy ′′ + ky = cosωnt is exactly at resonance. The driving frequency

on the right side equals the natural frequencyωn =
√
k/m on the left side.

Substitutey = Rt sin(
√
k/mt) to find R. This resonant solution grows in time be-

cause of the factort.

Solution y ′ = R sin
√

k
m t+R

√
k
m t cos

√
k
m t andy ′′ = 2R

√
k
m cos

√
k
m t−R k

m t sin
√

k
m t.

Thenmy ′′+ky = 2R
√
km cos

√
k
m t−Rkt sin

√
k
m t+kRt sin

√
k
m t = 2R

√
km cos

√
k
m t.

This agrees withcosωnt on the right side of the differential equation ifR = 1/2
√
km.

18 Comparing the equationsAy ′′+By ′+Cy = f(t) and4Az ′′+Bz ′+(C/4)z = f(t),
what is the difference in their solutions ?

Correction The forcing term in thez-equation should bef( t4 ).

Solution z(t) will be 4y( t
4
). Thenz ′ = y ′( t4 ) andz ′′ = 1

4y
′′( t4 ).

4Az ′′ +Bz ′ + C
4 z equals term by term toAy ′′( t4 ) +By ′( t4 ) + Cy( t4 ) = f( t4 ).

19 Find the fundamental solution to the equationg ′′ − 3g ′ + 2g = δ(t).

Solution The roots ofs2 − 3s+2 = 0 ares = 2 ands = 1 : Real roots. Use formula
2.3.12 on page 97 to findg(t) :

g(t) =
es1t − es2t

A(s2 − s1)
= e2t − et.

Notice thatg(0) = 0 andg ′(0) = 1 (andA = 1 in the differential equation).
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20 (Challenge problem) Find the solution toy ′′+By ′+y = cos t that starts fromy(0) = 0
andy ′(0) = 0. Then let the damping constantB approach zero, to reach the resonant
equationy ′′ + y = cos t in Problem 17, withm = k = 1.

Show that your solutiony(t) is approaching the resonant solution1
2 t sin t.

Solution The particular solution isyp = sin t
B . Theny ′′

p + yp = 0 andBy ′

p = cos t.

The roots ofs2 + Bs+ 1 = 0 ares = (−B ±
√
B2 − 4)/2 = (−B ± i

√
4−B2)/2.

Then y = c1e
s1t + c2e

s2t + 1
B sin t. At t = 0 we must havec1 + c2 = 0 and

s1c1 + s2c2 +
1
B = 0. Putc2 = −c1 to find (s1 − s2)c1 = i

√
4−B2c1 = −1/B.

Solution nearB = 0 y =
i

B
√
4−B2

(es1t − es2t) +
1

B
sin t.

At B = 0 the roots ares1 = i ands2 = −i, and
√
4−B2 = 2.

The solutiony(t) approachesy = i
2B 2i sin t+ 1

B sin t = 0
0 (sign of resonance).

l’Hopital asks for the ratio of theB-derivatives. CertainlyB in the denominator hasB-
derivative equal to1. And

√
4−B2 approaches2. So we want theB-derivative of the

numerator, where s1, s2 depend onB. Then as B → 0, y approaches
d
dB

i
2 (e

s1t − es2t) = it
2

[
es1t ds1dB − es2t ds2dB

]
→ it

2

(
− 1

2

)
eit− it

2

(
− 1

2

)
e−it = 1

2
t sin t. Wow!

21 Suppose you know three solutionsy1, y2, y3 to y ′′ + B(t)y ′ + C(t)y = f(t).
(Recommended) How could you findB(t) andC(t) andf(t)?

Solution The differencesu = y1 − y2 andv = y1 − y3 are null solutions :

u ′′ +B(t)u ′ + C(t)u = 0
v ′′ +B(t)v ′ + C(t)v = 0

Solve those two linear equations for the numbersB(t) andC(t) at each timet. Then
y1 is a particular solution soy ′′

1 +B(t)y ′

1 + C(t)y1 gives f(t).

Problem Set 2.5, page 127

1 (Resistors in parallel) Two parallel resistorsR1 andR2 connect a node at voltageV
to a node at voltage zero. The currents areV/R1 andV/R2. What is the total current
I between the nodes ? WritingR12 for the ratioV/I, what isR12 in terms ofR1 and
R2 ?

Solution CurrentsV/R1 andV/R2 in parallel give total currentI = V/R1 + V/R2.
Then the effective resistance inI = V/R has

1

R
=

1

R1
+

1

R2
=

R1 +R2

R1R2
and R =

R1R2

R1 +R2
.

2 (Inductor and capacitor in parallel) Those elements connect a node at voltageV eiωt to a
node at voltage zero (grounded node). The currents are(V/iωL)eiωt and
V (iωC)eiωt. The total currentIeiωt between the nodes is their sum. Writing
Z12e

iωt for the ratioV eiωt/Ieiωt, what isZ12 in terms ofiωL andiωC ?

Solution This is like Problem 1 with impedancesiωL and1/iωC in parallel, instead
of resistancesR1 andR2. The effective impedance imitates that previous formula for
R = R1R2/(R1 +R2) :
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Z =
Z1Z2

Z1 + Z2
=

iωL(1/iωC)

iωL+ (iωC)−1
=

iωL

1− ω2LC
.

3 The impedance of an RLC loop isZ = iωL + R + 1/iωC. This impedanceZ is real
whenω = . This impedance is pure imaginary when . This impedance is
zero when .

Solution Z is real wheniωL cancels with1/iωC = −i/ωC. ThenωL = 1/ωC and
ω2 = 1/LC. Z is imaginary whenR = 0. The impedance is zero when bothR = 0
andω2 = 1/LC.

4 What is the impedanceZ of an RLC loop whenR = L = C = 1? Draw a graph that
shows the magnitude|Z| as a function ofω.

Solution An RLC loop adds the impedancesR + iωL + i/(iωC). In case
R = L = C = 1, the total impedance in series isZ = 1 + iω + 1/iω. The magni-
tude|Z| = (1 + (ω − 1/ω)2)1/2 will equal1 atω = 1. For largeω, |Z| is asymptotic
to the line|Z| = ω. For smallω, |Z| is asymptotic to the curve|Z| = 1/ω.

5 Why does an LC loop with no resistor produce a90◦ phase shift between current
and voltage ? Current goes around the loop from a battery of voltageV in the loop.

Solution The phase shift is the angle of the complex impedanceZ. With no resistor,
R = 0 andZ = iωL+(1/iωC) = i(ωL− (1/ωC)). This pure imaginary number has
angleθ = ±π/2 = ±90 ◦ in the complex plane.

6 The mechanical equivalent of zero resistance is zero damping : my ′′ + ky = cosωt.
Find c1 andY starting fromy(0) = 0 andy ′(0) = 0 with ω2

n = k/m.

y(t) = c1 cosωnt+ Y cosωt.

That answer can be written in two equivalent ways :

y = Y (cosωt− cosωnt) = 2Y sin
(ωn − ω)t

2
sin

(ωn + ω)t

2
.

Solution The complete solution isy = c1 cosωnt+ c2 sinωnt+(cosωt)/(k−mω2).
The initial conditionsy = y ′ = 0 determinec1 andc2 :

y(0) = 0 c1 = −1/(k −mω2) y ′(0) = 0 c2 = 0.

Theny(t) = (cosωt − cosωnt)/(k − mω2). The identitycosωt − cosωnt =

2 sin (ω−ωn)t
2 sin (ω+ωn)t

2 expressesy as the product of two oscillations.
7 Suppose the driving frequencyω is close toωn in Problem 2. A fast oscillation

sin[(ωn + ω)t/2] is multiplying a very slow oscillation2Y sin[(ωn − ω)t/2].
By hand or by computer, draw the graph ofy = (sin t)(sin 9t) from 0 to 2π.

You should see a fast sine curve inside a slow sine curve. Thisis abeat.

Solution Whenω is close toωn, the first (bold) formula in Problem 6 is near0/0. The
second formula is much better :

2 sin
(ω − ωn)t

2
≈ (ω−ωn)t sin

(ω + ωn)t

2
≈ sinωnt y ≈ (ω − ωn)t sinωnt

This shows the typicalt factor for resonance. The graph ofy = (sin t)(sin 9t) has
ω = 10 andωn = 8, so that(10 − 8)/2 = 1 and(10 + 8)/2 = 9. The graph shows a
fast “sin 9t” curve inside a slow “sin t” curve : good to draw by computer.
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8 Whatm, b, k, F equation for a mass-dashpot-spring-force corresponds to Kirchhoff’s
Voltage Law around a loop ? What force balance equation on a mass corresponds to
Kirchhoff’s Current Law ?

Solution The Voltage Law says thatvoltage drops add to zeroaround a loop :

Equation (5) isL
dI

dt
+RI +

1

C

∫
Idt = V eiωt.

This corresponds tomy ′′ + by ′ + ky = f . The Current Law says that “flow in equals
flow out” at every node. The mechanical analog is that “forces balance” at every node.

In a static structure (no movement) we can have force balanceequations in thex, y, and
z direction. In a dynamic structure (with movement) the forces include the inertia term
my ′′ and the friction termby ′.

9 If you only know the natural frequencyωn and the damping coefficientb for one
mass and one spring, why is thatnot enoughto find the damped frequencyωd ?
If you know all ofm, b, k what isωd ?

Solution If we only knowω2
n = k/m and b, that does not determine the damping

ratio Z = b2/4mk or the damped frequencyωd =
√

p2 − ω2
n with p = B/2A =

b/2m = ωnZ in equation (2.4.30). We needthree numbersas inm, b, k or two ratios
as inω2

n = k/m and2p = b/m.
10 Varying the numbera in a first order equationy ′ − ay = 1 changes thespeedof the

response. VaryingB andC in a second order equationy ′′ + By ′ + Cy = 1 changes
the formof the response. Explain the difference.

Solution The growth factor in a first order equation iseat. The units ofa are1/time
and this controls the speed. For a second-order equationy ′′ + By ′ + Cy ′ = f , the
coefficientsB andC control not only the frequencyωn =

√
C but also the form of

y(t) : damped oscillation ifB2 < 4C and overdamping ifB2 > 4C.

11 Find the step responser(t) = yp + yn for this overdamped system :
r ′′ + 2.5r ′ + r = 1 with r(0) = 0 and r ′(0) = 0.

Solution The roots ofs2 + 2.5s + 1 = (s + 2)(s + 1
2 ) ares1 = −2 ands2 = − 1

2 .
Then equation (18) for the step response gives

r(t) = 1 +

(
−1

2
e−2t + 2e−t/2

)
/(−3/2) = 1 +

1

3
e−2t − 4

3
e−t/2.

Check thatr(0) = 0 andr ′(0) = 0 (andr(∞) = 1).

12 Find the step responser(t) = yp + yn for this critically damped system. The double
roots = −1 produces what form for the null solution ?

r ′′ + 2r ′ + r = 1 with r(0) = 0 and r ′(0) = 0.

Solution The characteristic equations2 + 2s+ 1 = 0 has a double roots = −1. The
null solution isyn = c1e

−t + c2te
−t. The particular solution withf = 1 is yp = 1.

The initial conditions givec1 andc2 :

r(t) = c1e
−t + c2te

−t + 1

r(0) = c1 + 1 = 0 c1 = −1

r ′(0) = −c1 + c2 + 1 = 0 c2 = −2

r(t) = 1 − (1 + 2t)e−t
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13 Find the step responser(t) for this underdamped system using equation (22) :
r ′′ + r ′ + r = 1 with r(0) = 0 and r ′(0) = 0.

Solution Equation (22) gives the step response for an underdamped system.

r(t) = 1− ωn

ωd
e−pt sin(ωdt+ φ).

Thenr ′′ + r ′ + r = 1 hasm = b = k = 1 andb2 < 4mk (underdamping).

p =
b

2m
=

1

2
ω2
n =

k

m
= 1 ω2

d = ω2
n − p2 =

3

4
cosφ =

p

ωn
=

1

2
φ =

π

3
.

Substituting in the formula givesr(t) = 1− 2√
3
e−t/2 sin

(√
3

2
t+

π

3

)
.

14 Find the step responser(t) for this undamped system and compare with (22) :
r ′′ + r = 1 with r(0) = 0 and r ′(0) = 0.

Solution Now r ′′ + r = 1 hasm = k = 1 andb = 0 (no damping) :

In this case p = 0 ω2
n = 1 ωd = ωn cosφ = p

ωn

= 0 φ = π
2 .

Substituting into (22) givesr(t) = 1− sin
(
t+ π

2

)
= 1 − cos t.

15 For b2 < 4mk (underdamping), what parameter decides the speed at which the step
responser(t) rises tor(∞) = 1 ? Show that thepeak time is T = π/ωd when
r(t) reaches its maximum before settling back tor = 1. At peak timer ′(T ) = 0.

Solution With underdamping, formula (22) has the decay factore−pt. Then
p = B/2A = b/2m is the decay rate. The “peak time” is the time whenr reaches
its maximum (its peak). That timeT hasdr/dt = 0.

dr

dt
= −ωn

ωd

(
−pe−pt sin(ωdt+ φ) + ωde

−pt cos(ωdt+ φ)
)
= 0 at t = T (peak time).

−p sin(ωdT + φ) + ωd cos(ωdT + φ) = 0

tan(ωdT + φ) = ωd/p which is tanφ

ThenωdT = π and T = π/ωd. (Note : I seem to get2π/ωd.)

16 If the voltage sourceV (t) in an RLC loop is a unit step function, what resistanceR
will produce an overshoot tormax = 1.2 if C = 10−6 Farads andL = 1 Henry ?
(Problem 15) found the peak timeT whenr(T ) = rmax).

Sketch two graphs ofr(t) for p1 < p2. Sketch two graphs asωd increases.

Solution The peak time isT = π/ωd. ThenωdT = π and we wantr = 1.2 :

rmax(T ) = 1− ωn

ωd

e−pT sin(π + φ)

1.2 = 1 + ωn

ωd

e−pT sin(φ) = 1 + e−pT

0.2 = e−pπ/ωd

pπ/ωd = − ln(0.2) = ln 5

We substitutep = B/2A = R/2ωL andωd =
√
ω2
n − ω2 =

√
(1/LC)− ω2. With

known values ofL andC andω we can findR.
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17 What values ofm, b, k will give the step responser(t) = 1−
√
2e−t sin(t+ π

4 )?

Solution This responser(t) matches equation (22) whenωn =
√
2ωd andp = 1

andφ = π/4. Then

ω2
d = ω2

n − p2 = 2ω2
d − 1 gives ωd = 1 and ωn =

√
2.

Thereforeω2
n = k/m = 2 andp = b/2m = 1. The numbersm, b, k are proportional

to 1, 2, 2.

18 What happens to thep − ωd − ωn right triangle as the damping ratioωn/p increases
to 1 (critical damping)? At that point the damped frequencyωd becomes . The
step response becomesr(t) = .

Solution Critical damping has equal rootss1 = s2 andb2 = 4mk and damping ratio
Z = 1 andωd = ωn

√
1− Z2 = 0. (The oscillation disappears and the damped

frequency goes toωd = 0 so thatφ = 0.) Then the step response is

r(t) = 1− ωnt

ωdte
− pt sin(ωdt) −→ 1 − ωnte

−pt.

19 The rootss1, s2 = −p ± iωd are poles of the transfer function1/(As2 + Bs + C)

Show directly that the product of the rootss1 = −p + iωd ands2 = −p − iωd is
s1s2 = ω2

n. The sum of the roots is−2p. The quadratic equation with those roots
is s2 + 2ps+ ω2

n = 0.

s1

s2

−p

iωd

− iωd

Imaginary axis

Real axis

Circle of radius ωn

Solution Multiplying the complex conjugate numbers = −p ± iωd gives
|s|2 = (−p+ iωd)(−p− iωd) = p2 + ω2

d = ω2
n.

For any quadraticAs2 + Bs + C = A(s − s1)(s − s2), C matchesAs1s2. Then
s1s2 = C/A = ω2

n. Complex rootsstay on the circle of radiusωn, as in the picture.

Adding−p+ iω to−p− iω givess1 + s2 = −2p. This always equals−B/A.

20 Supposep is increased whileωn is held constant. How do the rootss1 ands2 move ?

Solution Increasingp will make both roots go along the circle in the direction of−ωn.
Problem 19 showed that they stay on the circle of radiusωn until they meet at−ωn. At
that points1 + s2 = −2ωn = −2p. Therefore that value ofp is ωn.

Increasingp beyondωn will give two negative real rootsthat add to−2ωn.
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21 Suppose the massm is increased while the coefficientsb andk are unchanged. What
happens to the rootss1 ands2 ?

Solution The key numberB2 − 4AC = b2 − 4mk will eventually go negative when
m is increased. The roots will be complex (a conjugate pair). Further increasing the
massm will decrease bothp = b/2m andω2

n = k/m. The roots approach zero.

22 Ramp response How could you findy(t) whenF = t is a ramp function ?

y ′′ + 2py ′ + ω2
ny = ω2

nt starting from y(0) = 0 and y ′(0) = 0.

A particular solution (straight line) isyp = . The null solution still has the
form yn = . Find the coefficientsc1 andc2 in the null solution from the two
conditions att = 0.

This ramp responsey(t) can also be seen as the integral of .

Solution A particular solution isyp = C + t. Substitute into the equation:

y ′′ + 2py ′ + ω2
ny = 0+ 2p+ ω2

n(C + t) = ω2
nt. ThusC = −2p/ω2

n.

The null solution is stillyn = c1e
s1t + c2e

s2t. We findc1 andc2 at t = 0 :

y = c1e
s1t + c2e

s2t + C + t = c1 + c2 + C = 0

y ′ = c1s1e
s1t + c2s2e

s2t + 1 = c1s1 + c2s2 + 1 = 0

Solving those equations givesc1 = Cs2−1
s1−s2

andc2 = 1−Cs1
s1−s2

with C = −2p/ω2
n.

The ramp response is also the integral of thestep response.

Problem Set 2.6, page 137

Find a particular solution by inspection (or the method of undetermined coefficients)

1 (a)y ′′ + y = 4 (b) y ′′ + y ′ = 4 (c) y ′′ = 4

Solution (a)yp = 4 (b) yp = 4t (c) yp = 2t2

2 (a)y ′′ + y ′ + y = et (b) y ′′ + y ′ + y = ect

Solution (a)yp = 1
3e

t (b) yp = ect/(c2+c+1)

3 (a)y ′′ − y = cos t (b) y ′′ + y = cos 2t (c) y ′′ + y = t+ et

Solution (a)yp = − 1
2 cos t (b) yp = − 1

3 cos 2t (c) yp = t+ 1
2e

t

4 For thesef(t), predict the form ofy(t) with undetermined coefficients :

(a)f(t) = t3 (b) f(t) = cos 2t (c) f(t) = t cos t

Solution (a)yp = at3 + bt2 + ct+ d (b) yp = a cos 2t+ b sin 2t
(c) yp = (At+ B) cos t+ (Ct+D) sin t

5 Predict the form fory(t) when the right hand side is

(a)f(t) = ect (b) f(t) = tect (c) f(t) = et cos t

Solution (a)yp = Y ect (b) yp = (Y t+ Z)ect (c) yp = aet cos t+bet sin t
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6 Forf(t) = ect when is the prediction fory(t) different fromY ect ?

Solution There will be atect term inyp whenect is a null solution. This is resonance :

Ac2 + Bc+ C = 0 and c is s1 or s2.

Problems 7-11 : Use the method of undetermined coefficients to find a solutionyp(t).

7 (a)y ′′ + 9y = e2t (b) y ′′ + 9y = te2t

Solution (a)yp = Y e2t with 4Y e2t + 9Y e2t = e2t andY = 1
13

(b) yp = (Y t+Z)e2t with y ′ = (2Y t+ Y + 2Z)e2t andy ′′ = (4Y t+ 4Y + 4Z)e2t.

The equationy ′′ + 9y = te2t gives(4Y t+ 4Y + 4Z + 9Y t+ 9Z)e2t = te2t.

Then13Y t = t and4Y+13Z = 0 giveY = 1
13 andZ = − 4

13Y andyp = 1
13

(t − 4
13

)e2t.

8 (a)y ′′ + y ′ = t+ 1 (b) y ′′ + y ′ = t2 + 1

Solution (a)yp = at2 + bt and y ′′ + y ′ = 2a+ 2at+ b = t+ 1.

Thena = 1
2 andb = 0 and yp = 1

2
t2.

*Notice thatyp = constant is a null solution so we needed to assumeyp = at2 + bt.

(b) yp = at3+bt2+ct (NOT+d) andy ′′+y ′ = (6at+2b)+(3at2+2bt+c) = t2+1.

Then3a = 1 and6a+ 2b = 0 and2b+ c = 1 : yp = 1
3
t3 − 1t2 + 3t.

9 (a)y ′′ + 3y = cos t (b) y ′′ + 3y = t cos t

Solution (a)yp = A cos t+B sin t.

y ′′

p + 3yp = −A cos t−B sin t+ 3A cos t+ 3B sin t = cos t.

Then2A = 1 and2B = 0 andyp = 1
2
cos t.

(b) yp = (At+B) cos t+ (Ct+D) sin t.

y ′

p = (A+ Ct+D) cos t+ (−At−B + C) sin t.

y ′′

p + 3yp = C cos t − A sin t + (−A − Ct − D) sin t + (−At − B + C) cos t +
3(At+B) cos t+ 3(Ct+D) sin t = t cos t.

Match 3At − At = t and C − B + C + 3B = 0 and −Ct + 3Ct = 0 and
−A−A−D + 3D = 0.

Then A = 1
2 , C = 0, B = 0, D = A = 1

2 gives yp = 1
2
t cos t + 1

2
sin t.

10 (a)y ′′ + y ′ + y = t2 (b) y ′′ + y ′ + y = t3

Solution (a)yp = at2+bt+c givey ′′

p +y ′

p+y = (2a)+(2at+b)+(at2+bt+c) = t2.

Thena = 1 and2a + b = 0 and2a + b + c = 0 give a = 1, b = −2, c = 0 :
yp = t2 − 2t.

(b) Nowyp = at2 + bt+ c+ dt3. Added into part (a), the newdt3 produces

y ′′ + y ′ + y = (2a) + (2at+ b) + (at2 + bt+ c) + d(6t+ 3t2 + t3) = t3 + c = 0

Then d = 1, 3d + a = 0, 6d + b + 2a = 0, 2a + b + c = 0
gived = 1, a = −3, b = 0, c = 6 : yp = t3 − 3t2 + 6.
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11 (a)y ′′ + y ′ + y = cos t (b) y ′′+y ′+y = t sin t

Solution (a)yp = A cos t+B sin t.

y ′′

p + y ′

p + yp = (−A+B +A) cos t+ (−B −A+B) sin t = cos t.

ThenB = 1 andA = 0 andyp = sin t.

(b) The forms foryp andy ′

p andy ′′

p are the same as in 2.6.9 (b). Theny ′′

p +y ′

p+yp equals
C cos t−A sin t+(−A−Ct−D) sin t+(−At−B+C) cos t+(A+Ct+D) cos t
+(−At−B + C) sin t+ (Ct+D) sin t = t sin t.

Match coefficients oft cos t, t sin t, cos t, sin t :

−A + C + A = 0 − C − A + C = 1 C − B + C + A + D + B = 0
−A−A−D −B + C +D = 0.

ThenA = −1, C = 0, B = 2, D = 1 give yp = −t cos t + 2 cos t.

Problems 12–14 involve resonance. Multiply the usual form of yp by t.

12 (a)y ′′ + y = eit (b) y ′′ + y = cos t

Solution (a) Look foryp = Y teit. Theny ′

p = Y (it+ 1)eit.

y ′′

p + yp = Y (i2t+ 2ieit) + Y teit = 2iY eit.

This matcheseit on the right side whenY = 1/2i andyp = teit/2i = −iteit/2.

(b) Look foryp = At cos t+Bt sin t. Theny ′

p = A cos t−At sin t+B sin t+Bt cos t.

y ′′

p + y = −2A sin t−At cos t+ 2B cos t−Bt sin t+At cos t+Bt sin t = cos t.

ThenA = 0 and B = 1
2 and yp = 1

2
t sin t.

13 (a)y ′′ − 4y ′ + 3y = et (b) y ′′ − 4y ′ + 3y = e3t

Solution (a) Look foryp = ctet with y ′

p = c(t+ 1)et andy ′′

p = c(t+ 2)et.

y ′′

p − 4y ′

p + 3yp = (2c− 4c)et = et with c = −1

2
and yp = −1

2
tet.

(b) Look foryp = cte3t with y ′

p = c(3t+ 1)e3t andy ′′

p = c(9t+ 6)e3t.

y ′′

p − 4y ′

p + 3yp = (6c− 4c)e3t = e3t with c =
1

2
and yp =

1

2
te3t.

14 (a)y ′ − y = et (b) y ′ − y = tet (c) y ′ − y = et cos t

Solution (a) Look foryp = ctet with y ′

p = c(t+ 1)et.

Theny ′

p − yp = cet = et when c = 1 and yp = tet.

(b) Look foryp = ct2et with y ′

p = c(t2 + 2t)et.

Then y ′

p − yp = c(t2 + 2t− t2)et = tet when c =
1

2
and yp =

1

2
t2et.

(c) Look foryp = Aet cos t+Bet sin t. Then

y ′

p = Aet cos t−Aet sin t+Bet sin t+Bet cos t.

y ′

p − yp = −Aet sin t+Bet cos t = et cos t whenA = 0, B = 1, andyp = et sin t.
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15 Fory ′′ + 4y = et sin t (exponential times sinusoidal) we have two choices :

1 (Real) Substituteyp = Met cos t+Net sin t : determineM andN
2 (Complex) Solvez ′′ + 4z = e(1+i)t. Theny is the imaginary part ofz.

Use both methods to find the samey(t)—which do you prefer ?

Solution Method 1 hasy ′

p = Met cos t − Met sin t + Net sin t + Net cos t =

(M +N)et cos t+ (−M +N)et sin t.

Then y ′′

p + 4yp = (M +N) et cos t− (M +N) et sin t+ (−M +N) et sin t +

(−M +N) et cos t+ 4M et cos t+ 4N et sin t.
This equalset sin t when2N + 4M = 0 and−2M + 4N = 1.

Then N = −2M and −2M − 8M = 1 and M = − 1
10 , N = 2

10 ,

yp = − 1
10

et cos t+ 2
10

et sin t.

Method 2 Look forzp = Ze(1+i)t. Thenz ′′

p + 4zp = Z
[
(1 + i)2 + 4

]
e(1+i)t =

e(1+i)t givesZ = 1/(4 + 2i).

Take the imaginary part ofzp :

Im
e(1+i)t

4 + 2i
= Im

et(cos t+ i sin t)(4− 2i)

16 + 4
=

et

20
(−2 cos t + 4 sin t).

This complex method was shorter and easier. It produced the sameyp.

16 (a) Which values ofc give resonance fory ′′ + 3y ′ − 4y = tect ?

Solution c2 + 3c− 4 = (c− 1)(c+ 4). Soc = 1 andc = −4 will give resonance.

(b) What form would you substitute fory(t) if there is no resonance ?

Solution With no resonance look foryp = (at+ b)ect.

(c) What form would you use whenc produces resonance ?

Solution With resonance look foryp = (at2 + bt)ect. If we also look fordect, this
will be a null solution and we cannot determined.

17 This is the rule for equationsP (D)y = ect with resonanceP (c) = 0 :

If P (c) = 0 andP ′(c) 6= 0, look for a solutionyp = Ctect (m = 1)
If c is a root of multiplicitym, thenyp has the form .

Solution If c is a root ofP with multiplicity m, then multiply the usualY ect by tm.

18 (a) To solved4y/dt4 − y = t3e5t, what form do you expect fory(t)?

(b) If the right side becomest3 cos 5t, which8 coefficients are to be determined ?

Solution (a) The exponentc = 5 is not a root ofP (D) = D4 − 1 (54 6= 1).
So look foryp = (at3 + bt2 + ct+ d)e5t.

(b) If the right side ist3 cos 5t then

yp = (at3 + bt2 + ct+ d) cos 5t+ (et3 + ft2 + gt+ h) sin 5t.

19 For y ′ − ay = f(t), the method of undetermined coefficients is looking for all right
hand sidesf(t) so that the usual formulayp = eat

∫
e−asf(s)ds is easy to integrate.

Find these integrals for the “nice functions”f = ect, f = eiωt, andf = t :
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∫
e−asecsds

∫
e−aseiωsds

∫
e−assds

Solution The equation hasy ′ − ay so the growth factor (the impulse response) is
g(t) = eat. This problem connects the method of undetermined coefficients to the
ordinary formulayp =

∫
g(t− s)f(s) ds. The integral

∫
ea(t−s)f(s) ds is easy for :

∫
e−asecs ds =

e(c−a)s

(c− a)

∫
e−aseiωs ds =

e(iω−a)s

iω − a
∫

se−as ds = −
(
s

a
+

1

a2

)
e−as.

Problems 20–27 develop the method of variation of parameters.

20 Find two solutionsy1, y2 to y ′′ + 3y ′ + 2y = 0. Use those in formula (13) to solve

(a)y ′′ + 3y ′ + 2y = et (b) y ′′+3y ′+2y = e−t

Solution (a)y ′′ + 3y ′ +2y leads tos2 + 3s+2 = (s+ 1)(s+ 2). The null solutions
arey1 = e−t andy2 = e−2t. The Variation of Parameters formula is

yp = −y1

∫
y2f

W
+y2

∫
y1f

W
with W = y1y

′

2−y2y
′

1 = (−2−1)e−te−2t = −3e−3t.

f = et gives yp = +
e−t

3

∫
e−2tet

e−3t
− e−2t

3

∫
e−tet

e−3t
=

e−t

3

e2t

2
− e−2t

3

e3t

3
=

(
1

6
− 1

9

)
et =

1

18
et.

(b) Againy1 = e−t andy2 = e−2t. Now f = e−t gives resonance andt appears :

yp = +
e−t

3

∫
e−2te−t

e−3t
− e−2t

3

∫
e−te−t

e−3t
=

e−t

3
t− e−2t

3
et =

1

3
(t − 1)e−t.

21 Find two solutions toy ′′ + 4y ′ = 0 and use variation of parameters for

(a)y ′′ + 4y ′ = e2t (b) y ′′ + 4y ′ = e−4t

Solution (a) y ′′ + 4y ′ = 0 has null solutionsy1 = 1 = e0t and y2 = e−4t.
ThenW = y1y

′

2 − y2y
′

1 = −4e−4t. The equation hasf = e2t.

From (13) :yp = −1

∫
e−4te2t

−4e−4t
+ e−4t

∫
(1)e2t

−4e−4t
=

e2t

8
+ e−4t

(
e6t

−24

)
=

e2t

12
.

(b) f = e−4t is also a null solution : expect resonance and a factort.

yp = −1

∫
e−4te−4t

−4e−4t
+ e−4t

∫
(1)e−4t

−4e−4t
= −e−4t

16
− e−4t

(
t

4

)
.
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22 Find an equationy ′′ + By ′ + Cy = 0 that is solved byy1 = et and y2 = tet.
If the right side isf(t) = 1, what solution comes from theV P formula (13) ?

Solution With y1 = et andy2 = tet, the exponents = 1 must be a double root :

As2 +Bs+ C = A(s− 1)2 and the equation can bey ′′ − 2y ′ + y = f(t).

With f(t) = 1 andW = y1y
′

2 − y2y
′

1 = et(et + tet)− tet(et) = e2t, eq. (13) gives

yp = −et
∫

tet(1)

e2t
+ tet

∫
et(1)

e2t
= −et(−te−t − e−t) + tet(−e−t) = 1

yp = 1 is a good solution toy ′′ − 2y ′ + y = 1.

23 y ′′ − 5y ′ + 6y = 0 is solved byy1 = e2t and y2 = e3t, becauses = 2 and
s = 3 come froms2 − 5s+ 6 = 0. Now solvey ′′ − 5y ′ + 6y = 12 in two ways :

1. Undetermined coefficients (or inspection)2. Variation of parameters using (13)

The answers are different. Are the initial conditions different ?

Solution Solvingy ′′ − 5y ′ + 6y = 12 givesyp = 2 by inspection or undetermined
coefficients.

Usings2 − 5s + 6 = (s − 2)(s − 3) we havey1 = e2t andy2 = e3t andW = e5t.
Then setf = 12 :

yp = −e2t
∫

e3t(12)

e5t
+e3t

∫
e2t(12)

e5t
= −e2t

(
12e−2t

−2

)
+e3t

(
12e−3t

−3

)
= 6−4 = 2

But if those two integrals are computed from0 to t, the lower limit gives a differentyp :

−e2t
t∫

0

e−2t(12) + e3t
t∫

0

e−3t(12) = e2t
[
12e−2t

−2

]t

0

+ e3t
[
12e−3t

−3

]t

0

= 2 − 6e2t + 4e3t = 2 + null solution.

24 What are the initial conditionsy(0) andy ′(0) for the solution (13) coming from varia-
tion of parameters, starting from anyy1 andy2 ?

Solution Every integralI(t) =

∫ t

0

h(s) ds starts fromI(0) = 0 andI ′(0) = h(0)

by the Fundamental Theorem of Calculus. For equation (13), this givesyp(0) = 0
andy ′

p(0) = 0 (which can be checked foryp = 2− 6e2t + 4e3t in Problem 23).

25 The equationy ′′ = 0 is solved byy1 = 1 andy2 = t. Use variation of parameters to
solvey ′′ = t and alsoy ′′ = t2.

Solution Those null solutionsy1 = 1 andy2 = t giveW = y1y
′

2 = 1. Then

for f = t yp = −1
∫
t2 + t

∫
t = − t3

3 + t3

2 = t3/6

for f = t2 yp = −1
∫
t t2 + t

∫
t2 = − t4

4 + t4

3 = t4/12

Those are correct solutions toy ′′ = t andy ′′ = t2.
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26 Solveys ′′ + ys = 1 for the step response using variation of parameters, starting from
the null solutionsy1 = cos t andy2 = sin t.

Solution The Wronskian ofy1 = cos t and y2 = sin t is W = (cos t)(sin t) ′ −
(sin t)(cos t) ′ = 1. Setf = 1 andW = 1 in equation (13) :

yp = − cos t

∫ t

0

(sin t)(1)

1
+ sin t

∫ t

0

(cos t)(1)

1
= − cos t(− cos t+ 1) + sin t(sin t)

= 1 − cos t : Step response

27 Solveys ′′ + 3ys
′ + 2ys = 1 for the step response starting from the null solutions

y1 = e−t andy2 = e−2t.

Solution The Wronskian ofy1 = e−t andy2 = e−2t is

W = e−t(−2e−2t)− e−2t(−e−t) = −e−3t. Setf = 1 in (13) :

yp = −e−t

t∫

0

e−2t(1)

−e−3t
dt+ e−2t

t∫

0

e−t(1)

−e−3t
dt = +e−t[et − 1] + e−2t

[
1

2
e2t +

1

2

]

=
1

2
− e−t +

1

2
e−2t.

The steady state isyp(∞) = 1
2 . This agrees withy ′′ + 3y ′ + 2y = 1 wheny =

constant.
28 SolveAy ′′+Cy = cosωtwhenAω2 = C (the case of resonance). Example 4 suggests

to substitutey = Mt cosωt+Nt sinωt. FindM andN .

Solution y = Mt cosωt+Nt sinωt has

y ′ = M(cosωt− ωt sinωt) +N(sinωt+ ωt cosωt).

Now computeAy ′′ + Cy whenC = Aω2. The result is

AM(−2ω sinωt − ω2t cosωt) + Aω2Mt cosωt + AN(2ω cosωt − ω2t sinωt) +
Aω2N sinωt = cosωt.

Simplify toAM(−2ω sinωt)+AN(2ω cosωt) = cosωt. ThenM = 0 andN = 1/2Aω.
29 Putg(t) into the great formulas (17)-(18) to see the equations abovethem.

Solution The equation above (17) came from theV of P equation (13) :

Particular solution
Constant coefficients yp(t) =

−es1t

s2 − s1

t∫

0

e−s1T f(T )dT+
es2t

s2 − s1

t∫

0

e−s2T f(T )dT

This is the integral of
−es1(t−T )

s2 − s1
f(T )+

es2(t−T )

s2 − s1
f(T ) which is exactlyg(t−T )f(T ).

For equal rootss1 = s2, the equation after (17) is theV of P equation :

Particular solution yp

Null solutions est, test yp(t) = −est
t∫

0

Te−sTf(T )dT + test
t∫

0

e−sT f(T )dT
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This is the integral of−Tes(t−T )f(T ) + tes(t−T )f(T ) dt = (t− T )es(t−T )f(T ).

This is exactlyg(t− T )f(T ) wheng(t) = test in the equal roots case.

Neat conclusion :Variation of Parameters gives exactly
∫
g(t − T )f(T )dT .

Problem Set 2.7, page 148

1 Take the Laplace transform of each term in these equations and solve for Y (s),
with y(0) = 0 andy′(0) = 1. Find the rootss1 ands2 — the poles ofY (s) :

Undamped y′′ + 0y′ + 16y = 0

Underdamped y′′ + 2y′ + 16y = 0

Critically damped y′′ + 8y′ + 16y = 0

Overdamped y′′ +10y′ + 16y = 0

For the overdamped case use PF2 to writeY (s) = A/(s− s1) + B/(s− s2).

Solution (a) Taking the Laplace Transform ofy ′′ + 0y ′ + 16y = 0 gives :

s2Y (s)− sy(0)− y ′(0) + 0 · sY (s)− 0 · y(0) + 16Y (s) = 0

s2Y (s)− 1 + 16Y (s) = 0

Y (s)(s2 + 16) = 1

Y (s) =
1

s2 + 16
The poles ofY = roots ofs2 + 16 ares = 4i and−4i.

(b) Taking the Laplace Transform ofy ′′ + 2y ′ + 16y = 0 gives :

s2Y (s)− sy(0)− y ′(0) + 2 · sY (s)− 2 · y(0) + 16Y (s) = 0

s2Y (s)− 1 + 2sY (s) + 16Y (s) = 0

Y (s)(s2 + 2s+ 16) = 1

Y (s) =
1

s2 + 2s + 16

The roots ofs2 + 2s+ 16 are−1− i
√
15 and−1 + i

√
15. Underdamping.

(c) Taking the Laplace Transform ofy ′′ + 8y ′ + 16y = 0 gives :

s2Y (s)− sy(0)− y ′(0) + 8 · sY (s)− 2 · y(0) + 16Y (s) = 0

s2Y (s)− 1 + 8sY (s) + 16Y (s) = 0

Y (s)(s2 + 8s+ 16) = 1

Y (s) =
1

s2 + 8s+ 16
=

1

(s + 4)2

There is a double pole ats = −4. Critical damping.

(d) Taking the Laplace Transform ofy ′′ + 10y ′ + 16y = 0 gives :
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s2Y (s)− sy(0)− y ′(0) + 10 · sY (s)− 10 · y(0) + 16Y (s) = 0

s2Y (s)− 1 + 10sY (s) + 16Y (s) = 0

Y (s)(s2 + 10s+ 16) = 1

Y (s) =
1

s2 + 10s+ 16
=

1

(s+ 2)(s+ 8)
=

1

6(s+ 2)
− 1

6(s+ 8)

The poles ofY (s) are−2 and−8 : Overdamping.

2 Invert the four transformsY (s) in Problem 1 to findy(t).

Solution (a)Y (s) =
1

s2 + 16
=

1

4
· 4

s2 + 16
inverts toy(t) =

1

4
sin(4t).

(b) Y (s) =
1

s2 + 2s+ 16
=

1

(s+ 1)2 + 15
inverts by equation (28) to

y(t) = e−t cos(
√
15t)/

√
15.

(c) Y (s) =
1

(s+ 4)2
inverts toy(t) = te−4t.

(d) Y (s) =
1

6(s+ 2)
− 1

6(s+ 8)
inverts toy(t) =

1

6
e−2t − 1

6
e−8t.

3 (a) Find the Laplace TransformY (s) from the equationy′ = eat with y(0) = A.

(b) Use PF2 to breakY (s) into two fractionsC1/(s− a) + C2/s.

(c) InvertY (s) to findy(t) and check thaty′ = eat andy(0) = A.

Solution (a) Taking the Laplace Transform ofy ′ = eat gives :

sY (s)− y(0) =
1

s− a

sY (s)−A =
1

s− a

Y (s) =
A

s
+

1

s(s− a)

(b) By using partial fractionsY (s) =
A

s
+

1
a

(s− a)
+

−1
a

s

(c) The inverse Laplace Transform of each term gives :

y(t) = A +
1

a
eat − 1

a

Differentiating gives :y ′(t) = a
1

a
eat = eat with y(0) = A+

1

a
− 1

a
= A.

4 (a) Find the transformY (s) wheny′′ = eat with y(0) = A andy′(0) = B.

(b) SplitY (s) intoC1/(s− a) + C2/(s− a)2 + C3/s.

(c) InvertY (s) to findy(t). Checky′′ = eat andy(0) = A andy′(0) = B.

Solution (a) The Laplace Transform ofy ′′ = eat gives :
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s2Y (s)− sy(0)− y ′(0) =
1

s− a

s2Y (s) = sA+B +
1

s− a

Y (s) =
A

s
+

B

s2
+

1

s2(s− a)

(b)
1

s2(s− a)
=

Cs+D

s2
+

E

s− a
=

(s− a)(Cs+D) + Es2

s2(s− a)
.

That numerator matches1 whenD = −1

a
, C = − 1

a2
, E =

1

a2
.

(c) y(t) = A+Bt+ C +Dt+ Eeat = A + Bt − 1

a2
− t

a
+

1

a2
eat.

5 Transform these differential equations to findY (s) :

(a) y′′ − y′ = 1 with y(0) = 4 andy′(0) = 0

(b) y′′ + y = cos ωt with y(0) = y′(0) = 0 andω 6= 1

(c) y′′ + y = cos t with y(0) = y′(0) = 0. What changed forω = 1 ?

Solution (a) The Laplace Transform ofy ′′ − y ′ = 1 is

s2Y (s)− sy(0)− y ′(0)− (sY (s)− y(0)) =
1

s

s2Y (s)− 4s− sY (s) + 4 =
1

s

Y (s)(s2 − s) =
1

s
+ 4s− 4

Y (s) =
1
s + 4s− 4

s2 − s

Y (s) =
4s2 − 4s+ 1

s3 − s2

Y (s) =
(2s− 1)2

s2(s− 1)

Y (s) = − 1

s2
+

3

s
+

1

s − 1

(b) The Laplace Transform ofy ′′ + y = cosωt with y(0) = 0 andy ′(0) = 0 :

s2Y (s)− sy(0)− y ′(0) + Y (s) =
s

s2 + ω2

s2Y (s) + Y (s) =
s

s2 + ω2

Y (s) =
s

(s2 + ω2)(s2 + 1)

(c) The Laplace Transform ofy ′′ + y = cos t with y(0) = 0 andy ′(0) = 0 :
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s2Y (s) + Y (s) =
s

s2 + 1

Y (s) =
s

(s2 + 1)2
: Double poles from resonance

6 Find the Laplace transformsF1, F2, F3 of these functionsf1, f2, f3 :

(a) f1(t) = eat − ebt (b) f2(t) = eat + e−at (c) f3(t) = t cos t

Solution (a) The Laplace Transform ofeat − ebt is
1

s− a
− 1

s− b
=

a− b

(s− a)(s− b)
.

(b) The Laplace Transform ofeat + e−at is
1

s− a
+

1

s+ a
=

2s

s2 − a2
.

(c) The Laplace Transform ofteat is 1
(s−a)2 by equation (19). Witha = i, write

t cos t = 1
2 te

it + 1
2 te

−it. Then the transform oft cos t is

1

2

1

(s− i)2
+

1

2

1

(s+ i)2
=

1

2

(s+ i)2 + (s− i)2

(s− i)2(s+ i)2
=

s2 − 1

(s2 + 1)2
.

7 For any real or complexa, the transform off = teat is . By writing
cos ωt as (eiωt + e−iωt)/2, transformg(t) = t cos ωt and h(t) = tet cos ωt.
(Notice that the transform ofh is new.)

Solution The transform ofteat is 1
(s−a)2 by equation (19). Herea = iω.

Thent cosωt = 1
2 te

iωt + 1
2 te

−iωt transforms to

1

2

1

(s− iω)2
+

1

2

1

(s+ iω)2
=

1

2

(s+ iω)2 + (s− iω)2

(s− iω)2(s+ iω)2
=

s2 − ω2

(s2 + ω2)2
.

Similarly tet cosωt = 1
2 te

(1+iω)t + 1
2 te

(1−iω)t transforms to

1

2

1

(s− 1− iω)2
+
1

2

1

(s− 1 + iω)2
=

1

2

(s− 1 + iω)2 + (s− 1− iω)2

(s− 1− iω)2(s− 1 + iω)2
=

(s− 1)2 − ω2

((s− 1)2 + ω2)2
.

8 Invert the transformsF1, F2, F3 using PF2 and PF3 to discoverf1, f2, f3 :

(a) F1(s) =
1

(s− a)(s− b)
(b) F2(s) =

s

(s− a)(s− b)
(c) F3(s) =

1

s3 − s

Solution (a)F1(s) =
1

(s− a)(s− b)
=

1

(a− b)(s− a)
+

1

(b− a)(s− b)
.

The inverse transform isf1 =
1

(a − b)
eat +

1

(b − a)
ebt.

(b)F2(s) =
s

(s− a)(s− b)
=

a

(a− b)(s− a)
+

b

(b− a)(s− b)
.

The inverse transform isf2 =
a

(a − b)
eat +

b

(b − a)
ebt.
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(c)F3(s) =
1

s3 − s
=

1

(s− 1)(s+ 1)s
= −1

s
+

1
2

s+ 1
+

1
2

s− 1
usingPF3.

The inverse transform isf3 = −1 +
1

2
e−t +

1

2
et.

9 Step 1 transforms these equations and initial conditions. Step2 solves forY (s).
Step3 inverts to findy(t) :

(a)y′ − ay = t with y(0) = 0

(b) y′′ + a2y = 1 with y(0) = 1 and y′(0) = 2

(c) y′′ + 3y′ + 2y = 1 with y(0) = 4 and y′(0) = 5.

What particular solutionyp to (c) comes from using “undetermined coefficients” ?yp = 1
2

.

Solution (a)y′ − ay = t transforms tosY (s)− y(0)− aY (s) =
1

s2
with y(0) = 0.

Y (s) =
1

s2(s− a)
=

− 1
a2

s
+

− 1
a

s2
+

1
a2

s− a

The inverse transform isy(t) = − 1

a2
− 1

a
t+

1

a2
eat.

(b) y′′ + a2y = 1 transforms tos2Y (s)− sy(0)− y ′(0)+ a2Y (s) =
1

s
with y(0) = 1

andy ′(0) = 2. This is(s2 + a2)Y (s) = y ′(0) + sy(0) +
1

s
:

Y (s) =
2

s2 + a2
+

s

s2 + a2
+

1

s(s2 + a2)
=

2

a

a

s2 + a2
+

s

s2 + a2
+

1

a2s
− 1

a2
s

s2 + a2
.

The inverse transform isy(t) =
2

a
sin(at) + cos(at) +

1

a2
− 1

a2
cos(at).

(c) y′′+3y′+2y = 1 becomess2Y (s)−sy(0)−y ′(0)+3sY (s)−3y(0)+2Y (s) =
1

s
.

Theny(0) = 4 andy ′(0) = 5 give

Y (s) =
1

s(s2 + 3s+ 2)
+

4s+ 5

(s2 + 3s+ 2)
=

1

s(s+ 1)(s+ 2)
+

4(s+ 1) + 1

(s+ 1)(s+ 2)
.

The inverse transform can come fromPF3 on page 143. It comes much more quickly
and directly (without Laplace transforms!) from knowing that
y = yp + yn = 1

2 + c1e
−t + c2e

−2t :

y(0) = 1
2 + c1 + c2 = 4 andy ′(0) = −c1 − 2c2 = 5 add to 1

2 − c2 = 18
2 and

y(t) = 1
2
+ 12e−t − 17

2
e−2t.

Questions 10-16 are about partial fractions.

10 Show that PF2 in equation (9) is correct. Multiply both sides by(s− a)(s− b) :

(∗) 1 = + .

(a) What do those two fractions in (∗) equal at the pointss = a ands = b ?
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(b) The equation (∗) is correct at those two pointsa and b. It is the equation of
a straight . So why is it correct for everys?

Solution (usingb instead ofc in PF2) :

1 =
s − b

a − b
+

s − a

b − a
after multiplying equation (9) by(s− a)(s− b).

(a) At s = a we get1 = a−b
a−b . At s = b we get1 = b−a

b−a .

(b) When the equation of astraight lineis correct for two valuess = a ands = b, it is
correct for all values ofs.

11 Here is the PF2 formula with numerators. Formula(∗) hadK = 1 andH = 0 :

PF2′ Hs+K

(s− a)(s− b)
=

Ha+K

(s− a)(a− b)
+

Hb+K

(b− a)(s− b)

To show that PF2′ is correct, multiply both sides by(s − a)(s − b). You are left
with the equation of a straight . Check your equation ats = a and ats = b.
Now it must be correct for alls, and PF2′ is proved.

Solution Multiplying by (s− a)(s− b) produces

(*) Hs+K =
(Ha+K)(s− b)

a− b
+

(Hb+K)(s− a)

b− a
.

At s = a this isHa+K = Ha +K + 0 : correct. Similarly correct ats = b. Since
(*) is linear ins, it is the equation of a straight line. When correct at 2 pointss = a and
s = b, it is correct for everys.

12 Break these functions into two partial fractions using PF2 and PF2′ :

(a)
1

s2 − 4
(b)

s

s2 − 4
(c)

Hs+K

s2 − 5s+ 6

Solution (a)
1

s2 − 4
=

1

(s− 2)(s+ 2)
=

1

(s− 2)(2 + 2)
+

1

(s+ 2)(−4)

=
1

4(s − 2)
− 1

4(s + 2)

(b)
s

s2 − 4
=

s

(s− 2)(s+ 2)
=

2

(s− 2)(2 + 2)
+

−2

(−4)(s+ 2)

=
1

2(s − 2)
+

1

2(s + 2)

(c)
Hs+K

s2 − 5s+ 6
=

Hs+K

(s− 2)(s− 3)

=
2H +K

(s− 2)(2− 3)
+

3H +K

(3− 2)(s− 3)

= −2H + K

s − 2
+

3H + K

s − 3
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13 Find the integrals of(a)(b)(c) in Problem 12 by integrating each partial fraction. The
integrals ofC/(s− a) andD/(s− b) are logarithms.

Solution (a)
∫

1

s2 − 4
ds =

∫
1

4(s− 2)
− 1

4(s+ 2)
ds

=
1

4
ln(s− 2)− 1

4
ln(s+ 2) =

1

4
ln

s − 2

s + 2

(b)
∫

s

s2 − 4
ds =

∫
1

2(s− 2)
+

1

2(s+ 2)
ds

=
1

2
ln(s− 2) +

1

2
ln(s+ 2) =

1

2
ln(s2 − 4)

(c)
∫

Hs+K

s2 − 5s+ 6
ds =

∫
−2H +K

s− 2
+

3H +K

s− 3
ds

= −(2H + K) ln(s − 2) + (3H + K) ln(s − 3)

14 Extend PF3 to PF3′ in the same way that PF2 extended to PF2′ :

PF3 ′ Gs2 +Hs+K

(s− a)(s− b)(s− c)
=

Ga2 +Ha+K

(s− a)(a− b)(a− c)
+

?

?
+

?

?
.

Solution We want
Gs2 +Hs+K

(s− a)(s− b)(s− c)
=

A

s− a
+

B

s− b
+

C

s− c
.

We can multiply both sides by(s− a)(s− b)(s− c) and solve forA,B,C. Or we can
useA as given in the problem statement—and permute lettersa, b, c to getB andC
fromA. That way is easier, and our three fractions are

a2G + aH + K

(a − b)(a − c)

1

s − a
+

b2G + bH + K

(b − a)(b − c)

1

s − b
+

c2G + cH + K

(c − a)(c − b)

1

s − c

15 The linear polynomial(s− b)/(a− b) equals1 at s = a and0 ats = b. Write down a
quadratic polynomial that equals1 ats = a and0 ats = b ands = c.

Solution
(s− b)(s− c)

(a− b)(a− c)
equals0 for s = b ands = c. It equals1 for s = a.

16 What is the numberC so thatC(s− b)(s− c)(s− d) equals1 ats = a?

NoteA complete theory of partial fractions must allow double roots (whenb = a). The
formula can be discovered from l’Ĥopital’s Rule (in PF3 for example) when
b approachesa. Multiple roots lose the beauty of PF3 and PF3′—we are happy
to stay with simple rootsa, b, c.

Solution ChooseC =
1

(a − b)(a − c)(a − d)
.

Questions 17-21 involve the transformF (s) = 1 of the delta function f(t) = δ(t).
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17 FindF (s) from its definition
∞∫
0

f(t)e−stdt whenf(t) = δ(t− T ), T ≥ 0.

Solution The transform ofδ(t− T ) is F (s) =

∞∫

0

δ(t− T ) e−stdt = e−sT .

18 Transformy ′′ − 2y ′ + y = δ(t). Theimpulse responsey(t) transforms intoY (s) =
transfer function . The double roots1 = s2 = 1 gives a double pole and a newy(t).

Solution With y(0) = y ′(0) = 0, the transform is(s2 − 2s + 1)Y (s) = 1. Then
Y (s) = 1

(s−1)2 and the inverse transform is the impulse responsey(t) = g(t) = tet.

19 Find the inverse transformsy(t) of these transfer functionsY (s) :

(a)
s

s− a
(b)

s

s2 − a2
(c)

s2

s2 − a2

Solution (a)Y (s) =
s

s− a
=

s− a+ a

s− a
= 1 +

a

s− a

y(t) = δ(t) + aeat

(b) Using PF2 we haveY (s) =
s

s2 − a2
=

s

(s− a)(s+ a)
=

1

2(s− a)
+

1

2(s+ a)

The inverse transform isy(t) =
1

2
eat +

1

2
e−at = coshat

(c) Y (s) =
s2

s2 − a2
=

s2 − a2 + a2

s2 − a2
= 1 +

a2

s2 − a2
= 1 +

a

2(s− a)
− a

2(s+ a)

y(t) = δ(t) +
a

2
eat − a

2
e−at = δ(t) + a sinh(at)

20 Solvey′′ + y = δ(t) by Laplace transform, withy(0) = y′(0) = 0. If you found
y(t) = sin t as I did, this involves a serious mystery :That sine solvesy′′ + y = 0,
and it doesn’t havey ′(0) = 0. Where doesδ(t) come from? In other words, what is
the derivative ofy ′ = cos t if all functions are zero fort < 0?

If y = sin t, explain whyy′′ = − sin t + δ(t). Remember thaty = 0 for t < 0.

Problem (20) connects to a remarkable fact. The same impulseresponsey = g(t)
solves both of these equations :An impulse at t = 0 makes the velocityy ′(0) jump
by 1. Both equations start fromy(0) = 0.

y ′′ +By ′ + Cy = δ(t) with y ′(0) = 0 y ′′ +By ′ + Cy = 0 with y ′(0) = 1.

Solution y ′′ + y = δ(t) transforms intos2Y (s) + Y (s) = 1.

ThenY (s) = 1
s2+1 has the inverse transformy(t) = sin t.

At time t = 0 the derivative ofy ′ = cos(t) is not y ′′ = sin(0) = 0, but rather
y ′′ = sin(0) + δ(t), since the functiony ′ = cos(t) jumps from0 to 1 at t = 0.
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21 (Similar mystery) These two problems give the sameY (s) = s/(s2 + 1) and the same
impulse responsey(t) = g(t) = cos t. How can this be ?

(a) y′ = − sin t with y(0) = 1 (b) y′ = − sin t+ δ(t) with “y(0) = 0”

Solution (a) The Laplace transform ofy′(t) = − sin(t) with y(0) = 1 is

sY (s)− 1 = − 1

s2 + 1

sY (s) = 1− 1

s2 + 1
=

s2 + 1− 1

s2 + 1
=

s2

s2 + 1

Y (s) =
s

s2 + 1

(b) The Laplace transform ofy ′(t) = − sin(t) + δ(t) with y(0) = 0 is

sY (s)− y(0) = − 1

s2 + 12
+ 1

sY (s)− 0 =
s2 + 1− 1

s2 + 1
=

s2

s2 + 1

Y (s) =
s

s2 + 1

These two problems (a) and (b) give the sameY (s) and therefore the samey(t). The
reason is thatδ(t) in the derivativey ′ gives the same result as an initial condition
y(0) = 1. Both cause a jump fromy = 0 beforet = 0 to y = 1 right aftert = 0. And
both transform to1.

Problems 22-24 involve the Laplace transform of the integral of y(t).

22 If f(t) transforms toF (s), what is the transform of the integralh(t) =
t∫
0

f(T )dT ?

Answer by transforming the equationdh/dt = f(t) with h(0) = 0.

Solution If h(t) =
t∫
0

f(T ) dT thendh/dt = f(t) with h(0) = 0. Taking the Laplace

Transform gives :

sH(s) = F (s) and H(s) =
F (s)

s
.

23 Transform and solve the integro-differential equationy′ +
t∫
0

y dt = 1, y(0) = 0.

A mystery like Problem 20 :y = cos t seems to solvey′ +
t∫
0

ydt = 0, y(0) = 1.

Solution The Laplace transform ofy′ +
t∫
0

y dt = 1 with y(0) = 0 is
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sY (s)− y(0) +
Y (s)

s
=

1

s

Y (s) =
1(

s+ 1
s

)
s
=

1

s2 + 1

The inverse transform ofY (s) is y(t) = sin(t)
About the mystery : The derivative ofcos t is − sin t + δ(t) becausecos t jumps at
t = 0 from zero fort < 0 (by convention) to1. But I am not seeing a new mystery.

24 Transform and solve the amazing equationdy/dt+
t∫
0

y dt = δ(t).

Solution The transform of
dy

dt
+

t∫

0

y dt = δ(t) is sY (s) +
Y (s)

s
= 1.

ThenY (s) =
1(

s+ 1
s

)
s
=

s

s2 + 1
and y(t) = cos t.

Note that this follows from Problem 20, where we found thatcos(t) has integralsin(t)
and derivative− sin(t) + δ(t).

25 The derivative of the delta function is not easy to imagine—it is called a “doublet”
because it jumps up to+∞ and back down to−∞. Find the Laplace transform of the
doubletdδ/dt from the rule for the transform of a derivative.

A doubletδ ′(t) is known by its integral :
∫
δ ′(t)F (t)dt = −

∫
δ(t)F ′(t)dt = −F ′(0).

Solution The Laplace transform ofδ(t) is 1. The Laplace transform of the derivative
is sY (s)− y(0). The Laplace transform of the doubletδ ′(t) = dδ/dt is therefores.

26 (Challenge) What functiony(t) has the transformY (s) = 1/(s2 + ω2)(s2 + a2)?
First use partial fractions to findH andK :

Y (s) =
H

s2 + ω2
+

K

s2 + a2

Solution Y (s) =
1

(s2 + ω2)(s2 + a2)
=

1

(s2 + ω2)(a2 − ω2)
− 1

(s2 + a2)

1

(a2 − ω2)
.

Theny(t) =
sinωt

ω(a2 − ω2)
− sinat

a(a2 − ω2)
.

27 Why is the Laplace transform of a unit step functionH(t) the same as the Laplace
transform of a constant functionf(t) = 1 ?

Solution The step function and the constant function are the same fort ≥ 0.


